
EXACT AND EFFICIENT LEAVE-PAIR-OUT CROSS-VALIDATION FOR RANKING RLS

Tapio Pahikkala, Antti Airola, Jorma Boberg, and Tapio Salakoski

Turku Centre for Computer Science (TUCS),
Department of Information Technology,

University of Turku, Turku, Finland,
firstname.lastname@utu.fi

ABSTRACT

In this paper, we introduce an efficient cross-validation al-
gorithm for RankRLS, a kernel-based ranking algorithm.
Cross-validation (CV) is one of the most useful methods
for model selection and performance assessment of ma-
chine learning algorithms, especially when the number of
labeled data is small. A natural way to measure the perfor-
mance of ranking algorithms by CV is to hold each data
point pair out from the training set at a time and measure
the performance with the held out pair. This approach is
known as leave-pair-out cross-validation (LPOCV).

We present a computationally efficient algorithm for
performing LPOCV for RankRLS. If RankRLS is already
trained with the whole training set, the computational
complexity of the algorithm isO(m2). Further, if there
are d outputs to be learned simultaneously, the compu-
tational complexity of performing LPOCV isO(m2d).
An approximativeO(m2) time LPOCV algorithm for
RankRLS has been previously proposed, but our method
is the first exact solution to this problem.

We introduce a general framework for developing
and analysing hold-out and cross-validation techniques
for quadratically regularized kernel-based learning algo-
rithms. The framework is constructed using a value reg-
ularization based variant of the representer theorem. We
provide a simple proof for this variant using matrix cal-
culus. Our cross-validation algorithm can be seen as an
instance of this framework.

1. INTRODUCTION

Learning to rank has been a topic of interest in the ma-
chine learning community during the recent years. The
problem of ordering a group of instances according to
a preference relation arises naturally in domains such as
information retrieval and collaborative filtering, and as a
special case of ranking we encounter the task of area un-
der curve (AUC) maximization in fields where this metric
is preferred.

The ranking task is often cast as a pairwise classifi-
cation problem, where instance pairs are used as training
examples, and the labels indicate the direction of the pref-
erence. Algorithms based on this approach, such as the
RankSVM [Herbrich et al., 1999, Joachims, 2002], have

been shown to achieve high ranking performance, but of-
ten at the cost of computational efficiency. Consideration
of pairs instead of individual instances results in quadratic
growth in the number of training examples, and thus also
increased time complexity in training. Computational
shortcuts exist for special cases such as the linear ver-
sion of RankSVM used with sparse data [Joachims, 2006].
However, in the general case when nonlinear kernel func-
tions are used, methods such as RankSVM can be quite in-
efficient in training (see e.g. [Schölkopf and Smola, 2002,
Shawe-Taylor and Cristianini, 2004] for more informa-
tion about kernel functions).

Regularized least-squares (RLS) (see e.g.
[Rifkin et al., 2003, Poggio and Smale, 2003] and
references therein) is a kernel-based learning algorithm
that is closely related to the support vector machines.
Lately, it has been shown that it is possible to derive
regularized least-squares (RLS) based ranking algorithms
whose complexity is the same as that of standard RLS
regression and which perform on state-of-the-art level.
Namely, two very similar RLS based ranking algorithms
have been independently proposed, the RankRLS in-
troduced by [Pahikkala et al., 2007], and the MPRank
[Cortes et al., 2007b]. In addition, these algorithms have
the property that in addition to learning the pairwise rank-
ing of the data points, they also preserve the magnitude of
the preferences.

When kernels are used the complexity of training
RankRLS is cubic with respect to the number of training
examples. While this is an improvement over approaches
such as the RankSVM, still it means that the algorithm is
not in the general case suitable for large scale learning.
Rather, its use is most advantageous on small datasets,
the type of which are encountered frequently, for exam-
ple, when solving medical and biological tasks. Getting
additional validation and test data may in these kind of do-
mains be not an option, as producing the data may be very
expensive. In such cases cross-validation is frequently
used for parameter choosing and performance evaluation.
For example, when aiming to build a classifier maximiz-
ing the AUC metric with biological data as considered by
[Parker et al., 2007], cross-validation is commonly used
for performance evaluation. RankRLS can be easily mod-
ified to perform AUC maximization as considered by us

in [Pahikkala et al., 2008].
Analogously to leave-one-out cross-validation, one

can define leave-pair-out cross-validation, where pairs of
training instances are left out of the training set. This ap-
proach is natural for the pairwise ranking tasks and it guar-
antees the maximal use of available data. The LPOCV
estimate, taken over a training set ofm examples, is an
unbiased estimate of the true error over a sample ofm−2
examples (for a proof see [Cortes et al., 2007a]).

A naive implementation for LPOCV would require
training one model per holdout pair. The complexity of
training RankRLS isO(m3) in the worst case, where
m is the number of training examples. Because of the
quadratic number of possible pairs, this approach can re-
sult in O(m5) LPOCV complexity, which is extremely
inefficient even for quite small datasets. However, us-
ing techniques based on matrix calculus the closed form
solution of RankRLS can be manipulated to derive effi-
cient algorithms for cross-validation. Such methods have
been previously proposed for the standard RLS regres-
sion by [Pahikkala et al., 2006] and by [An et al., 2007].
For the task of efficient LPOCV in RLS-based rank-
ing, an approximative algorithm was recently proposed in
[Cortes et al., 2007a]. In this paper we extend these re-
sults by deriving an exact and efficient LPOCV-algorithm
for RLS-based ranking.

2. PRELIMINARIES

We assume the scored object ranking setting, where the
learner is supplied with objects each of which are associ-
ated with a score that represents the “goodness” of the ob-
ject with regards to the ranking criterion used. The rank-
ing can be derived from these scores, with objects hav-
ing higher scores being preferred over objects with lower
scores. The task is to learn a transitive preference relation
that can be used to order any given set of the same type of
objects.

We construct a training set from a given set ofm data
points. A data pointz = (x, y) consist of an input variable
x ∈ X (object) and an output variabley ∈ R (score),
whereX , called the input space, can be any set. For a pair
of data pointsz1 = (x1, y1) andz2 = (x2, y2) we say that
z1 is preferred overz2 if y1 > y2. The magnitude of this
preference is defined as bey1 − y2.

Further, letX = (x1, . . . , xm) ∈ (Xm)T be a se-
quence of inputs, where(Xm)T denotes the set of row
vectors whose elements belong toX . Correspondingly,
we defineY = (y1, . . . , ym)T ∈ Rm be a sequence of the
corresponding output variables. Altogether, we define the
training set to be the pairS = (X, Y).

Let us denoteRX = {f : X → R}, and letH ⊆ RX
be the hypothesis space. In order to construct an algo-
rithm that selects a hypothesisf from H, we have to de-
fine an appropriate cost function that measures how well
the hypotheses fit to the training data. Further, we should
avoid too complex hypotheses that overfit at training phase
and are not able to generalize to unseen data. Follow-
ing [Scḧolkopf et al., 2001], we consider the framework

of regularized kernel methods in whichH is the repro-
ducing kernel Hilbert space (RKHS) defined by a positive
definite kernel functionk. The kernel functions are de-
fined as follows. LetF denote the feature vector space.
For any mapping

Φ : X → F ,

the inner product

k(x, x′) = 〈Φ(x),Φ(x′)〉

of the mapped data points is called a kernel function. We
also denote the sequence of feature mapped inputs as

Φ(X) = (Φ(x1), . . . ,Φ(xm)) ∈ (Fm)T

for all X ∈ (Xm)T. Further, we define the symmetric
kernel matrixK ∈ Rm×m, whereRm×m denotes the set
of real matrices of typem×m, as

K = Φ(X)TΦ(X) =

 k(x1, x1) · · · k(x1, xm)
...

...
...

k(xm, x1) · · · k(xm, xm)

for all X ∈ (Xm)T. Unless stated otherwise, we assume
that the kernel matrix is strictly positive definite, that is,
~aTK~a > 0 for all ~a ∈ Rm,~a 6= ~0. This can be ensured,
for example, by performing a small diagonal shift.

Using RKHS as our hypothesis space, we define the
learning algorithm as

A(S) = arginf
f∈H

J(f),

where
J(f) = l(f(X), Y) + λ‖f‖2

k, (1)

f(X) = (f(x1), . . . , f(xm))T, l is a real valued cost
function, andλ ∈ R+ is a regularization parameter con-
trolling the tradeoff between the cost on the training set
and the complexity of the hypothesis. By the generalized
representer theorem ([Schölkopf et al., 2001]), the mini-
mizer of (1) has the following form:

f(x) =
m∑

i=1

aik(x, xi), (2)

whereai ∈ R. The implication of the representer theorem
is that, regardless of the cost function used, the minimizer
can always be expressed as a vector ofm real valued coef-
ficients. Therefore, we are free to select such a cost func-
tion that coheres with the learning task in question and has
desirable computational advantages.

Using (2) and the matrix notation, we rewrite

f(X) = K~a (3)

and
‖f‖2

k = ~aTK~a,

where~a = (a1, . . . , am)T. Therefore, the objective (1)
to be minimized can be rewritten as a function of~a as
follows:

J(~a) = l(K~a, Y) + λ~aTK~a. (4)

3. RANKRLS

Following [Pahikkala et al., 2007] we consider the follow-
ing type of least-squares based ranking cost function

l(f(X), Y) =
1
2

m∑
i,j=1

((yi−yj)−(f(xi)−f(xj)))2. (5)

The cost function is the sum of the squares of differ-
ences between the predicted and correct magnitudes of all
the pairwise preferences in the training set. Note that in
[Pahikkala et al., 2007], a more general formulation was
considered, in which it is possible to define which of the
pairs the cost is evaluated over. For the sake of simplicity,
we consider here only the all-pairs case.

We observe that for any vectorr ∈ Rm we can write

1
2

m∑
i,j=1

(ri − rj)2 = m
m∑

i=1

r2
i −

m∑
i,j=1

rirj

= m · rTIr − rT~1~1Tr

= rTLr,

where~1 denotes a vector whose each element is1, andL,
which we call the Laplacian matrix, is defined as

Li,j =
{
−1 if i 6= j
m− 1 if i = j

.

Accordingly, we can rewrite the cost function (5) in a
matrix form as follows:

l(f(X), Y) = (Y −K~a)TL(Y −K~a),

and hence the objective function (1) becomes

J(~a) = (Y −K~a)TL(Y −K~a) + λ~aTK~a.

Taking derivative ofJ(~a) with respect to~a and setting it to
zero, we can determine the value of the coefficient vector
~a that determines a minimizer of (1) for a training setS:

~a = (KLK + λK)−1KLY. (6)

For detailed proofs we refer to [Pahikkala et al., 2007].
We note that ifY is am×d-matrix instead of a single col-
umn vector, that is, each column corresponds to a separate
subproblem, we can calculate the correspondingd-column
coefficient matrix using (6) at the cost of calculating only
a single-column coefficient vector.

Calculation of the solution to (6) requires multiplica-
tions and inversions ofm×m-matrices. Both types of op-
erations are usually performed with methods whose com-
putational complexities areO(m3), and hence the com-
plexity of RankRLS is equal to the complexity of the RLS
regression.

We also consider RankRLS from the following
perspective which is called value regularization by
[Rifkin and Lippert, 2007]. Instead of solving the coef-
ficients~a by minimizing (4), we directly solve the predic-
tions (3) made by the learner for its training examples, that
is, we solve

f(X) = arginf
~p∈Rm

J(~p), (7)

where
J(~p) = l(~p, Y) + λ~pTK−1~p. (8)

Here, the objective function (8) is obtained from (4) by
replacing~a with K−1~p, since according to (3), the coef-
ficients determining the prediction function can then be
obtained from

~a = K−1f(X). (9)

In the above considerations, we have assumed the strict
positive definiteness and hence the invertibility of the ker-
nel matrixK. However, the value regularization perspec-
tive can also be used whenK is singular. In that case, the
term~pTK−1~p should be interpreted as

lim
ε→0+

~pT(K + εI)−1~p

(see [Johnson and Zhang, 2008] for more thorough dis-
cussion).

When considering RankRLS from the value regular-
ization perspective we rewrite (8) as

J(~p) = (Y − ~p)TL(Y − ~p) + λ~pTK−1~p, (10)

which is minimized by

~p = (L + λK−1)−1LY. (11)

We note again that ifY is am× d-matrix instead of a sin-
gle column vector, we can calculate the minimizers with
(11) for each of thed subproblems simultaneously at the
cost of calculating only one.

4. LEAVE-PAIR-OUT CROSS-VALIDATION

Next, we introduce our shorthand notation. LetU ⊂
{1, . . . ,m} denote an index set in which the indices refer
to a certain examples in the training set. Moreover, we de-
noteU = {1, . . . ,m}\U . Below, withp ∈ N and any ma-
trix or vectorR ∈ Rm×p that has its rows indexed by the
training examples, we use the subscriptU so that a matrix
RU ∈ R|U |×p contains only the rows that are indexed by
U . ForR ∈ Rm×m, we also useRUU ∈ R|U |×|U | to de-
note a matrix that contains only the rows and the columns
that are indexed byU . Let Y ∈ Rm be the label vec-
tor corresponding to the training data. Further, we define
this notation also for the sequence of inputs so thatXU

denotes the sequence consisting of the input indexed by
U . Finally, letfU be the function obtained by training the
RLS algorithm with the whole data set except the set of
data points indexed byU .

We now consider LPOCV in which every pair of train-
ing examples is held out from the training process at a
time and the error corresponding to the pair is calculated.
The result of LPOCV is the averaged error over the pairs.
Let U = {h1, h2} be the index set containing the indices
h1 andh2 of the hold-out training examples. Then, the
performance of a learnerfU on the the two hold-out data
points can be computed with a performance measure

µ(YU , fU (XU)). (12)

We call this a hold-out performance of a learner. The per-
formance measure can be, for example, the ranking loss
function as in [Pahikkala et al., 2007] or the magnitude
preserving loss function as used in [Cortes et al., 2007b].

In cross-validation, we have a sequence of hold-out
setsU1, . . . , U(m2−m)/2. The overall cross-validation per-
formance is obtained by averaging (12) over the hold-out
sets:

1
(m2 −m)/2

(m2−m)/2∑
j=1

µ(YUj
, fUj

(XUj
)). (13)

Recently, [Cortes et al., 2007a] have proposed an al-
gorithm that approximates the result of LPOCV for the
object ranking inO(m2) time, provided that an inversion
of a certainm×m-matrix is already computed and stored
in the memory. The larger the number of training exam-
ples is, the closer the approximation to the exact result of
the cross-validation is. Here, we improve their result by
presenting an algorithm that calculates an exact result of
LPOCV in O(m2) time, again given that the inverse of a
certainm × m-matrix is already computed and stored in
the memory.

First, we present a theorem that provides us additional
insight about how to calculate the hold-out predictions for
a pair of data points if the learner is already trained with
the whole data set. The theorem has already been proved
by [Rifkin and Lippert, 2007] using the theory of Fenchel
duality. However, we show that it can be proven in a sim-
pler way that is based on matrix calculus only. Our proof
of the theorem is presented in the appendix.

Theorem 1.

fU (X) = arginf
~v∈Rm

{
l(~vU , YU) + λ~vTK−1~v

}
.

By comparing Theorem 1 with the value regulariza-
tion perspective (7), we observe that the hold-out predic-
tions can be obtained by removing the effect of the hold-
out data points only from the loss function. They do not
have to be removed from the regularizer. Note that this
property holds for the objective function (8) with any cost
function, and hence this provides us a powerful framework
for designing cross-validation algorithms.

Next, we present a theorem that characterizes our
LPOCV algorithm. The proof of the theorem is again pre-
sented in the appendix.

Theorem 2. Let D̃ = (m − 2)I and let Q = (D̃ +
λK−1)−1. Further, letC ∈ Rm×3 be a matrix whose
values are determined by

Ci,j =
{

1 if j = 1
0 otherwise

.

We assume that we have calculated the matrices

Q, D̃Y,QD̃Y,QC, CTQC, CTY, QCCTY, andCTQD̃Y,
(14)

and stored them into the memory before starting the hold-
out calculations. Then, the hold-out predictions for two
training examples can be performed in a constant time
if the number of outputs is one. Moreover, if the num-
ber of outputs isd, then the predictions can be calculated
in O(d) time. Finally, the leave-pair-out cross-validation
can be performed inO(m2) time if the number of outputs
is one and inO(m2d) time if the number of outputsd.

Concerning the matrices (14) calculated in advance,
the calculation of the matrixQ is the computationally
dominant one. Namely, its time complexity isO(m3) in
the worst case ofK being of full rank. This is the same as
that of training the RankRLS algorithm in the worst case.
However, if K is not of full rank, the matrixQ can be
calculated as follows. LetK = V ΛV T be the eigen de-
composition ofK, whereV contains the eigenvectors of
K andΛ is a diagonal matrix containing the eigenvalues
of K. Then,

Q = V Λ̂V T,

whereΛ̂ is a diagonal matrix whose elements are deter-
mined by

Λ̂i,i =
Λi,i

λ + (m− 2)Λi,i
.

If many of the eigenvalueŝΛi,i are zeros, we only need
to calculate eigenvectors corresponding to the nonzero
eigenvalues in order to calculateQ. This can speed up
the computation, for example, if the linear kernel function
is used and the dimensionalityn of the feature space is
smaller than the size of the training setm, and hence the
number of nonzero eigenvalues is at mostn.

5. DISCUSSION AND CONCLUSION

In this paper, we provide a simple proof for a value
regularization based variant of representer theorem us-
ing matrix calculus, which leads to a powerful frame-
work for developing and analysing hold-out and cross-
validation techniques for quadratically regularized kernel-
based learning algorithms. Using this result, we introduce
the first efficient and exact leave-pair-out cross-validation
algorithm for RankRLS, a kernel-based ranking algo-
rithm. If RankRLS is already trained with the whole train-
ing set, the computational complexity of the algorithm is
O(m2). Further, if there ared outputs to be learned si-
multaneously, the computational complexity of perform-
ing LPOCV isO(m2d).

An important special case of ranking is the
task of AUC maximization. The traditional ap-
proaches for AUC performance evaluation using cross-
validation suffer from certain problems and pitfalls,
especially in small sample settings as discussed by
[Parker et al., 2007, Suominen et al., 2008]. The leave-
pair-out cross-validation avoids these problems, while it
can be efficiently calculated for the AUC maximizing RLS
algorithm as we show in this paper and also for the ba-
sic RLS algorithm as can easily be inferred from the re-
sults presented in [Pahikkala et al., 2006, An et al., 2007].

Note that the same properties hold also for more general
ranking tasks.

Acknowledgments
This work has been supported by the Academy of Finland
and Tekes, the Finnish Funding Agency for Technology
and Innovation. We would like to thank the anonymous
reviewers for their insightful comments.

6. REFERENCES

[An et al., 2007] An, S., Liu, W., and Venkatesh, S.
(2007). Fast cross-validation algorithms for least
squares support vector machine and kernel ridge re-
gression.Pattern Recognition, 40(8):2154–2162.

[Cortes et al., 2007a] Cortes, C., Mohri, M., and Rastogi,
A. (2007a). An alternative ranking problem for search
engines. In Demetrescu, C., editor,Proceedings of
the 6th Workshop on Experimental Algorithms, volume
4525 ofLecture Notes in Computer Science, pages 1–
21. Springer.

[Cortes et al., 2007b] Cortes, C., Mohri, M., and Rastogi,
A. (2007b). Magnitude-preserving ranking algorithms.
In Ghahramani, Z., editor,Proceedings of the 24th An-
nual International Conference on Machine Learning,
pages 169–176. Omnipress.

[Herbrich et al., 1999] Herbrich, R., Graepel, T., and
Obermayer, K. (1999). Support vector learning for or-
dinal regression. InProceedings of the Ninth Interna-
tional Conference on Articial Neural Networks, pages
97–102, London. Institute of Electrical Engineers.

[Horn and Johnson, 1985] Horn, R. and Johnson, C. R.
(1985). Matrix Analysis. Cambridge University Press,
Cambridge.

[Joachims, 2002] Joachims, T. (2002). Optimizing search
engines using clickthrough data. InProceedings of the
ACM Conference on Knowledge Discovery and Data
Mining, pages 133–142, New York, NY, USA. ACM
Press.

[Joachims, 2006] Joachims, T. (2006). Training linear
SVMs in linear time. InKDD ’06: Proceedings of
the 12th ACM SIGKDD international conferen ce on
Knowledge discovery and data mining, pages 217–226,
New York, NY, USA. ACM Press.

[Johnson and Zhang, 2008] Johnson, R. and Zhang, T.
(2008). Graph-based semi-supervised learning and
spectral kernel design.IEEE Transactions on Infor-
mation Theory, 54(1):275–288.

[Pahikkala et al., 2008] Pahikkala, T., Airola, A., Suomi-
nen, H., Boberg, J., and Salakoski, T. (2008). Efficient
AUC maximization with regularized least-squares. In
Holst, A., Kreuger, P., and Funk, P., editors,Proceed-
ings of the 10th Scandinavian Conference on Artificial

Intelligence (SCAI 2008), volume 173 ofFrontiers in
Artificial Intelligence and Applications, pages 76–83.
IOS Press, Amsterdam, Netherlands.

[Pahikkala et al., 2006] Pahikkala, T., Boberg, J., and
Salakoski, T. (2006). Fast n-fold cross-validation for
regularized least-squares. In Honkela, T., Raiko, T.,
Kortela, J., and Valpola, H., editors,Proceedings of
the Ninth Scandinavian Conference on Artificial Intelli-
gence (SCAI 2006), pages 83–90, Espoo, Finland. Ota-
media.

[Pahikkala et al., 2007] Pahikkala, T., Tsivtsivadze, E.,
Airola, A., Boberg, J., and Salakoski, T. (2007). Learn-
ing to rank with pairwise regularized least-squares. In
Joachims, T., Li, H., Liu, T.-Y., and Zhai, C., editors,
SIGIR 2007 Workshop on Learning to Rank for Infor-
mation Retrieval, pages 27–33.

[Parker et al., 2007] Parker, B. J., Gunter, S., and Bedo,
J. (2007). Stratification bias in low signal microarray
studies.BMC Bioinformatics, 8(326).

[Poggio and Smale, 2003] Poggio, T. and Smale, S.
(2003). The mathematics of learning: Dealing with
data. Notices of the American Mathematical Society
(AMS), 50(5):537–544.

[Rifkin and Lippert, 2007] Rifkin, R. and Lippert, R.
(2007). Value regularization and fenchel duality.Jour-
nal of Machine Learning Research, 8:441–479.

[Rifkin et al., 2003] Rifkin, R., Yeo, G., and Poggio, T.
(2003). Regularized Least-squares Classification, vol-
ume 190 ofNATO Science Series III: Computer and
System Sciences, chapter 7, pages 131–154. IOS Press,
Amsterdam.

[Scḧolkopf et al., 2001] Scḧolkopf, B., Herbrich, R., and
Smola, A. J. (2001). A generalized representer the-
orem. In Helmbold, D. and Williamson, R., editors,
Proceedings of the 14th Annual Conference on Com-
putational Learning Theory and 5th European Confer-
ence on Computational Learning Theory, pages 416–
426, Berlin, Germany. Springer.

[Scḧolkopf and Smola, 2002] Schölkopf, B. and Smola,
A. J. (2002).Learning with kernels. MIT Press, Cam-
bridge, MA.

[Shawe-Taylor and Cristianini, 2004] Shawe-Taylor, J.
and Cristianini, N. (2004).Kernel Methods for Pattern
Analysis. Cambridge University Press, Cambridge.

[Suominen et al., 2008] Suominen, H., Pahikkala, T., and
Salakoski, T. (2008). Critical points in assessing learn-
ing performance via cross-validation. InProceedings
of the International and Interdisciplinary Conference
on Adaptive Knowledge Representation and Reasoning
(AKRR’08).

Appendix
We first present the following lemma which is often called the block inverse (see e.g. [Horn and Johnson, 1985]).

Lemma 1. Let R ∈ Rm×m be an invertible matrix,U ⊂ {1, . . . ,m}, andU = {1, . . . ,m} \ U the complement ofU .
Without losing generality, we can writeR as a block matrix

R =
[

RUU RUU

RUU RUU

]
. (15)

If RUU andRUU are invertible, then the inverse matrix ofR is

R−1 =
[

(R−1)UU (R−1)UU

(R−1)UU (R−1)UU

]
,

where

(R−1)UU = S−1, (16)

(R−1)UU = −S−1RUU (RUU)−1, (17)

(R−1)UU = −(RUU)−1RUUS−1

(R−1)UU = (RUU)−1 + (RUU)−1RUUS−1RUU (RUU)−1, and

S = RUU −RUU (RUU)−1RUU . (18)

The following result is known as the matrix inversion lemma or Sherman-Morrison-Woodbury formula (see e.g.
[Horn and Johnson, 1985]).

Lemma 2. If A, D, andD − CA−1B are invertible, then

(A−BD−1C)−1 = A−1 + A−1B(D − CA−1B)−1CA−1.

Proof of Theorem 1Let G = K−1. We start by splitting the infimum of the objective into two parts

inf
~v∈Rm

{
l(~vU , YU) + λ~vTG~v

}
= inf

~p∈R|U|

{
inf

~h∈R|U|

{
l(~p, YU) + λ

(
~h
~p

)T

G

(
~h
~p

)}}

= inf
~p∈R|U|

{
l(~p, YU) + λ inf

~h∈R|U|

{(
~h
~p

)T

G

(
~h
~p

)}}
(19)

and continue by considering the minimizer of the inner one in (19) containing only the regularizer. Let~p ∈ R|U | be an
arbitrary vector and let

~h∗ = arginf
~h∈R|U|

{(
~h
~p

)T

G

(
~h
~p

)}
. (20)

We can solve~h∗ by taking the derivative with respect to~h:

∂

∂~h

(
~h
~p

)T

G

(
~h
~p

)
=

∂

∂~h

(
~h
~p

)T (
GUU GUU

GUU GUU

) (
~h
~p

)
=

∂

∂~h

(
~hTGUU

~h + ~hTGUU~p + ~pTGUU
~h + ~pTGUU~p

)
= 2GUU

~h + 2GUU~p.

By setting it to zero and solving with respect to~h, we get

~h∗ = −(GUU)−1GUU~p (21)

= −(GUU)−1(−GUUKUU (KUU)−1)~p
= KUU (KUU)−1~p,

whereGUU = −GUUKUU (KUU)−1 follows from the formula of block inverse. By substituting (21) into (20), we get(
−(GUU)−1GUU~p

~p

)T

G

(
−(GUU)−1GUU~p

~p

)
= ~pTGUU (GUU)−1GUU (GUU)−1GUU~p

−~pTGUU (GUU)−1GUU~p
−~pTGUU (GUU)−1GUU~p
+~pTGUU~p

= ~pT

(
GUU −GUU (GUU)−1GUU

)
~p

= ~pT(KUU)−1~p,

where the last equality is due to (16) and (18). Therefore,

~p∗ = arginf
~p∈R|U|

{
l(~p, YU) + λ inf

~h∈R|U|

{(
~h
~p

)T

G

(
~h
~p

)}}
= arginf

~p∈R|U|

{
l(~p, YU) + λ~pT(KUU)−1~p

}
(22)

and
~h∗ = KUU (KUU)−1 ~p∗, (23)

Analogously to (7), (22) is a vector consisting of predictions of the learning method for its own labeled training inputs,
that is,

~p∗ = fU (XU). (24)

Moreover, similarly to (9),(KUU)−1 ~p∗ contains the coefficients determining the function obtained by training with the
examples indexed byU . Therefore, we observe from (2) and (23) that

~h∗ = KUU (KUU)−1 ~p∗ = fU (XU), (25)

that is, the vector~h∗ consists of the predictions for the data points indexed byU made by a learner trained with the data
points indexed byU . Finally, by combining (22), (23), (24), and (25), we get

arginf
~v∈Rm

{
l(~vU , YU) + λ~vTG~v

}
=

(
~h∗

~p∗

)
= fU (X).

Proof of Theorem 2LetU = {h1, h2} be the index set containing the indicesh1 andh2 of the hold-out training examples.
We start by considering the predictions of RankRLS for the training examples:

f(X) = (L + λK−1)−1LY.

According to Theorem 1, the predictions of RankRLS are independent of such examples for which the cost is not calcu-
lated. Thus, we can remove the effect of the hold-out examples by excluding them from the cost as follows:

lU (~p, Y) =
1
2

∑
i,j∈U

((yi − yj)− (pi − pj))2

= m
∑
i∈U

(yi − pi)2 −
∑

i,j∈U

(yi − pi)(yj − pj)

= (Y − ~p)TL̃(Y − ~p),

where the modified Laplacian matrix̃L is defined as

L̃i,j =

 −1 if i 6= j andi, j ∈ U
m− 3 if i = j andi ∈ U
0 otherwise

.

The kernel matrix can be used as such, as it appears only in the regularizer. The predictions for the hold-out data points
can be calculated from

fU (XU) = IU (L̃ + λK−1)−1L̃Y, (26)

We continue by observing that we can also write

L̃ = D̃ −BBT, (27)

whereB ∈ Rm×3 is a matrix whose values are determined by

Bi,j =

1 if i ∈ U andj = 1√

m− 2 if i = h1 andj = 2√
m− 2 if i = h2 andj = 3

0 otherwise

,

By substituting (27) into (26) and by using the Sherman-Morrison-Woodbury formula, we can write

fU (XU) = IU (D̃ −BBT + λK−1)−1L̃Y

= IU (Q−1 −BBT)−1L̃Y

= IU (Q−QB(−I + BTQB)−1BTQ)L̃Y

= (QL̃Y)U − (QB)U (−I + BTQB)−1BTQL̃Y. (28)

Let

R =
(
−1

√
m− 2 0

−1 0
√

m− 2

)
,

that is,
R = BU − CU .

To compute (28), we consider the following equations:

BTQB = CTQC + RT(QC)U + (RT(QC)U)T + RTQUUR

BTY = CTY + RTYU

BTQL̃Y = CTQD̃Y + RT(QD̃Y)U −BTQBBTY

(QB)U = (QC)U + QUUR

(QL̃Y)U = (QD̃Y)U − (QB)UBTY.

The first equation can be proven as follows:

BTQB =
(

BU

BU

)T (
QUU QUU

QUU QUU

) (
BU

BU

)
=

(
CU + R

CU

)T (
QUU QUU

QUU QUU

) (
CU + R

CU

)
= CTQC + RT(QC)U + (RT(QC)U)T + RTQUUR.

The other equations can be shown to hold analogously.
Given that the matrices (14) are already calculated and stored in memory, the right hand sides of the equations can

be computed in a constant time. Therefore, by substituting these into (28), we conclude that the hold-out predictions
for a pair of examples can be calculated in a constant time. After the matrices (14) are calculated once at the time the
RankRLS learner is trained, the overall LPOCV can be performed inO(m2) time. Further, if we consider the number of
subproblems to be a variabled instead of a constant, that is,Y is am × d-matrix instead of a single column vector, then
the computational complexities are multiplied withd.

