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Abstract.
Area under the receiver operating characteristics curve (AUC) is a popular mea-
sure for evaluating the quality of binary classifiers, and intuitively, machine learn-
ing algorithms that maximize an approximation of AUC should havea good AUC
performance when classifying new examples. However, designing such algorithms
in the framework of kernel methods has proven to be challenging. In this paper,
we address AUC maximization with the regularized least-squares (RLS) algorithm
also known as the least-squares support vector machine. First, we introduce RLS-
type binary classifier that maximizes an approximation of AUC and has a closed-
form solution. Second, we show that this AUC-RLS algorithm is computationally
as efficient as the standard RLS algorithm that maximizes an approximation of the
accuracy. Third, we compare the performance of these two algorithms in the task
of assigning topic labels for newswire articles in terms of AUC. Our algorithm
outperforms the standard RLS in every classification experiment conducted. The
performance gains are most substantial when the distributionof the class labels is
unbalanced. In conclusion, modifying the RLS algorithm to maximize the approxi-
mation of AUC does not increase the computational complexity, and this alteration
enhances the quality of the classifier.

1. Introduction

Classification problems constitute a typical supervised machine learning task domain,
where the aim is to construct algorithms which predict for each input instance the class
or classes to which it belongs. In binary classification, thetask is to judge for every input
instance whether it has a certain property (a positive example) or not (a negative exam-
ple), and assign exactly one of two possible class labels accordingly. The task is often
solved by mapping the input instances on a real-valued scale; the larger (smaller) the im-
age is, the more confident the classifier is about the instancebeing a positive (negative)
example. The binary output is then constructed by setting a threshold which divides the
instances into positive and negative examples.

Evaluating the ability of the classifier to predict the classlabels correctly is essential.
Various criteria for this classification performance exist, and in performance evaluation,
one must select a measure that reflects the chosen criterion.In binary classification, se-
lecting the area under the receiver operating characteristics curve (AUC) measure has
been recommended (see, e.g., [1,2,3]).



AUC corresponds to the probability that given a randomly chosen positive and neg-
ative example, the classifier will correctly distinguish them. Because AUC is calculated
directly from the real-valued output, it has the potential to describe the classification per-
formance in more detail than measures requiring a fixed threshold: if the performance
of the classifier is measured by comparing only its binary output with the correct clas-
sification, the value of the performance evaluation measuremay strongly depend on the
threshold placement. Another advantage of AUC is its invariance to the distribution of
class labels [4].

The desire for using AUC in performance evaluation has naturally led to the de-
sign of algorithms that aim to maximize AUC. In the frameworkof support vector ma-
chines, this task has proven to be challenging (see, e.g., [5,6,7]): The need to consider all
positive-negative example pairs instead of individual examples easily leads to too expen-
sive computations, and hence, approximative heuristics have had to be used to reduce the
computational complexity. Moreover, the performance gains have often been modest, or
not statistically significant.

In this paper, we address AUC maximization with the regularized least-squares
(RLS) algorithm, also known as the least-squares support vector machine [8]. The stan-
dard RLS algorithm maximizes an approximation of the classification accuracy (ACC),
that is, the proportion of correctly classified examples. Ithas been shown to achieve a
classification performance similar to the regular support vector machines [9].

In our recent study [10], we introduced a RLS-based ranking algorithm that we call
RankRLS, and applied it to the task of pairwise ranking of data points in information
retrieval tasks. Although the number of possible data pointpairs in such tasks grows
quadratically with respect to the number of the individual data points, the computational
complexity of the RankRLS algorithm was shown to be equal to the standard RLS re-
gression. A similar algorithm was independently proposed by [11]. As the problem of
AUC maximization can be naturally cast into the problem of comparing positive-negative
data point pairs, RLS is a particularly suitable basis for developing an efficient AUC
maximizing classifier.

Here, we introduce the AUC-RLS algorithm that maximizes regularized least-
squares approximation of AUC for binary classification. It is based on the same approach
as RankRLS. We show that AUC-RLS preserves the computational efficiency of the stan-
dard RLS algorithm, and outperforms RLS in maximizing AUC intesting.

2. Accuracy and Area Under ROC Curve

Let X be the input space that can be any set and letY = {1,−1} be the output space.
We call the set of possible input-output pairsZ = X × Y the example space. We say
thatz = (x, y) ∈ Z is a positive example ify = 1. Otherwisez is a negative example.
Further, let us denoteRX = {f : X → R}, and letH ⊆ R

X be the hypothesis space.
In supervised learning, we are given a number of training examples with known class
labels that we use to select a hypothesis fromH for prediction of the outputs of unseen
examples. Formally, letX = (x1, . . . , xm) ∈ (Xm)T to be a sequence of inputs, where
(Xm)T denotes the set of row vectors of sizem whose elements belong toX . Further,
we defineY = (y1, . . . , ym)T ∈ Ym to be a sequence of the corresponding output
values. We also denotezi = (xi, yi), 1 ≤ i ≤ m. Together,X andY form a training set
S = (X,Y ).



We now consider the performance measures that we use to evaluate how well the
hypotheses perform in a prediction task. In the following measure definitions, we use the
training data, but the measures can, of course, be analogously defined for any sequence
of data points. The error rate indicates the proportion of correctly classified data points.
Formally, the error rate off measured withX andY is

pERR(Y, f(X)) =
1

m

m
∑

i=1

1

2
|yi − sign(f(xi))|, (1)

wheref(X) = (f(x1), . . . , f(xm))T ∈ R
m, and sign is the signum function. The con-

stant 1

m
is a normalizer ensuring that the result is always between0 and1. The ACC

performance measure can be simply defined aspACC(Y, f(X)) = 1 − pERR(Y, f(X)).
The AUC measure, in turn, can be calculated from the following formula which is

also called the Wilcoxon-Mann-Whitney statistic:

pAUC(S, f(X)) =
1

m+m−

∑

yi=+1,yj=−1

1

2
(1 + sign(f(xi) − f(xj))),

wherem+ andm− are the numbers of positive and negative examples, respectively (see
[12] for a proof). Analogously, we also define a measure area over ROC curve (AOC)
whose optimum is at0 instead of1:

pAOC(S, f(X)) =
1

m+m−

∑

yi=+1,yj=−1

1

2
(1 − sign(f(xi) − f(xj))) (2)

=
1

m+m−

∑

yi=+1,yj=−1

1

2
(sign(yi − yj) − sign(f(xi) − f(xj))),

where we have also written the expression sign(yi − yj) which is equal to1, to em-
phasize that our aim is not to classify individual data points but pairs of them. Clearly,
pAOC(S, f(X)) = 1− pAUC(S, f(X)), and hence, when we aim to find a hypothesis that
maximizes AUC, we can select the one minimizing AOC.

3. RLS and AUC-RLS Algorithms

Following [13], we consider algorithms for hypothesis selection in the framework of reg-
ularized kernel methods consisting of a cost function and a regularizer. The cost func-
tions, that are usually approximations of the performance measures, indicate how large
error a hypothesis has with respect to the training set. The purpose of the regularizer is to
penalize too complex hypotheses that overfit at the trainingphase, and thus are not able
to generalize to unseen data. In the framework, the hypothesis spaceH is so-called re-
producing kernel Hilbert space determined by a positive definite kernel functionk. Then,
the learning algorithm that selects the hypothesisf fromH is defined as

A(S) = argmin
f∈H

J(f),



where

J(f) = c(f(X), Y ) + λ‖f‖2
k, (3)

c is a real valued cost function,λ ∈ R+ is a regularization parameter, and‖ · ‖k is the
norm inH. By the generalized representer theorem [13], the minimizer of (3) has the
following form:

f(x) =

m
∑

i=1

aik(x, xi), (4)

whereai ∈ R andk is the kernel function associated with the reproducing kernel Hilbert
space mentioned above. For the training set, we define the symmetricm×m kernel ma-
trix K to be a matrix whose elements areKi,j = k(xi, xj). For simplicity, we also as-
sume thatK is strictly positive definite. This can be ensured, for example, by performing
a small diagonal shift. Using this notation, we rewritef(X) = KA and‖f‖2

k = ATKA

whereA = (a1, . . . , am)T.
A natural way to minimize the training error would be to directly use the error rate

(1) as a cost function. Similarly, when we aim to maximize AUC, the corresponding cost
function to be minimized would be AOC (2). However, it is well-known that the use of
this type of cost functions leads to intractable optimization problems. Therefore, instead
of using (1) and (2), we use functions approximating them. For the error rate (1), we use
the following type of least-squares approximation

c(Y, f(X)) =

m
∑

i=1

(yi − f(xi))
2, (5)

that is, the sum of least-squares errors made on each training example. Analogously for
AOC (2), we use the following type of least-squares approximation

c(Y, f(X)) =
∑

yi=+1,yj=−1

(yi − yj − f(xi) + f(xj))
2. (6)

This cost function can be interpreted as least-squares error of regressing the label differ-
encesyi−yj with the prediction differencesf(xi)−f(xj). We used a similar approach in
[10], where a least-squares based cost function that compared all the the query-document
pairs related to the same query was proposed for ranking tasks in document retrieval.

By substituting (5) into (3), we get the standard RLS algorithm whose solution can
be obtained from

A = (K + λI)−1Y, (7)

whereA determines (4) [9]. The solution (7) can be obtained by inverting a m × m

matrix with computational complexityO(m3). On the other hand, substituting (6) into
(3) provides us an AUC maximization method we call AUC-RLS whose solution is

A = (LK + λI)−1LY, (8)



whereL is am × m matrix, whose entries are defined as

Li,j =















m− wheni = j ∧ yi = 1
m+ wheni = j ∧ yi = −1
−1 whenyi 6= yj

0 otherwise

, (9)

wherem+ andm− are the numbers of positive and negative examples, respectively.
The calculation of the solution (8) requires multiplications and inversions ofm×m

matrices. Both types of operations are usually performed with methods whose computa-
tional complexities areO(m3), and hence the complexity of AUC-RLS is equal to the
complexity of the standard RLS.

4. Primal Form of AUC-RLS

For such cases where there are very large amounts of trainingdata available, the cubic
complexity of AUC-RLS training can be prohibitive. In the literature, the problem of
finding a minimizer for (3) is known as the dual formulation. We next derive the primal
form of the AUC-RLS algorithm that is applicable whenever the linear kernel is used.
Similarly to the standard version of the RLS, the primal formis computationally more
efficient than the dual form in cases where the dimensionality of the feature space is
smaller than the number of training examples. This is formally shown below.

First, we assume a situation where the data points can be represented as real valued
vectors whose dimensionh corresponds to the dimensionality of the feature space, that
is,X = R

h. Further, we assume thath < m. Now, the sequence of inputs can be written
as a matrixX ∈ R

h×m. If we consider only the linear kernel, the function (4) minimizing
(3) can be equivalently expressed as

f(x) = xTXA = xTw, (10)

wherew = XA denotes the normal vector of the hyperplane that determinesthe RLS
solution. The vector, as we have shown in [10], can be obtained from

w = (XLXT + λI)−1XLY. (11)

Calculating (11) involves matrix multiplications ofO(hm2) complexity. However, we
can speed up the calculation in the following way.

Without losing generality, we can re-index the training examples so that the indices
1, . . . ,m+ are assigned to the positive and the indicesm+ + 1, . . . ,m to the negative
examples. Now the correspondingL can be decomposed intoL = D − PQ, whereD

is a diagonal matrix whose diagonal elements are given asDi,i = Li,i andP andQ are
defined as

P =

(

1m+×1 0m+×1

0m
−
×1 1m

−
×1

)

, Q =

(

01×m+
11×m

−

11×m+
01×m

−

)

.

Now (11) can be re-written as



w = ((XD)XT − (XP )(QXT) + λI)−1(X(DY ) − X(P (QY ))). (12)

The computational complexity of the matrix inversion isO(h3). The multiplication
(XD)XT can be performed inO(h2m) time. All other matrix operations in (12) have
lower computational complexity. Thus the resulting overall complexity of primal AUC-
RLS isO(h3 + h2m), making the method preferable to the dual version wheneverm is
considerably larger thanh.

5. Experiments

We evaluated the capability of the AUC-RLS algorithm to maximize AUC on a real
world dataset by considering a well-known text classification problem: the assignment

Table 1. Comparison of the performance of the AUC-RLS and RLS algorithmsin terms of AUC on the
Reuters-21578 dataset. In the first column is the name of the predicted class and in the next two are the AUC-
values for the tested algorithms with 95% confidence intervals in parentheses. The last two present the numbers
of positive examples in the training set of 500 documents and test set of 12397 documents.

class AUC-RLS RLS pos. train set pos. test set

acq 0.980 (0.978–0.983) 0.979 (0.977–0.982) 94 2275

bop 0.966 (0.947–0.985) 0.880 (0.843–0.917) 4 101

cocoa 0.931 (0.891–0.970) 0.837 (0.776–0.899) 2 71

coffee 0.969 (0.948–0.990) 0.962 (0.950–0.975) 5 134

corn 0.970 (0.959–0.982) 0.950 (0.936–0.964) 11 226

cpi 0.947 (0.925–0.969) 0.601 (0.555–0.648) 3 94

crude 0.976 (0.969–0.982) 0.975 (0.969–0.982) 23 555

dlr 0.971 (0.961–0.981) 0.946 (0.926–0.965) 10 165

earn 0.994 (0.993–0.995) 0.993 (0.991–0.994) 158 3806

gnp 0.987 (0.981–0.993) 0.923 (0.891–0.956) 5 131

gold 0.970 (0.953–0.986) 0.922 (0.897–0.948) 4 120

grain 0.979 (0.973–0.985) 0.974 (0.968–0.980) 23 559

interest 0.965 (0.956–0.974) 0.952 (0.941–0.962) 19 459

livestock 0.701 (0.642–0.761) 0.637 (0.578–0.696) 3 96

money-fx 0.954 (0.946–0.962) 0.947 (0.938–0.957) 28 689

money-supply 0.949 (0.930–0.968) 0.907 (0.877–0.937) 7 165

nat-gas 0.957 (0.933–0.981) 0.941 (0.920–0.962) 5 100

oilseed 0.898 (0.877–0.919) 0.816 (0.783–0.849) 6 165

reserves 0.943 (0.908–0.977) 0.511 (0.458–0.564) 2 71

ship 0.949 (0.934–0.963) 0.925 (0.907–0.942) 13 273

soybean 0.876 (0.839–0.913) 0.805 (0.757–0.853) 4 107

sugar 0.985 (0.979–0.991) 0.964 (0.952–0.976) 6 156

trade 0.978 (0.970–0.986) 0.969 (0.960–0.977) 20 466

veg-oil 0.890 (0.865–0.914) 0.697 (0.656–0.739) 4 120

wheat 0.984 (0.978–0.990) 0.976 (0.969–0.983) 12 271



of topic labels for Reuters newswire articles. Our approachwas to transform the problem
into a series of binary classification tasks, and to compare the AUC performance of the
AUC-RLS and standard RLS algorithms on each of these sub-tasks.

Our experiments were conducted on the Reuters-21578 dataset1. To simulate a situ-
ation where only a very limited amount of data is available, we extracted a representative
set of 500 documents for training purposes. The extraction was performed so that the
class distributions in the extracted subset were guaranteed to be approximately the same
as in the whole dataset. The rest of the documents were reserved for final validation.

We considered the task of predicting the 25 most numerous classes, each separately
using one-vs-all approach. All of these classes had at leasttwo positive examples in
the training data. Some of the documents belonged to more than one of the considered
classes and some to none of them. Thus it was possible for a document to be a positive
example in more than one of the 25 classification tasks, or in none of them.

In the tests we applied the linear kernel. Ten-fold cross-validation was used on the
training data to choose the values of the regularization parameterλ individually for each
class. In each case the parameter that produced maximal AUC taken over all of the folds
was chosen. Fold partitions were stratified separately for each classification task. The
classifiers were trained on the 500 training documents usingthe chosen parameters, and
then tested on the 12397 test documents. To evaluate the statistical significance of the
results on the level of individual classes we calculated the95% confidence intervals for
the classifiers’ AUC scores for each class. These intervals were obtained with SPSS 11.0.

The results are summarized in Table 1. All the AUC-values are, by definition, real
numbers between 0 and 1, 0.5 being the random baseline. AUC-RLS outperformed the
standard RLS on each of the 25 classification tasks. When considered together, the re-
sults clearly show the difference between the performancesof AUC-RLS and RLS to be
statistically significant. It should be noted that for some classes the difference is notably
larger than for some others. The greatest performance differences can be found in such
cases where the class distributions are most unbalanced (e.g., cocoa, cpi, reserves). For
the largest classes (e.g., acq, earn, crude) these differences are much more modest, or
even negligible. To summarize, AUC-RLS performed reliably, whereas the standard RLS
gave in many cases much worse results.

6. Conclusion

The main outcome of this study is a computationally efficientalgorithm, AUC-RLS, that
outperformed the standard RLS algorithm in maximizing AUC.The performance gains
achieved by using the AUC-RLS algorithm were emphasized when the distribution of the
class labels was strongly unbalanced. In conclusion, AUC-RLS retains the computational
efficiency of the standard RLS algorithm and clearly improves AUC performance.

Our experiments consider AUC maximization with RLS in the binary newswire ar-
ticle classification task. As usual, the generalizability of the results to other application
domains and machine learning tasks is limited. However, theachieved performance gains
encourage us to study the performance of AUC-RLS in other domains. In particular, we
anticipate AUC-RLS to be an attractive method for many real-world classification prob-
lems because the class label distribution is typically strongly unbalanced in reality. In

1Available at http://www.daviddlewis.com/resources/testcollections/reuters21578



the future, we plan to design efficient cross-validation algorithms for AUC-RLS in ways
similar to the ones described by us in [14,15].
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