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Abstract.

Area under the receiver operating characteristics cundQ)Ais a popular mea-
sure for evaluating the quality of binary classifiers, artditively, machine learn-
ing algorithms that maximize an approximation of AUC should hagwod AUC

performance when classifying new examples. However, degjguch algorithms
in the framework of kernel methods has proven to be challendinthis paper,

we address AUC maximization with the regularized least-spIERLS) algorithm
also known as the least-squares support vector machiné.\w&sntroduce RLS-
type binary classifier that maximizes an approximation of AU@ has a closed-
form solution. Second, we show that this AUC-RLS algoritencdmputationally
as efficient as the standard RLS algorithm that maximizes arozjppation of the

accuracy. Third, we compare the performance of these twoitligts in the task
of assigning topic labels for newswire articles in terms of AUWur algorithm

outperforms the standard RLS in every classification experirnenducted. The
performance gains are most substantial when the distribofitime class labels is
unbalanced. In conclusion, modifying the RLS algorithm to imméxe the approxi-

mation of AUC does not increase the computational complexity,this alteration
enhances the quality of the classifier.

1. Introduction

Classification problems constitute a typical supervisedhime learning task domain,
where the aim is to construct algorithms which predict fahtemput instance the class
or classes to which it belongs. In binary classification tésk is to judge for every input
instance whether it has a certain property (a positive e¥@nap not (a negative exam-
ple), and assign exactly one of two possible class labelsrdgly. The task is often

solved by mapping the input instances on a real-valued ;staéarger (smaller) the im-

age is, the more confident the classifier is about the instbeicg a positive (negative)
example. The binary output is then constructed by settifgeshold which divides the
instances into positive and negative examples.

Evaluating the ability of the classifier to predict the clizels correctly is essential.
Various criteria for this classification performance exésid in performance evaluation,
one must select a measure that reflects the chosen critbribimary classification, se-
lecting the area under the receiver operating charadteristirve (AUC) measure has
been recommended (see, e.g., [1,2,3]).



AUC corresponds to the probability that given a randomlysemopositive and neg-
ative example, the classifier will correctly distinguislertin Because AUC is calculated
directly from the real-valued output, it has the potentiadiéscribe the classification per-
formance in more detail than measures requiring a fixed llotdsif the performance
of the classifier is measured by comparing only its binarypouwith the correct clas-
sification, the value of the performance evaluation measwag strongly depend on the
threshold placement. Another advantage of AUC is its imraré to the distribution of
class labels [4].

The desire for using AUC in performance evaluation has a#ijuted to the de-
sign of algorithms that aim to maximize AUC. In the framewofksupport vector ma-
chines, this task has proven to be challenging (see, €,6,7]B The need to consider all
positive-negative example pairs instead of individuahegkes easily leads to too expen-
sive computations, and hence, approximative heuristies had to be used to reduce the
computational complexity. Moreover, the performance ghiave often been modest, or
not statistically significant.

In this paper, we address AUC maximization with the rega&atileast-squares
(RLS) algorithm, also known as the least-squares suppotbrenachine [8]. The stan-
dard RLS algorithm maximizes an approximation of the cfasgion accuracy (ACC),
that is, the proportion of correctly classified examplehds been shown to achieve a
classification performance similar to the regular suppecter machines [9].

In our recent study [10], we introduced a RLS-based rankiggrahm that we call
RankRLS, and applied it to the task of pairwise ranking obdadints in information
retrieval tasks. Although the number of possible data ppaits in such tasks grows
quadratically with respect to the number of the individualadpoints, the computational
complexity of the RankRLS algorithm was shown to be equahtgtandard RLS re-
gression. A similar algorithm was independently proposgd1i]. As the problem of
AUC maximization can be naturally cast into the problem ahparing positive-negative
data point pairs, RLS is a particularly suitable basis forefteping an efficient AUC
maximizing classifier.

Here, we introduce the AUC-RLS algorithm that maximizesutagzed least-
squares approximation of AUC for binary classificationslbased on the same approach
as RankRLS. We show that AUC-RLS preserves the computatffiaency of the stan-
dard RLS algorithm, and outperforms RLS in maximizing AUQé&sting.

2. Accuracy and Area Under ROC Curve

Let X be the input space that can be any set an@’let {1, —1} be the output space.
We call the set of possible input-output pafs= X x ) the example space. We say
thatz = (x,y) € Z is a positive example iff = 1. Otherwisez is a negative example.
Further, let us denot®* = {f : X — R}, and letH C R* be the hypothesis space.
In supervised learning, we are given a number of trainingrgtas with known class
labels that we use to select a hypothesis ffdrfor prediction of the outputs of unseen
examples. Formally, leX = (z1,...,7,,) € (X™)T to be a sequence of inputs, where
(X™)T denotes the set of row vectors of sizewhose elements belong 8. Further,
we defineY = (y1,...,ym)’ € Y™ to be a sequence of the corresponding output
values. We also denotg = (x;,y;), 1 < i < m. Together,X andY form a training set
S=(X,Y).



We now consider the performance measures that we use tcatddaw well the
hypotheses perform in a prediction task. In the followingasee definitions, we use the
training data, but the measures can, of course, be anallygitefined for any sequence
of data points. The error rate indicates the proportion ofemtly classified data points.
Formally, the error rate of measured withX andY is

— sign(f (z:))|, 1)

l\’)\»—t

perr(Y, f(X)) = % Z

wheref(X) = (f(z1),..., f(zn))"T € R™, and sign is the signum function. The con-
stant-L is a normalizer ensuring that the result is always betweeand1. The ACC
performance measure can be simply defineghas (Y, /(X)) = 1 — perr(Y, f(X)).

The AUC measure, in turn, can be calculated from the follgwformula which is
also called the Wilcoxon-Mann-Whitney statistic:

poc(S, (X)) = ———— S L1 sign(f(w) — f(ay)),

mym._
+ yi=+1ly;=-1

wherem andm_ are the numbers of positive and negative examples, resplctsee
[12] for a proof). Analogously, we also define a measure avest BOC curve (AOC)
whose optimum is &t instead of:

proc(S, (X)) = ——— S L1 sign(f(w) — (x,))) @
M+M— yi=+1l,y;=—1
o X o) - sign /() ~ (2,)),

yi=+1,y;=—1

where we have also written the expression &gr- y;) which is equal tol, to em-
phasize that our aim is not to classify individual data poimit pairs of them. Clearly,
paoc(S, f(X)) = 1 —pauc(S, f(X)), and hence, when we aim to find a hypothesis that
maximizes AUC, we can select the one minimizing AOC.

3. RLSand AUC-RL S Algorithms

Following [13], we consider algorithms for hypothesis sét@n in the framework of reg-
ularized kernel methods consisting of a cost function anegalarizer. The cost func-
tions, that are usually approximations of the performaneasures, indicate how large
error a hypothesis has with respect to the training set. Thegse of the regularizer is to
penalize too complex hypotheses that overfit at the traiphgse, and thus are not able
to generalize to unseen data. In the framework, the hypistspaceH is so-called re-
producing kernel Hilbert space determined by a positivenitefkernel functiork. Then,
the learning algorithm that selects the hypothgsisom # is defined as

A(S) = argmin J(f),
feEH



where

J(f) = e(f(X),Y) + AllfIIz ®3)

c is a real valued cost function, € R is a regularization parameter, afid ||, is the
norm inH. By the generalized representer theorem [13], the mininog3) has the
following form:

m

flz) = Zaik(az,m, (4)

wherea; € R andk is the kernel function associated with the reproducing d&ertilbert
space mentioned above. For the training set, we define thesynam x m kernel ma-
trix K to be a matrix whose elements &g ; = k(z;,z;). For simplicity, we also as-
sume that is strictly positive definite. This can be ensured, for exmnipy performing
a small diagonal shift. Using this notation, we rewrfteX) = KA and||f||? = ATK A
whereA = (ay,...,a,)".

A natural way to minimize the training error would be to ditgaise the error rate
(1) as a cost function. Similarly, when we aim to maximize AWl corresponding cost
function to be minimized would be AOC (2). However, it is wkiiown that the use of
this type of cost functions leads to intractable optim@afproblems. Therefore, instead
of using (1) and (2), we use functions approximating thenn tke error rate (1), we use
the following type of least-squares approximation

m

oY, f(X) = (v — f(wi))?, (5)

=1

that is, the sum of least-squares errors made on each garample. Analogously for
AOC (2), we use the following type of least-squares appraxiom

VL FX) = Y (wi—y— )+ ) (6)

yi=+1l,y;=—1

This cost function can be interpreted as least-squares@tregressing the label differ-
encegy; —y; with the prediction differences(x;) — f (z;). We used a similar approach in
[10], where a least-squares based cost function that cad@dirthe the query-document
pairs related to the same query was proposed for ranking taslocument retrieval.

By substituting (5) into (3), we get the standard RLS aldpmnitwhose solution can
be obtained from

A= (K+ )Y, (7
where A determines (4) [9]. The solution (7) can be obtained by itingram x m
matrix with computational complexitg)(m?3). On the other hand, substituting (6) into

(3) provides us an AUC maximization method we call AUC-RLSos# solution is

A= (LK +X)"'LY, (8)



whereL is am x m matrix, whose entries are defined as

m_wheni=jAy; =1

I — my wheni = j Ay,

“I ) —1 wheny; # y, ’
0 otherwise

I
|
—

9)

wherem_ andm_ are the numbers of positive and negative examples, resphcti

The calculation of the solution (8) requires multiplicatsoand inversions of. x m
matrices. Both types of operations are usually performel miethods whose computa-
tional complexities ar€(m?), and hence the complexity of AUC-RLS is equal to the
complexity of the standard RLS.

4. Primal Form of AUC-RLS

For such cases where there are very large amounts of traiaitagavailable, the cubic
complexity of AUC-RLS training can be prohibitive. In théeliature, the problem of
finding a minimizer for (3) is known as the dual formulatione\Wext derive the primal
form of the AUC-RLS algorithm that is applicable wheneves timear kernel is used.
Similarly to the standard version of the RLS, the primal fasntomputationally more
efficient than the dual form in cases where the dimensignafitthe feature space is
smaller than the number of training examples. This is folyretiown below.

First, we assume a situation where the data points can besemed as real valued
vectors whose dimensiain corresponds to the dimensionality of the feature space, tha
is, X = R". Further, we assume that< m. Now, the sequence of inputs can be written
as amatrixX ¢ R"*™ _If we consider only the linear kernel, the function (4) miiing
(3) can be equivalently expressed as

fz)=2"XA=z"w, (10)

wherew = X A denotes the normal vector of the hyperplane that determieRLS
solution. The vector, as we have shown in [10], can be obddfirzan

w= (XLX" +XI)"'XLY. (11)

Calculating (11) involves matrix multiplications @f(hm?) complexity. However, we
can speed up the calculation in the following way.

Without losing generality, we can re-index the trainingrapées so that the indices
1,...,m4 are assigned to the positive and the indiges + 1,...,m to the negative
examples. Now the correspondiigcan be decomposed info = D — PQ, whereD
is a diagonal matrix whose diagonal elements are givel,gs= L, ; and P and() are
defined as

P= (1771,+><1 0m+><1> Q — (01><7”+ 11><m>

07n,><1 1m,><1 11><7”+ 01><m,

Now (11) can be re-written as



w=((XD)X" — (XP)(QXT) + )" H(X(DY) - X(P(QY))).  (12)
The computational complexity of the matrix inversion@h3). The multiplication
(XD)XT can be performed i®(h%m) time. All other matrix operations in (12) have
lower computational complexity. Thus the resulting ovletamplexity of primal AUC-
RLS isO(h? + h?m), making the method preferable to the dual version wheneyvisr
considerably larger thafa.

5. Experiments

We evaluated the capability of the AUC-RLS algorithm to nmaizie AUC on a real
world dataset by considering a well-known text classifmagproblem: the assignment

Table 1. Comparison of the performance of the AUC-RLS and RLS algoritimierms of AUC on the
Reuters-21578 dataset. In the first column is the name of tltbgpee class and in the next two are the AUC-
values for the tested algorithms with 95% confidence interivgparentheses. The last two present the numbers
of positive examples in the training set of 500 documents astdste of 12397 documents.

class AUC-RLS RLS pos. train set| pos. test set
acq 0.980 (0.978-0.983) 0.979 (0.977-0.982 94 2275
bop 0.966 (0.947-0.985) 0.880 (0.843-0.917 4 101
cocoa 0.931 (0.891-0.970) 0.837 (0.776-0.899 2 71
coffee 0.969 (0.948-0.990) 0.962 (0.950-0.975 5 134
corn 0.970 (0.959-0.982) 0.950 (0.936-0.964 11 226
cpi 0.947 (0.925-0.969) 0.601 (0.555-0.648 3 94
crude 0.976 (0.969-0.982) 0.975 (0.969-0.982 23 555
dir 0.971 (0.961-0.981) 0.946 (0.926-0.965 10 165
earn 0.994 (0.993-0.995) 0.993 (0.991-0.994 158 3806
gnp 0.987 (0.981-0.993) 0.923 (0.891-0.956 5 131
gold 0.970 (0.953-0.986) 0.922 (0.897-0.948 4 120
grain 0.979 (0.973-0.985) 0.974 (0.968-0.980 23 559
interest 0.965 (0.956-0.974) 0.952 (0.941-0.962 19 459
livestock 0.701 (0.642-0.761) 0.637 (0.578-0.696 3 96
money-fx 0.954 (0.946-0.962) 0.947 (0.938-0.957 28 689
money-supply| 0.949 (0.930-0.968) 0.907 (0.877-0.937 7 165
nat-gas 0.957 (0.933-0.981) 0.941 (0.920-0.962 5 100
oilseed 0.898 (0.877-0.919) 0.816 (0.783-0.849 6 165
reserves 0.943 (0.908-0.977) 0.511 (0.458-0.564 2 71
ship 0.949 (0.934-0.963) 0.925 (0.907-0.942 13 273
soybean 0.876 (0.839-0.913) 0.805 (0.757-0.853 4 107
sugar 0.985 (0.979-0.991) 0.964 (0.952-0.976 6 156
trade 0.978 (0.970-0.986) 0.969 (0.960-0.977 20 466
veg-oil 0.890 (0.865-0.914) 0.697 (0.656—0.739 4 120
wheat 0.984 (0.978-0.990) 0.976 (0.969-0.983 12 271



of topic labels for Reuters newswire articles. Our apprasa to transform the problem
into a series of binary classification tasks, and to comgaeAtJC performance of the
AUC-RLS and standard RLS algorithms on each of these sids-tas

Our experiments were conducted on the Reuters-21578 tfatdsesimulate a situ-
ation where only a very limited amount of data is available extracted a representative
set of 500 documents for training purposes. The extractiag performed so that the
class distributions in the extracted subset were guardrtelge approximately the same
as in the whole dataset. The rest of the documents were ssstawfinal validation.

We considered the task of predicting the 25 most numerogse&ta each separately
using one-vs-all approach. All of these classes had at teasipositive examples in
the training data. Some of the documents belonged to moreahe of the considered
classes and some to none of them. Thus it was possible foruardot to be a positive
example in more than one of the 25 classification tasks, oomnemof them.

In the tests we applied the linear kernel. Ten-fold crodsladon was used on the
training data to choose the values of the regularizatioarpater) individually for each
class. In each case the parameter that produced maximal 2ké@ bver all of the folds
was chosen. Fold partitions were stratified separately doh elassification task. The
classifiers were trained on the 500 training documents ukimghosen parameters, and
then tested on the 12397 test documents. To evaluate th&tistdtsignificance of the
results on the level of individual classes we calculateddf confidence intervals for
the classifiers’ AUC scores for each class. These intervate wbtained with SPSS 11.0.

The results are summarized in Table 1. All the AUC-values layedefinition, real
numbers between 0 and 1, 0.5 being the random baseline. ALECeRtperformed the
standard RLS on each of the 25 classification tasks. Whendznesi together, the re-
sults clearly show the difference between the performaot@8)C-RLS and RLS to be
statistically significant. It should be noted that for sortasses the difference is notably
larger than for some others. The greatest performancediifes can be found in such
cases where the class distributions are most unbalanagddecoa, cpi, reserves). For
the largest classes (e.g., acq, earn, crude) these diffsseare much more modest, or
even negligible. To summarize, AUC-RLS performed reliabMgereas the standard RLS
gave in many cases much worse results.

6. Conclusion

The main outcome of this study is a computationally efficegbrithm, AUC-RLS, that
outperformed the standard RLS algorithm in maximizing AO@e performance gains
achieved by using the AUC-RLS algorithm were emphasizedwtthe distribution of the
class labels was strongly unbalanced. In conclusion, AlG-Rtains the computational
efficiency of the standard RLS algorithm and clearly impeo&C performance.

Our experiments consider AUC maximization with RLS in thedsy newswire ar-
ticle classification task. As usual, the generalizabilityre results to other application
domains and machine learning tasks is limited. Howevelatiéeved performance gains
encourage us to study the performance of AUC-RLS in otheradiosn In particular, we
anticipate AUC-RLS to be an attractive method for many weaild classification prob-
lems because the class label distribution is typicallyreghp unbalanced in reality. In

1Available at http://www.daviddlewis.com/resourcestefiections/reuters21578



the future, we plan to design efficient cross-validatioroatyms for AUC-RLS in ways
similar to the ones described by us in [14,15].
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