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Abstract. Naive Bayes classifier is a frequently used method in various
natural language processing tasks. Inspired by a modified version of the
method called the flexible Bayes classifier, we explore the use of linear
feature transformations together with the Bayesian classifiers, because
it provides us an elegant way to endow the classifier with an external
information that is relevant to the task. While the flexible Bayes clas-
sifier is based on the idea of using kernel density estimation to obtain
the class conditional probabilities of continuously valued attributes, we
use the linear transformations to smooth the feature frequency counts
of discrete valued attributes. We evaluate the method on the context
sensitive spelling error correction problem using the Reuters corpus. For
this particular task, we define a positional feature transformation and
a word feature transformation that take advantage of the positional in-
formation of the context words and the part-of-speech information of
words, respectively. Our experimental results show that the performance
of the Bayesian classifiers in the natural language disambiguation tasks
can be improved with the proposed transformations and that the incor-
poration of external information via the linear feature transformations
is a promising research direction.

1 Introduction

Many natural language processing applications require accurate resolution of the
various kinds of ambiguity present in natural language, giving rise to a class of
disambiguation problems. In this paper, we focus on lexical disambiguation prob-
lems, where disambiguation is done at the level of words. One such problem is
the problem of context-sensitive spelling error correction, where the misspelling
of the original word belongs to the language, such as, for example, affect mis-
spelled as effect or vice versa. This mistake cannot be detected by standard
lexicon-based checkers, since both words belongs to the English lexicon. A set
of similar words that belong to the lexicon and that are often confused with the
other words in the set is called a confusion set. For example, {maybe, may be}
can be considered as a binary confusion set.

In our previous work [1,2,3], we have shown that the performance of the nat-
ural language disambiguation systems can be improved by taking advantage of
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the positional information of the context words with position sensitive kernel
functions. The methods considered in these studies were the support vector ma-
chine classifiers that have recently become the state-of-the-art machine learning
algorithms. Naive Bayes classifier is another frequently used method in various
natural language processing tasks that has been shown to have a high perfor-
mance. John and Langley [4] introduced the flexible Bayes, a version of the naive
Bayes classifier that uses kernel density estimation to estimate the class condi-
tional probabilities of continuous attributes. We [3] used this method in con-
text of word sense disambiguation to estimate the probabilities of word-position
features. The experiment demonstrated that the performance of the Bayesian
classifiers can be improved even if the attributes are ordinal (the word positions
in the context of the ambiguous word in our case).

In this paper, we introduce a realization of the flexible Bayes classifier that
is based on linear feature transformations, that is, we also relax the ordinality
assumption of the attributes. To our knowledge, this has not been considered in
the literature. Moreover, inspired by the good results obtained in the previous
studies by transforming the positional information of the context words, we also
define transformations for the words. We describe a method to construct the
word transformations using an external source of information that is useful for
the classification task in question. One such information source for the natural
language disambiguation tasks is, for example, the part-of-speech information of
the words (see e.g. Jurafsky and Martin [5]).

This paper is organized as follows. We start by describing the data represen-
tation and the Bayesian classifiers in Section 2. In Section 3, we consider the use
of the linear feature transformations together with the Bayesian classifiers. The
proposed transformations are evaluated in Section 4. We conclude the paper in
Section 5 and discuss possible future directions.

2 Binary Classification with Bayesian Classifiers

We first describe the representation of the data we use in our study. Next, we
give a definition of the naive Bayes classifier. Finally, we define the flexible Bayes
classifier originally introduced by John and Langley [4].

2.1 Representation of the Data

In this paper, we consider the context sensitive spelling error correction as a
model problem. In this kind of tasks, each data point consists of a word to
be disambiguated and the context words surrounding it. We formalize the data
points in the following way. Let s be a context span parameter that determines
how many words to the left and to the right from the ambiguous word are
included in the context, so that the size of the context window r = 2s + 1.
If there are not enough words available in the text to the left or to the right
from the ambiguous word, we use “empty” words to get a word sequence of
length r. Let n be the number of words and W = {w1, . . . , wn} be the set of
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words. Let x be a data point. We define a representation of the data point x
to be a word-position matrix Ax ∈ Mn×r(R), where Mn×r(R) is the set of
n × r-matrices whose elements belong to R. The word positions of a context are
defined as −s, . . . , 0, . . . , s, where the word to be disambiguated is in the position
zero of its context. A word-position matrix Ax generated from the context of an
ambiguous word is a binary matrix in which the element Ax(i, j) corresponding
to the word wi and the position p = j − s − 1 has the value one if the word
wi occurs in the position p of the context and zero otherwise. We also observe
that there can be at most one nonzero element in each column because each
position can have only one word. If the word in a certain position of a context
is not in W or if the position in the context is empty, the corresponding column
has only zeros. On the other hand, the same word can occur in several positions
in the context, and therefore the rows of the matrices can have several nonzero
elements.

2.2 Naive Bayes Classifier

Let Fx be the set of all features that are contained in a data point x. According
to our definition of the data points as word-position matrices, the word-position
features in Fx correspond to the ones in the binary valued word-position matrix
constructed from the data point x. For the Naive Bayes classifier, we use the
following decision function:

d(x) = P (+1)
∏

f∈Fx

P (f | + 1) − P (−1)
∏

f∈Fx

P (f | − 1), (1)

where P (f | + 1) and P (f | − 1) are the probabilities that the feature f appears
in a positive and in a negative example, respectively, and P (+1) and P (−1) are
the prior probabilities of the positive and negative classes. A new data point x is
given a positive (resp. negative) class label, if the value of the decision function
(1) for the data point is positive (resp. negative).

The probabilities can be directly estimated from the training data using maxi-
mum likelihood estimation (MLE) as follows. Let F denote the set of all possible
features the data points can contain. For each class y ∈ Y and feature f ∈ F ,

P (y) =
N(y)∑

y′∈Y N(y′)
,

P (f |y) =
N(f, y)∑

f ′∈F N(f ′, y)
,

where N(y) is the number of examples in the class y ∈ Y , and N(f, y) is the
feature frequency count of f conditional to the class y, that is, the number of
times feature f appears in the examples of the class y. The MLE estimates are
typically smoothed to avoid zero probabilities in prediction; in this paper we use
add-δ smoothing, where all numbers of feature occurrences are incremented by
δ > 0 (in our experiments, we set δ = 0.001) over the counted value (see e.g.
Chen and Goodman [6]).
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2.3 Flexible Bayes Classifier

John and Langley [4] introduced the flexible Bayes method, a version of the naive
Bayes classifier that uses kernel density estimation (we refer to Silverman [7] for
more information on kernel density estimation) to estimate the class conditional
probabilities of continuous attributes (this method has also been described by
Hastie et al. [8]). While the word-position random variable is discrete, and hence
a histogram is a natural way to estimate its density, the estimate can still be
bumpy because of the lack of training data.

We now define a version of a Bayesian classifier which is similar to the flexible
Bayes classifier. The class conditional probabilities of the features are estimated
as follows

P (f |y) =

∑
f ′∈F N(f ′, y)g(f, f ′)

∑
f ′,f ′′∈F N(f ′, y)g(f ′, f ′′)

, (2)

where g is a kernel function. The estimate can be considered as a convolution
of the sample empirical distribution of the features with the kernel function (see
e.g. Hastie et al. [8]).

In our previous study [3], our features were the word-position pairs described
above and we used, among the others, a kernel function g(f, f ′) : F × F → R

+:

g(f, f ′) = g((w, p), (v, q)) =
{

exp(−θ(p − q))2 when w = v
0 otherwise , (3)

where θ ≥ 0 is a parameter, and w (resp. v) is the word and p (resp. q) is its
position. We refer to this approach as the smoothed position-sensitive model.
Note that if we let θ → ∞, the flexible Bayes becomes the naive Bayes classifier
with the word-position features. We refer to this case as the basic position-
sensitive model. If we, on the other hand, set θ = 0, the different positions are
identified with each other and the obtained classifier is a naive Bayes classifier
constructed from the bag-of-words features.

Below, we describe how the kernel (3) can be used together with the Bayesian
classifiers via linear transformations of the estimated feature frequency counts.
The formalization of the approach with the linear transformations provides us
a better machinery to incorporate external information into the classifier than
the Gaussian kernel we use above.

3 Linear Feature Transformations

We will now describe a realization of the Bayesian classifier (2) that uses linear
transformations on the word-position matrices that contain the class conditional
feature frequency counts estimated from the data. Recall that we have defined
our data points to be word-position matrices whose columns are the word feature
vectors for different positions. Let us define for the class y a word-position matrix
Ay ∈ Mn×r(R) whose elements contain the number of occurrences of each word-
position feature in class y, that is, Ay =

∑
x∈Xy

Ax, where Ax is a word-position
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matrix corresponding to a training data point x and Xy is the set of training
examples that belong to the class y. We will refer to the matrices Ay as class
conditional feature frequency count matrices.

3.1 Constructing Linear Transformations for Position Vectors

We formulate the kernel function (3) as a linear transformation on the row vec-
tors of the class conditional feature frequency count matrices. Let P ∈ Mr×r(R)
be a matrix of a transformation whose values are obtained as

P (i, j) = g((w, p), (w, q)), (4)

where g is the function defined in (3), p = i − s − 1, and q = j − s − 1. The word
w can be any word, because the value of the function (3) does not depend on it.
We will call the matrix P a positional transformation.

We obtain the transformed feature frequency counts via the following matrix
product of the original frequency counts and the positional transformation

Ây = AyP.

When we normalize Ây with the sum of the values of all its elements, we have
the estimates of the class conditional probabilities of the features that can be
used to construct a Bayesian classifier.

3.2 Constructing Linear Transformations for Word Vectors

Above, we defined a realization of the flexible Bayes classifier with a linear trans-
formation of the position vectors. We can also construct linear transformations
for the word vectors, that is, the column vectors of the class conditional feature
frequency count matrices. Let W ∈ Mn×n(R) be a matrix of the transformation
that we call here a word transformation. The transformation is performed on
the frequency count matrix Ay as

Ây = WAy.

In the following, we consider a possible way to construct the word transformation.
In many natural language disambiguation tasks, the parts-of-speech (PoS)

of context words are known to provide useful additional information (see e.g.
Jurafsky and Martin [5]). We now use this external source of information to
construct a linear feature transformation. Suppose that we know for each word
all possible parts-of-speech it can have. Let us define a PoS-word matrix V ∈
Mt×n(R) so that V (i, j) is one if the jth word can have the ith PoS and zero
otherwise. Let us consider an example in which the set of words consists of the
words composition, contribution, write, and being, and the possible PoS are noun
and verb (i.e. n = 4 and t = 2). Then

W = {composition, contribution, write, being}
P = {noun, verb} and V =

(
1 1 0 1
0 0 1 1

)
,
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whete P denotes the set of PoS. Notice that it is possible for words to have
several nonzero values in their corresponding column in W . For example, the
word being can be a noun or a verb. From this PoS-word matrix, we construct
the following word-word similarity matrix

W = V TV =

⎛

⎜⎜⎝

1 1 0 1
1 1 0 1
0 0 1 1
1 1 1 2

⎞

⎟⎟⎠ , (5)

where the rows and the columns are indexed by the four example words. The
words composition and contribution are identified with each other in practice
because their corresponding columns in W are equal. The word being is similar
to all other words to some extent because it shares common PoS with them.
To ensure that each word position feature is transformed to an equal amount of
probability mass, we normalize the column vectors of Ŵ with their 1-norm. By
1-norm of a vector x, we mean

∑
i |xi|.

In reality there are, however, only a few PoS compared to the number of words.
Therefore too many words will get identified with each other which would lead
to a too powerful smoothing effect. We can control the amount of smoothing by
increasing the diagonal of the transformation matrix as follows

W̃ = W + μI,

where I ∈ Mn×n(R) is an identity matrix and μ is a parameter. The diagonal
shift has the effect that the transformed feature frequency counts are the sum of
the original frequency counts multiplied by μ and the frequency counts smoothed
with the PoS information of the words.

An appropriate value of the diagonal shift parameter μ can be selected, for
example, with a cross-validation. For instance, if we set μ = 1, the normalized
and diagonal shifted transformation matrix (5) will become

W̃ =

⎛

⎜⎜⎝

1.33 0.33 0 0.2
0.33 1.33 0 0.2
0 0 1.5 0.2

0.33 0.33 0.5 1.4

⎞

⎟⎟⎠ . (6)

From (6) we observe that the words composition and contribution are no longer
completely identical and the similarities between the other words are also de-
creased compared to the values of the diagonal elements. Analogously with the
above described smoothed position-sensitive model which encompasses the basic
position-sensitive and bag-of-words models as extreme cases, the model based on
the diagonal shifted word transformation encompasses the model based only on
the word features and the model that has only the PoS information of the words.
We observe that if we let μ → ∞, the information of the PoS disappears and
we have just the word-position features. On the other hand, if we set μ = 0, the
word-position features are completely replaced with the PoS-position features.
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When we select the value of the parameter μ, we choose an intermediate between
these two extremes.

Note that we need the PoS-word matrix V only for the construction of the
similarity matrix W of the words. If we have a source of the similarity information
of the words, we can also directly construct the matrix W in a similar way that
the positional transformation matrix P is obtained in (4).

3.3 Combination of Transformations

Let P be the matrix of a positional transformation and W the matrix of a word
transformation. If we use both of the transformations at the same time, we obtain
the transformed feature frequency counts via the following matrix product

Ây = WAyP, (7)

where Ay is the matrix that contains the original feature frequency counts for
the class y.

3.4 Implementation Issues

Let W denote the normalized word transformation described above and W̃ its
diagonally shifted version. In our experiments, we defined our set of words to
consist of the 10000 most common words in our data set. Therefore the trans-
formation matrix is of dimension 10000 × 10000 and hence the computation of
the matrix product W̃Ay for each class y may be too tedious in practice. Fortu-
nately, because of the small number of possible PoS (in our experiments we used
10 different PoS), we are able to speed up the computation. Let V denote the
PoS-word matrix from which the word transformation is constructed in the way
described above. Instead of using the diagonally shifted and normalized matrix
(6) directly, we perform the transformation as

W̃Ay = (V T(V • Z) + μI)Ay (8)
= V T((V • Z)Ay) + μAy , (9)

where V • Z denotes an elementwise product of the matrices V and Z of equal
dimensionality and Z is a normalization matrix that ensures that the 1-norms
of the column vectors of W are equal to one. The parenthesis in (9) denote
the order in which the calculations are performed in the implementation. The
two matrix products performed consecutively in (9) are together much faster to
compute than the matrix product in the left hand side of (8).

4 Experiments

We use the task of context-sensitive spelling correction as a model problem
to evaluate the performance of the proposed approach. In this task, the correct
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spelling of a word must be disambiguated among a set of alternative spellings
based on its context, deciding, for example, between country and county. There
is practical interest in improving methods at solving this task, and it is ideal as
a model problem since a large dataset can be created without manual tagging.
As high-quality texts such as newswire articles are widely available and unlikely
to contain spelling errors, the required training and test examples can simply be
extracted from such resources.

Golding and Roth [9] defined 21 sets of commonly confused words in their
context-sensitive spelling correction experiments. 19 out of the 21 sets are binary
(i.e. they consist only of two alternative spellings). For simplicity, we focus only
on the 19 two-class problems in this paper. We create the datasets from the
Reuters News corpus [10], extracting a training set of 1000 and a test set of
5000 examples for each confusion set as follows: we first search the corpus for
documents containing either of the confusion set words. In each such document,
every occurrence of either of the confusion set words forms a candidate example.
We then form datasets of the required size by randomly selecting documents
until they together contain sufficiently many examples; possible extra examples
are randomly discarded from the last selected document. This sampling strategy
assures that there is no overlap in documents between training and test examples.
Finally, we assign one of the confusion set words the positive and the other the
negative label, label each selected example, and remove from the context of each
example the confusion set word.

We measure the performance of the classifier with different kernels with the
area under the ROC curve (AUC) (see e.g. Fawcett [11]), and test the statistical
significance of the performance difference between the various transformations
and the baseline method using the Wilcoxon signed-ranks test [12].

In all the experiments, we select the value of the context span parameter s sep-
arately for each confusion set using a grid search (the grid points i.e. the possible
values of s are 20, 21, . . . , 26). The grid searches are performed on the training
data with a leave-one-out cross-validation (LOOCV). In some experiments, there
are also other parameters to be selected, for example, the θ-parameter of the po-
sitional transformation. In those cases, we perform a two dimensional grid search
over the possible values of the parameters s and θ.

First, we evaluate a naive Bayes (NB) classifier with the basic position sen-
sitive (BP) model, that is, the NB classifier with the above described word-
position features, and compare its performance to that of the NB classifier with
the bag-of-words (BoW) model. The BP model clearly outperforms the BoW
model on average as can be observed from Table 1. The performance gain is sta-
tistically significant (p < 0.05). The BoW model is better only with the data set
country-county. In the performance comparison of our previous study [3] with
the Senseval-3 data, the BoW model was better on average. Next, we test the
smoothed position sensitive (SP) model, that is, the NB classifier whose class
conditional probabilities are obtained from the positionally transformed feature
frequency counts. The value of the θ-parameter is selected with a leave-one-out
cross-validation with the training data together with the context span. Note that
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Table 1. Comparison of naive Bayes classification performance with the bag-of-words
(BoW) model, the basic position sensitive (BP) model, and the smoothed position
sensitive (SP) model. The performances are measured with AUC. The performance
difference of BP and BoW, SP and BoW, and SP and BP are denoted by Δ1, Δ2, and
Δ3, respectively.

BoW BP Δ1 SP Δ2 Δ3

accept-except 99.17 99.76 0.59 99.80 0.63 0.04
affect-effect 97.51 98.80 1.29 98.85 1.34 0.05
among-between 88.57 90.56 1.99 90.99 2.42 0.43
amount-number 88.89 91.54 2.65 91.54 2.65 0.00
begin-being 97.77 98.61 0.84 98.60 0.82 -0.01
country-county 97.81 89.45 -8.36 97.81 0.00 8.36
fewer-less 78.67 78.79 0.11 80.79 2.11 2.00
I-me 97.17 99.27 2.11 99.27 2.10 -0.01
its-it’s 94.72 96.91 2.19 96.89 2.16 -0.03
lead-led 94.60 96.90 2.30 96.92 2.32 0.02
maybe-may be 86.30 90.90 4.60 90.94 4.64 0.04
passed-past 96.12 98.71 2.59 98.75 2.62 0.03
peace-piece 97.20 97.68 0.48 97.2 0.00 -0.48
principal-principle 92.00 95.25 3.25 95.34 3.34 0.09
quiet-quite 96.07 98.68 2.60 98.68 2.60 0.00
raise-rise 90.72 97.39 6.67 97.23 6.51 -0.16
than-then 96.63 98.01 1.37 97.99 1.36 -0.01
weather-whether 97.25 98.90 1.65 98.95 1.70 0.05
your-you’re 95.00 97.20 2.20 97.20 2.20 0.00
AVERAGE 93.80 95.44 1.64 95.99 2.19 0.55

this model encompasses both the BoW and the BP models as special cases be-
cause we obtain them when we set θ = 0 and θ → ∞, respectively. Despite this,
the classification performance with the SP model is slightly decreased compared
to the performance with the BP model for some data sets (see Δ3 in Table 1).
This is possible, because the parameters selected using LOOCV with the training
data are not necessarily optimal for the test data, that is, the parameter selec-
tion procedure overfits. Probably for this reason, we do not get the statistical
significance for the performance difference of the BP and SP. However, the per-
formance with SP model is always better or equal than that of the BoW model
(see Δ2 in Table 1) and the performance gain is statistically significant. The data
set country-county favors the BoW model and this is detected by the parameter
selection procedure, since it is the only one having an equal performance with
the BoW and the SP models.

Next, we consider the Bayesian classifiers with the word transformations. The
word transformation is constructed from the part-of-speech (PoS) information of
words in the way described in Section 3. To obtain the PoS information, we used
WordNet lookup, combined with the use of the WordNet morphy morphologi-
cal analyzer for determining the PoS of inflected forms. All possibly applicable
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Table 2. The naive Bayes classification performance with the basic position sensitive
(BP) model compared to the performance of the Bayesian classifier with the word
feature transformation (WT) (left), and to the performance of the Bayesian classifier
with the combination (CB) of the word and the positional feature transformations
(right). The performances are measured with AUC. The performance differences are
denoted by Δ.

BP WT Δ

accept-except 99.76 99.82 0.06
affect-effect 98.80 98.87 0.06
among-between 90.56 92.10 1.55
amount-number 91.54 91.37 -0.17
begin-being 98.61 98.81 0.19
country-county 89.45 91.97 2.52
fewer-less 78.79 82.66 3.87
I-me 99.27 99.34 0.07
its-it’s 96.91 98.30 1.38
lead-led 96.90 97.49 0.59
maybe-may be 90.90 95.53 4.63
passed-past 98.71 98.96 0.25
peace-piece 97.68 98.63 0.95
principal-principle 95.25 96.15 0.90
quiet-quite 98.68 98.94 0.26
raise-rise 97.39 98.20 0.81
than-then 98.01 98.49 0.49
weather-whether 98.90 99.17 0.27
your-you’re 97.20 98.32 1.12
AVERAGE 95.44 96.48 1.04

BP CB Δ

accept-except 99.76 99.83 0.07
affect-effect 98.80 98.70 -0.10
among-between 90.56 93.91 3.36
amount-number 91.54 91.54 0.00
begin-being 98.61 98.81 0.20
country-county 89.45 97.44 7.99
fewer-less 78.79 80.26 1.47
I-me 99.27 99.27 -0.01
its-it’s 96.91 98.16 1.25
lead-led 96.90 97.48 0.58
maybe-may be 90.90 95.52 4.61
passed-past 98.71 99.02 0.31
peace-piece 97.68 98.58 0.90
principal-principle 95.25 96.22 0.97
quiet-quite 98.68 98.95 0.27
raise-rise 97.39 97.99 0.61
than-then 98.01 98.48 0.47
weather-whether 98.90 99.14 0.24
your-you’re 97.20 98.26 1.06
AVERAGE 95.44 96.71 1.28

parts-of-speech were assigned to words, for example, both the noun and verb PoS
were assigned for the word being, which can be either a noun or an inflected form
of the verb be. We used a table lookup to assign the PoS to the closed-class words,
because they are not found in WordNet. Further, we included separate PoS tags
for punctuation and numbers. Of the 10000 most common tokens, 8736 could be
assigned at least one PoS using this procedure. The remaining 1264, consisting
mostly of proper names but also containing, for example, abbreviations and
multiword tokens such as week-long, were not assigned any PoS.

Similarly to the experiments with the positional transformations, we compare
the performance of the word transformed Bayes classifier to the performance of
the naive Bayes without the transformation, that is, the classifier with the BP
model. Analogously to the positional transformation, we obtain the naive Bayes
without transformations as a special case of the word transformed Bayes when
we let μ → ∞. The results of the comparison are presented in Table 2. The
performance gain between the word transformed Bayes and the Bayes without
transformations is statistically significant.

Finally, we consider a Bayesian classifier together with the combination of
the positional and the word transformation (see (7)). A performance compari-
son of the NB classifier without any transformations (i.e. with the BP model)
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and the word and positionally transformed Bayesian classifier is presented in
Table 2. The performance gain is statistically significant. Again, due to the
overfitting of the parameter selection procedure, for some data sets the classifi-
cation performance with the transformation combination is slightly lower than
the performance without transformations. On average, the performance with
the transformation combination is better than the performance when only the
positional or the word transformations is used.

5 Discussion

In this paper, we experiment with linear transformations of the feature frequency
count matrices together with the Bayesian classifiers. For the particular task of
natural language disambiguation that we use as a model problem, we define
two types of feature transformations. The positional transformation is obtained
using a Gaussian kernel on the word positions, and the word transformation is
constructed from the part-of-speech information of the words. The results of the
experiments show that the performance of the Bayesian classifiers in the natural
language disambiguation tasks can be improved with both types of the trans-
formations. The proposed use of linear transformations is a promising research
direction in general, because it provides an elegant way to incorporate external
information into the classifier.

The Gaussian kernel for the positions and the part-of-speech information of
words are just examples of the information that can be incorporated into the classi-
fiers. In the future, we plan to investigate other possibilities to construct the trans-
formations such as variable width Gaussian kernels for the word positions. More-
over, in addition to the part-of-speech information of the words, there are many
other possibilities to define the word similarities from which the word transforma-
tions can be constructed. For example, techniques based on the latent semantic
analysis [13] are popularly used in several natural language processing tasks.

The proposed use of linear feature transformations is, of course, not restricted
to the Bayesian classifiers. The transformations can also be used to construct
kernel functions that can be applied by the kernel based learning algorithms, such
as support vector machines. While the naive Bayes classifier is usually faster to
train and therefore useful in situations in which small computation times are of
importance, the kernel based learning algorithms are at present considered to
be the state-of-the-art. Further, in our earlier experiments with the senseval-3
data [3], we found that certain disambiguation problems prefer NB while others
prefer support vector machines (NB was slightly better on average). We consider
the possibilities of the kernel methods in another study [14].
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