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Abstract. Supervised learning with pair-input data has recently be-
come one of the most intensively studied topics in pattern recognition
literature, and its applications are numerous, including, for example,
collaborative filtering, information retrieval, and drug-target interaction
prediction. Regularized least-squares (RLS) is a kernel-based learning al-
gorithm that, together with tensor product kernels, is a successful tool
for solving pair-input learning problems, especially the ones in which the
aim is to generalize to new types of inputs not encountered in during the
training phase. The training of tensor kernel RLS models for pair-input
problems has been traditionally accelerated with the so-called vec-trick.
We show that it can be further accelerated by taking advantage of the
sparsity of the training labels. This speed improvement is demonstrated
in a running time experiment and the applicability of the algorithm in a
practical problem of predicting drug-target interactions.

1 Introduction

In supervised learning, such as regression, classification and ranking, one is given
a training data comprised of a sequence S = {xh}nh=1 of inputs and a vector
y ∈ Rn consisting of their real-valued labels. Here, we consider learning tasks
in which the inputs are paired, a property that is characterized by the following
two circumstances. Firstly, the inputs can be naturally split into two parts, in
this paper referred to as the data point and task parts, of which both have their
own feature representations. Namely, x = (d, t), where d ∈ D, t ∈ T , and D and
T are sets consisting of all possible tasks and data points, respectively. Secondly,
the data with known labels tends to be available in sets, in which both parts
of a single input are likely to also appear as parts of other inputs, that is, the
input sequence for training contains several inputs associated to the same task
part and several inputs associated to the same data point part.

Typical examples of learning problems in which this type of split makes sense
can be found, for example, in the fields of recommender systems, where the inputs
consist of customers and products (Basilico and Hofmann, 2004), information
retrieval, where they consist of queries and data to be retrieved (Liu, 2011),



biochemical interaction prediction, where the inputs can be split, for instance,
to drugs and targets (see e.g. Ding et al. (2013) for a recent review), prediction of
game outcomes (Pahikkala et al., 2010b), and several types of multi-task learning
problems involving task-specific features (see e.g. Bonilla et al. (2007); Hayashi
et al. (2012)) can be considered under this framework. In these problems, both
parts of the input may appear several times in the training set, for example, the
same customer may have rated several products and the same product may have
been rated by several customers.

Let D ⊂ D and T ⊂ T denote, respectively, the in-sample data points and
in-sample tasks, that is, the sets of data points and tasks encountered in the
training set. Given a new input x = (d, t), whose label is to be predicted with
the model learned from the training set, the above type of learning problems can
be coarsely divided into four different settings of varying difficulty, shown in the
following table:

d ∈ D and t ∈ T d ∈ D and t /∈ T

d /∈ D and t ∈ T d /∈ D and t /∈ T

Of these, learning problems corresponding to the upper left setting are often
encountered in missing value estimation and link prediction problems, where
a partially filled matrix needs to be completed without the need for consider-
ing new rows and columns, as in collaborative filtering. The upper right and
lower left settings can be interpreted as typical multi-task or multi-label learn-
ing problems, where the tasks are fixed in advance and the aim is to learn to
solve several tasks together, so that the performance in the individual learning
tasks is improved compared to the approach in which the individual tasks would
be learned in isolation. The lower right setting is usually the most challenging
one. Neither the data point nor the task parts are in this case known during
training. This paper focuses mainly on this setting, but the proposed algorithms
can be straightforwardly applied for any of the above settings.

In this work we consider the setting where both the tasks and data points
of interest have feature representations, possibly defined implicitly via a ker-
nel function (Shawe-Taylor and Cristianini, 2004). Previously, learning methods
based on the tensor product (of Kronecker product) kernel have been success-
fully applied in such settings in order to solve problems such as product rec-
ommendation (Basilico and Hofmann, 2004; Park and Chu, 2009), prediction of
protein-protein interactions (Ben-Hur and Noble, 2005; Kashima et al., 2009).

The pair-input modes based on tensor product kernels can be trained very
efficiently with singular value decomposition based approaches (see e.g. Martin
and Van Loan (2006); Raymond and Kashima (2010); Pahikkala et al. (2010a,
2013)), if the training set is complete in the sense that it contains every possible
datum-task pair with data point in D and task in T exactly once. However, if the
training set is not complete, no computationally efficient closed form solutions
are known, and one must resort to iterative optimization approaches, such as
those based on the conjugate gradient (CG) method.



There has been several articles about accelerating the gradient computation
used in these methods, all of which are based on the so-called “vec-trick”, which
avoids the expensive computation of the tensor product (see e.g. Kashima et al.
(2009)). In this paper, we show that the gradient computation can be further
accelerated by taking advantage of the sparsity of the training data, that is, only
a small subset of the datum-task pairs in D×T having a known label in training
time. This can not be achieved with the standard algorithms and data structures
used to implement sparse matrices and computations with them, but we propose
new algorithms specially tailored for solving the problem in question.

2 Training Algorithms for Pair-Input Problems

The training data consists of a sequence S = {xh}nh=1 ∈ Xn of inputs, X being
the set of all possible inputs, and a vector y ∈ Rn of the real-valued labels of the
inputs. As described above, we assume each input can be represented as a pair
consisting of a data point and task x = (d, t) ∈ D × T , where D and T are the
sets of all possible data points and tasks, respectively, to which we refer as the
data point space and the task space. Moreover, let D ⊂ D and T ⊂ T denote
the in-sample data points and in-sample tasks, that is, the sets of data points
and tasks encountered in the training sequence, respectively, and let m = |D|
and q = |T |. We further define

γ : [n]→ [m]× [q],

where the square bracket notation denotes the set [n] = {1, . . . , n}, to be the
function that maps the indices of the labeled inputs pairs to the index pairs
corresponding to the data point and task the data consist of, that is, γ(h) = (i, j)
if xh = (di, tj). Note that γ does not necessarily have an inverse, since in some
learning settings the training set may contain several data points with the same
datum-task pair.

Next, unless stated otherwise, we assume that the data point space and the
task space are real vector spaces, that is, D = Rd and T = Rr, and hence both
the data points and tasks have a finite dimensional feature representation. Let
D ∈ Rm×d and T ∈ Rq×r, respectively, contain the feature representations of the
in-sample data points and tasks. Then, the joint tensor feature representation
for the training data (used in several studies in the machine learning literature as
discussed in Section 1) can be expressed as X = B(T⊗D), where ⊗ denotes the
tensor (or Kronecker) product of matrices and B ∈ {0, 1}n×mq is a bookkeeping
matrix, whose rows are indexed by the n training points and columns by the mq
different tensor feature vector combinations, that is, the entries of B are

Bh,k =

{
1 if k = (j − 1)d+ i, where (i, j) = γ(h)
0 otherwise

.

Each row of B contains a single nonzero entry indicating to which training input
the datum corresponds. This matrix covers both the situation in which some of



the possible paired inputs are not in the training data and the one in which
there are several occurrences of the same pair. We note that there are several
alternative approaches for constructing a joint feature representation for pair-
input data but the tensor-based representation is the most expressive one and it
enables the simultaneous generalization to both out-of-sample data points and
tasks (for further analysis about the expressivity and universality of the tensor-
based representation, we refer to our previous work in Waegeman et al. (2012)).

The objective function of the ridge regression problem (Hoerl and Kennard,
1970) can be expressed as

J(w) = (Xw − y)T(Xw − y) + λwTw, (1)

where λ > 0 is a regularization parameter controlling the trade-off between
the regression error made on the training set and the complexity of the model
represented by the real-valued vector w. The minimizer of J can be found by
solving the following system of linear equations:(

XTX + λI
)
w = XTy

with respect to w. By substituting the tensor feature representations for X, the
system becomes(

(T⊗D)TBTB(T⊗D) + λI
)
w = (T⊗D)TBTy. (2)

One can also introduce the corresponding optimization problem known as the
dual problem of (1), whose solution is obtained via solving the following system(

XXT + λI
)
a = y (3)

with respect to the dual variables a. According to the KKT conditions, the
primal and dual solutions are connected as w = XTa. In addition to having
computational advantages under certain circumstances more elaborated below,
the dual problem also makes it possible to use nonlinear kernel functions in
place of the ordinary inner products between feature vectors (Shawe-Taylor and
Cristianini, 2004). Note also that, when using kernels, the input space (e.g.
here consisting the Cartesian product of the data point space and task space)
does not have to be a finite dimensional vector space but, depending of the
kernel function used, any kind of set of inputs will do. By introducing the kernel
matrices K = DDT and G = TTT for the data points and tasks, respectively,
(3) can be rewritten as (

B(G⊗K)BT + λI
)
a = y. (4)

If one solves the primal system (2) with, for example, the conjugate gradient
(CG) algorithm (see e.g. Nocedal and Wright (2000)), it is easy to conclude that
the computationally most expensive operations are the following two types of
matrix-vector products:

u← B(T⊗D)v (5)

v← (T⊗D)TBTu (6)



where v ∈ Rdr and u ∈ Rn. Similarly, the computationally most expensive
operation involved in a CG step for solving the dual system (4) is the following
matrix-vector product:

u← B(G⊗K)BTu (7)

where u ∈ Rmq.
The machine learning literature consists of several studies in which these

products have been accelerated with the so-called “vec-trick”, which is charac-
terized by the following well-known results of the tensor product algebra:

Lemma 1. Let P ∈ Ra×b, Q ∈ Rb×c, and R ∈ Rc×d be matrices. Then,

(RT ⊗P)vec(Q) = vec(PQR), (8)

where vec is the vectorization operator that stacks the columns of a matrix to a
vector.

It is obvious that the right hand size of (8) is considerably faster to compute
than the left hand side, because it avoids the direct computation of the large
tensor product.

Algorithm 1 Compute u← B(T⊗D)v

1: u← 0 ∈ Rn

2: if mdr + rn < qdr + dn then
3: M← DV . O(mdr) time operation
4: for h = 1, . . . , n do
5: i, j ← γ(h)
6: uh ←MiT:,j . O(r) time operation

7: else
8: N← VTT . O(qdr) time operation
9: for h = 1, . . . , n do

10: i, j ← γ(h)
11: uh ← DiN:,j . O(d) time operation

12: return u

Let us consider both (5) and (6) in detail. Let V ∈ Rd×r be the matrix for
which v = vec(V) and U ∈ Rm×q be the matrix for which BTu = vec(U). Then,
applying (8) leads to

u← Bvec(DVTT) (9)

v← vec(DTUT), with BTu = vec(U). (10)

Similarly, using the vec-trick on (7) transforms it to

u← Bvec(KUG), with BTu = vec(U). (11)



Multiplying a vector with the matrix B does not increase the complexity, because
it contains at most mq nonzero entries, and hence it can be performed with
the standard data structures and algorithms for sparse matrix-vector products.
Thus, if we restrict our consideration on only the products between the other
matrices, the complexity of the vec-trick method without taking advantage of
the sparsity of the label information is characterized by the following lemma:

Lemma 2. With the vec-trick, the computational complexity of a single gradient
step for solving the primal form (e.g. the computation of the right hand sides of
both (9) and (10)) is

O(min(mdr +mrq, drq +mdq)),

and the corresponding complexity for solving the dual form (e.g. the computation
of the right hand side of (11)) is

O(m2q +mq2).

Proof. The complexity results directly from performing the matrix multiplica-
tions in the optimal order. ut

Solving the primal problem is more cost-effective than solving the dual when the
number of features is smaller than the number data points. For pair input data
and tensor features, this is the case especially when both d << m and r << q
hold simultaneously. In the opposite case, or if nonlinear kernel functions are
used, it pays to solve the dual form instead.1

Next, we consider how the sparsity of the label information can be taken
advantage of to further accelerate the gradient computations for both the primal
and dual cases. With sparsity, we refer to the property that only a small portion
of the datum-task pairs with the data point and task parts encountered in the
training set has a known label. Formally, this means that n << mq.

Proposition 1. The right hand sides of (9) and (10) can be computed in

O(min(mdr + rn, drq + dn))

time. The complexity for computing the right hand side of (11) is

O(mn+ qn).

Proof. Calculating the right hand side of (9) can be started by first computing
either DV or VTT requiring O(mdr) and O(qdr) time, respectively. Assume
that we start with the former, and compute the matrix M ← DV. Then, each
entry of u can be computed by taking the inner product between a row of M

1 The convergence properties of gradient descent methods (e.g. the number of steps
required for achieving good prediction performance) may differ considerably between
the primal and dual forms (Chapelle, 2007), but we leave this consideration out from
this article, since it would divert the discussion too far from the scope of the paper.



Algorithm 2 Compute v← (T⊗D)TBTu

1: if mdr + rn < qdr + dn then
2: M← 0 ∈ Rm×r

3: for h = 1, . . . , n do
4: i, j ← γ(h)
5: Mi ←Mi + uhTj . O(r) time operation

6: v← vec(DTM) . O(mdr) time operation
7: else
8: N← 0 ∈ Rd×q

9: for h = 1, . . . , n do
10: i, j ← γ(h)
11: N:,j ← N:,j + (DT):,iuh . O(r) time operation

12: v← vec(NT) . O(qdr) time operation

13: return v

and a column of TT, which are of length r. Since u has n entries, the overall
complexity becomes O(mdr + rn). If the computation is started with the latter
way, each entry of u then requires the inner product between vectors of length
d, resulting to an overall complexity O(qdr + dn). This idea is summarized in
Algorithm 1.

The matrix U in (10) contains at most n nonzero entries, and hence com-
puting either the matrix product DTU or UT require O(dn) and O(rn) time,
respectively. The subsequent multiplications of either with T from right or with
DT from left, increase the overall complexities to O(drq + dn) or O(mdr + rn)
time, respectively. This is illustrated in Algorithm 2

Algorithm 3 Compute u← B(G⊗K)BTu

1: M← 0 ∈ Rm×q

2: for h = 1, . . . , n do
3: i, j ← γ(h)
4: Mi ←Mi + uh(G)j . O(q) time operation

5: u← 0 ∈ Rn

6: for h = 1, . . . , n do
7: i, j ← γ(h)
8: uh ← KiM:,j . O(m) time operation

9: return u

The matrix U in (11) has at most n nonzero entries, and hence multiplying it
with K from left or with G from right take O(mn) and O(qn) time, respectively.
The subsequent filling of the entries of u require n inner products between vectors
of size q or m depending whether U was multiplied with K or G, resulting in an
overall time complexity of O(mn+ qn). This is illustrated in Algorithm 3. ut
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Fig. 1. Prediction performance as a function of CG iterations for both the ranking and
classification tasks.

3 Experiments

In the experiments, we demonstrate the use of the algorithm on a practical
problem of predicting drug-target (DT) interactions, and compare the computa-
tional speed of the proposed training algorithm based on the one that employs
the vec-trick only. The data we use for DT interaction prediction experiments
consists of 1421 drug compounds, 156 protein targets, and 93356 interaction
binding affinity values for DT pairs originally measured by Metz et al. (2011).
That is, a bit less than half of the possible DT pairs are labeled with a known
binding value. The binding values vary between 4.0 and 10.3, the larger the
values the tighter binding. The features of the drugs consists of their 2D Tani-
moto coefficient similarities with the other drugs, that is, the feature matrix D
is a symmetric 1421 × 1421-matrix. The feature representation for the protein
targets is their normalized Waterman-Smith sequence similarity with the other
targets, resulting to a symmetric 156 × 156-dimensional feature matrix T. We
refer to Pahikkala et al. (2014) for more in depth description of the data and the
similarities.2 The implementation of the algorithm will be put online as a part
of the RLScore open source machine learning library.3

As practical example problems, we consider the task of learning to rank the
DT pairs with respect to their binding value and a binary classification problem
in which a drug and target are said to interact if the binding value is larger than
7.6. In both experiments, we perform nine train-test splits of the whole data
over which the performance is averaged. The splits reflect the most challenging
of the four settings considered in the introduction section, that is, the one in
which the model must simultaneously generalize for new drugs and targets. The
performance of both learning problems is measured using the concordance index
(Gönen and Heller, 2005) (C-index), also known as the pairwise ranking accuracy

1
|{(i,j)|yi>yj}|

∑
yi>yj

H(ŷi − ŷj) where yi denote the true and ŷi the predicted

2 The data is avaliable at http://staff.cs.utu.fi/~aatapa/data/DrugTarget/
3 Available at https://github.com/aatapa/RLScore



Drug-target Simulation

New method 57 0.17
Vec-trick method 67 11.43

Table 1. The time (in seconds) spent for gradient computations by the proposed
accelerated method and the traditional vec-trick based approach.

labels, and H is the Heaviside step function. Note that this measure reduces
to the area under ROC curve (AUC) in the binary classification problem. The
prediction performances for the tasks are illustrated in Figure 1. The Tikhonov
regularization parameter value is set to 0, and hence the only regularization
mechanism is the number of CG iterations. We observe that in both tasks one
requires only a few CG iterations until the performance converges, to a slightly
better than random level (concordance index 0.6) for the ranking tasks but
notable better classification performance (AUC 0.75). These results are in line
with those published in our previous study with the data (Pahikkala et al., 2014).

We compare the running speeds of the new and the vec-trick based approach
on both the DT interaction prediction problem and with a simulated experiment
with randomly generated data. Table 1 presents the running time of both algo-
rithms on 50 CG iterations for the DT problem. Since almost half of the possible
DT pairs is known, the training labels are not really sparse and the difference
between the running times is small. We next generated artificial data and task
similarity matrices D,T ∈ R10000×100 and generated a vector y ∈ R10000 labels
for inputs with random datum-task indices. For this experiment, the running
time of the proposed algorithm for a single gradient iteration is almost two or-
ders of magnitude smaller than that of the vec-trick method, demonstrating the
potential of the new approach for large-scale and sparse data sets.
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