Peer-Server Systems

- ◆ Peer-to-peer: minimizes latency, consumes bandwidth
- Client-server: effective aggregation and filtering, increases latency
- ♦ Hybrid peer-server:
 - over short-haul, highbandwidth links: peer-to-peer
 - over long-haul, lowbandwidth links: client-server
- ◆ Each entity has own multicast group
- Well-connected hosts subscribe directly to a multicast group (peer-topeer)
- Poorly-connected hosts subscribe to a forwarding server
- Forwarding server subscribes to the entities' multicast groups
 - * aggregation, filtering

Recapitulation: Resource Management Methods

- 1. Optimizing the communication protocol
 - * packet compression and aggregation
- 2. Controlling the visibility of data
 - · area-of-interest filtering
- 3. Exploiting perceptual limitations
 - * altering visual and temporal perceptions
- 4. Enhancing the system architecture

§7 Other Issues

- ◆Taxonomy of online cheating
- ◆Analysis of denial-of-service activity
- ◆Synchronized simulation in *Age of Empires*

Network Security

- ◆ Military
 - private networks no problem

- lacktriangle Business, industry, e-commerce,...
 - 'traditional' security problems

- ◆ Entertainment industry
 - * multiplayer computer games, online games
 - specialized problems

Security and Cheating in Multiplayer Computer Games

- ◆ Protect the sensitive information
 - cracking passwords and user accounts
 - pretending to be an administrator
- ◆ Provide a fair playing field
 - * tampering with the network traffic
 - . colluding with other players
- lacktriangle Uphold justice inside the game world
 - * abusing beginners
 - * ganging up

Taxonomy of Online Cheating 1 (4)

- ◆ Cheating by compromising passwords
 - dictionary attacks

- ◆ Cheating by social engineering
 - password scammers
- ◆ Cheating by denying service from peer players
 - * denial-of-service (DoS) attack
 - * clog the opponent's network connection

Taxonomy of Online Cheating 2 (4)

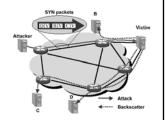
- ♦ Cheating by tampering with the network traffic
 - * reflex augmentation
 - packet interception
 - ❖ look-ahead cheating
 - * packet replay attack
- ◆ Cheating with authoritative clients
 - * receivers accept commands blindly orequests instead of commands ⊙checksums from the game state

Taxonomy of Online Cheating 3 (4)

- ◆ Cheating due to illicit information
 - * access to replicated, hidden game data
 - . compromised software or data
- ◆ Cheating related with internal misuse
 - · privileges of system administrators
 - * logging critical operations into CD-ROMs
- ◆ Cheating by exploiting a bug or design flaw
 - * repair the observed defects with patches
 - . limit the original functionality to avoid the defects
 - good software design in the first place!

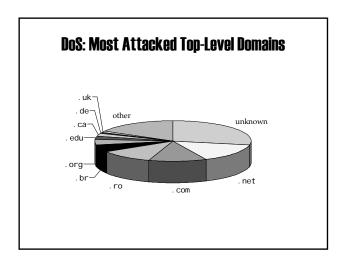
Taxonomy of Online Cheating 4 (4)

- ◆ Cheating by collusion
 - * two or more players play together without informing the other participants
 - . one cheater participates as two or more players
- ◆ Cheating related to virtual assets
 - ❖ demand ⇒ supply ⇒ market ⇒ money flow ⇒ cheating


- ◆ Cheating by offending other players
- * acting against the 'spirit' of the game
 - ⊙ players handle the policing themselves → militia
 - o systems records misconducts and brands offenders as criminals
 - o players decide whether they can offend/be offended

Denial-of-Service (DoS) Attack

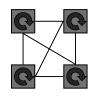
- ◆ Attack types:
 - * logic attack: exploit flaws in the software
 - * flooding attack: overwhelm the victim's resources by sending a large number of spurious requests
- ◆ Distributed DoS attack: attack simultaneously from multiple (possibly cracked) hosts
- ◆ IP spoofing: forge the source address of the outgoing packets
- ◆ Consequences:
 - · wasted bandwidth, connection blockages
 - * computational strain on the hosts


Analysing DoS Activity

- ◆ Backscatter analysis
- ◆ Spoofing using random source address
- ◆ A host on the Internet receives unsolicited responses
- ◆ An attack of m packets, monitor n addresses
- ◆ Expectation of observing an attack: $E(X) = nm/2^{32}$

Dos: Selected Results

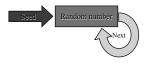
- ◆ Three week-long logging periods, February 2001
- ◆ >12,000 attacks, >5,000 distinct targets
- ◆ Significant number of attacks were directed against
 - * home machines
 - * users running Internet Relay Chat (IRC)
 - * users with names that are sexually suggestive or incorporate themes of drug use
 - · users supporting multiplayer games
- ◆ In addition to well-known Internet sites, a large range of small and medium sized businesses were targeted

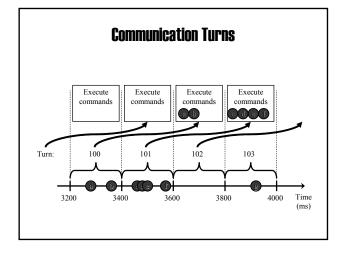

Synchronized Simulation in *Age of Empires*

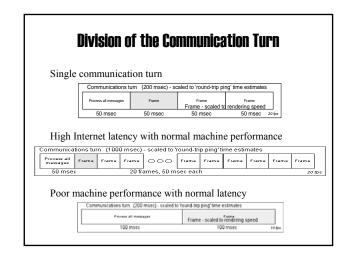
- ◆ Age of Empires game series by Ensemble Studios
- ◆ Real-time strategy (RTS) game
- ♦ Max 8 players, each can have up to 200 moving units \Rightarrow 1600 moving units
 - ⇒ large-scale simulation
- ◆ Rough breakdown of the processing tasks:
 - ❖ 30% graphic rendering
 - * 30% AI and path-finding
 - * 30% running the simulation and

Synchronized (or Simultaneous) Simulation

- ◆ Large simulation ⇒ a lot of data to be transmitted
- ◆ Trade-off: computation vs. communication
 - * 'If you have more updating data than you can move on the network, the only real option is to generate the data on each client'
- Run the exact same simulation in each client






Handling Indeterminism

- 'Indeterministic' events are either
 - * predictable (computers) or
 - unpredictable (humans)
- ◆ Only the unpredictable events have to be transmitted
- ⇒ communication
 - * apply an identical set of commands that were issued at the same time
- ◆ The predictable events can be calculated locally on each client ⇒ computation
- ◆ Pseudo-random numbers are deterministic
- ◆ All clients use the same seed for their random number generator
 - * disseminate the seed

Pseudo-random number generator

Features

- ◆ Guaranteed delivery using UDP
 - * message packet:
 - execution turn
 - ⊙ sequence number
 - * if messages are received out of order, send immediately a resend request
 - * if acknowledgement arrives late, resend the message
- Hidden benefits
 - clients are hard to hack

 - any simulation running differently is out-of-sync
- ◆ Hidden problems
 - * programming is demanding
 - · out-of-sync errors
 - * checksums for everything \odot 50 Gb message logs

Lessons Learned

- ◆ Players can tolerate a high latency as long as it remains constant
 - * for an RTS game, even 250-500 ms latencies are still playable
- ◆ Jitter (the variance of the latency) is a bigger problem
 - * consistent slow response is better than alternating between fast and slow
- Studying player behaviour helps to identify problematic situations
 - * hectic situations (like battles) cause spikes in the network traffic
- ♦ Measuring the communication system early on helps the development * identify bottlenecks and slowdowns
- ◆ Educating programmers to work on multiplayer environments

§8 Final Remarks

Outline of the Course (Revisited)

- Introduction
- Background
- past projects and applications Networking

 data transfer and protocols
- - communication architectures
- Managing dynamic shared state
 - consistency-throughput trade-off
 - centralized information repositories
 - frequent state regeneration
 - dead reckoning

- 5. System design
 - threads
 - polygon culling and level-ofdetail
- 6. Resource management
 - · packet compression and aggregation
 - area-of-interest filtering
- · exploiting perceptual limitations
- 7. Other issues
 - ♦ security
 - case examples

Examinations 1 (2)

- examination dates
 - 1 March 15 2004
 - 2. April 5, 2004
 - 3. May 10, 2004
- check the exact times and places at

http://www.it.utu.fi/opetus/tentit/

- if you are *not* a student of University of Turku, you must register to receive the credits
 - · further instructions are available at http://www.tucs.fi/Education/Information/ regcredi ts. php

Examinations 2 (2)

- ◆ questions
 - * based on the lectures and additional literature (3 articles)
 - * four questions à 8 points
 - * to pass the examination, at least 16 points (50%) are required
 - * questions are in English, but you can answer in English or in Finnish
- ◆ remember to enrol in time!