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Abstract

We consider the problem of learning sparse linear models for multi-label predic-
tion tasks under a hard constraint on the number of features. Such budget con-
straints are important in domains where the acquisition of the feature values is
costly. We propose a greedy multi-label regularized least-squares algorithm that
solves this problem by combining greedy forward selection search with a cross-
validation based selection criterion in order to choose, which features to include
in the model. We present a highly efficient algorithm for implementing this pro-
cedure with linear time and space complexities. This is achieved through the use
of matrix update formulas for speeding up feature addition and cross-validation
computations. Experimentally, we demonstrate that the approach allows finding
sparse accurate predictors on a wide range of benchmark problems, typically out-
performing the multi-task lasso baseline method when the budget is small.

Keywords: Feature selection, Greedy forward selection, Multi-label learning,
Regularized least-squares

1. Introduction1

Multi-label learning (Tsoumakas et al., 2010) concerns the problem of learn-2

ing to make predictions about the association between data points and a set of3

candidate labels. In multi-label classification, one aims to predict which of the4

available labels are relevant with respect to the data point of interest, and which5

are not. In label ranking (see e.g. Hüllermeier et al. (2008)) one rather predicts the6
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ordering over the set of labels, where the labels best matching the data point ap-7

pear at the top of the ordering. The applications of multi-label learning are varied,8

since in almost any domain of interest there are usually several interesting proper-9

ties that can be simultaneously used to describe an object. For example, an image10

often has several objects appearing in it, a piece of music or a movie represents11

multiple genres, or a newspaper article may belong to several topic categories.12

Multi-label methods are often divided into two categories: problem trans-13

formation methods and algorithm adaptation methods (Tsoumakas and Katakis,14

2007). The former aim at dividing the original problem into one or more single-15

label classification or regression problems whereas the latter are based on extend-16

ing existing single-task approaches to multi-label learning. There are a rich family17

of different approaches for both categories.18

Two of the most common problem transformation methods are binary rele-19

vance method (BR) and label power-set method (LP). While BR divides the multi-20

label problem into binary single-task problems, one task per label, LP creates a bi-21

nary single-label problem for every possible label combination. Compared to BR,22

LP has the advantage of being able to model the correlation between the labels, but23

this comes at a steep computational price as the number of possible label combina-24

tions grows exponentially with respect to the size of the label set. More advanced25

transformation methods such as RAKEL (Tsoumakas et al., 2011a) have been de-26

veloped to overcome this problem. Examples of single-task classifiers adapted to27

make use of label correlations include the ML-kNN (Zhang and Zhou, 2007) algo-28

rithm, that extends the K-nearest neighbors algorithm to multi-label classification,29

and the ML-C4.5 (Clare and King, 2001) multi-label decision tree method. For30

a comprehensive overview and experimental comparison of multi-label methods,31

we refer to Madjarov et al. (2012).32

In this work we consider the BR type of setting, where for each label one con-33

structs a linear predictor, that produces scorings from which the classifications or34

rankings are derived. In many applications sparsity, meaning that for a significant35

number of features the corresponding coefficients in the models are set to zero,36

is a desirable property. The three most common motivations for learning sparse37

models are the following. Enforcing sparsity has a regularizing effect which may38

help to prevent overfitting, models depending only on a few variables are easier39

to understand and explain by human experts, and sparse models are cheaper to40

predict with than dense ones. The focus of this paper is especially on the third41

point of view.42

As pointed out by Xu et al. (2012), the prediction cost can, in turn, be divided43

into the times required for evaluating the models and for extracting the feature44
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values. For linear models, the evaluation time is proportional to the number of45

nonzero model entries, totaled over all models multi-label learning. In contrast,46

the feature extraction time is proportional to the set of unique features used for47

prediction. The feature value is extracted only once for a single data point, while48

the value can be used to predict several labels. The difference between the two49

types of sparsity is illustrated in the following example, where two linear models50

have the same model evaluation cost, but different feature extraction cost. Let51

W1 =



1 0 0 0
3 0 0 0
0 2 0 0
0 −1 0 0
0 0 0 3
0 0 0 1
0 0 2 0
0 0 2 0


, W2 =



0 0 0 0
2 3 −1 2
0 0 0 0
3 1 4 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


52

denote the matrices determining two sparse linear models. The rows and columns53

of both matrices correspond to features and tasks, respectively. Both matrices54

have the same number of non-zero coefficients, but W1 requires all the features55

for prediction, whereas W2 requires only two of them.56

The feature extraction costs are dominant to the model evaluation costs in57

many real-world tasks, and hence the focus of this paper is the minimization of the58

extraction cost. Our problem definition is quite similar to that of budgeted learn-59

ing considered recently by Cesa-Bianchi et al. (2011); Hazan and Koren (2012),60

the difference being that our work considers multi-label instead of single-task61

learning, and we do not consider settings where different features may be selected62

for different data points.63

As a motivating example, consider an image recognition system that simul-64

taneously predicts several properties of a given input image in real-time. Since65

each feature used for prediction is obtained from a possibly computationally ex-66

pensive feature extractor, one must minimize the number of required features to67

ensure real-time recognition. A similar setting is commonly encountered in med-68

ical testing, where we want to perform as few tests as possible, yet make reliable69

diagnoses for a patient. To summarize, we consider the setting in which the num-70

ber of features must be limited even if it decreases the prediction performance,71

because enforcing sparsity due to the high feature acquisition costs is necessary72

in numerous practical applications.73
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Two popular approaches for learning sparse models are the filter methods, that74

perform feature selection independently of the learning algorithm trained on the75

selected features, and wrapper or embedded methods where the selection process76

is optimized for the learning algorithm. The most prominent of the latter type of77

methods are the method known as lasso or basis pursuit, and the family of greedy78

search algorithms. There is empirical evidence in the literature favoring lasso over79

greedy methods (Chen et al., 1998) when the amount of selected features is large.80

Moreover, it has been shown that if the model underlying the data is truly sparse81

lasso converges to it (Zhao and Yu, 2006). However, in the setting considered82

in this work one must select only a small number of features even if the model83

is not truly sparse. Consequently, since the lasso methods are based on convex84

regularization, the smaller is the set of selected features, the worse will be the bias85

caused by the regularization on the learnt model (Zhang, 2011). This phenomenon86

does not concern the greedy methods, as they are based on a different selection87

principle.88

In the recent years, techniques applicable to learning sparse models in the89

single-label setting have been extended to the multi-label setting. As a typical ex-90

ample of filter methods, Doquire and Verleysen (2011) proposed a greedy method91

that combines a mutual information based selection criterion with a variant of the92

LP transformation method. Zhang et al. (2009) proposed a naive Bayes multi-93

label method that applies as a first stage principal component analysis in order to94

reduce the feature set dimensionality followed by a genetic algorithm based fea-95

ture selection phase. However, the reliance on PCA for dimensionality reduction96

makes this and similar methods unsuitable for the setting considered in this work,97

as they still need all the original features during prediction time.98

Among the the selection methods optimized for the learning algorithm, spar-99

sity enforcing matrix norm-based regularization approaches, that extend the com-100

monly used l1-norm to the multi-task setting, have shown to be especially promis-101

ing (Turlach et al., 2005; Liu et al., 2009; Obozinski et al., 2010; Zhang et al.,102

2010). As a representative of the state-of-the art in this area, we consider the103

coordinate descent training approach for the l1,∞-regularization based multi-task104

lasso (Liu et al., 2009). The optimization criterion for the method directly en-105

forces such sparsity structure that leads to minimal number of features being used106

in the model (see matrix W2). Thus, the method provides a natural baseline for107

comparing our work.108

We extend the greedy RLS approach (Pahikkala et al., 2010, 2012), a greedy109

forward selection method for regularized least-squares proposed by some of the110

present authors, to multi-label setting. The work continues the work of Naula et al.111
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(2011b,a), where a high-level description of the idea and some preliminary exper-112

imental results were presented. We prove that the resulting training algorithm has113

linear time and space complexities, making it computationally highly competitive114

for example with the most efficient known coordinate descent training algorithms115

proposed for the lasso-type of learning methods. In our experiments, we compare116

the predictive performance of the multi-label greedy RLS and multi-task lasso ap-117

proaches over several real-world data sets, in order to determine which approach,118

if any, leads to higher predictive performance. The results suggest that whenever119

one wants to strongly enforce sparsity, the greedy approach is preferable, as on120

small feature subsets multi-label greedy RLS consistently outperforms multi-task121

lasso.122

2. Methods123

Here, we present the basic concepts and notations relevant for the following124

considerations. By [n] we denote the index set {1 . . . n}. We use bold lowercase125

and uppercase letters for denoting vectors and matrices, respectively. Given a126

matrix M ∈ Rm×n and index sets R ⊆ [m] and S ⊆ [n], we use MR,S for127

denoting the submatrix containing the rows and columns indexed by R and S,128

respectively. Further, MR, M:,S , and Mi,j are shorthands for, MR,[n], M[m],S ,129

and M{i},{j}, respectively. We use analogous notations also for vectors.130

Let131

D = {(x1,y1), . . . , (xn,yn)}132

be a training set of size n, where xi ∈ Rd and yi ∈ Rt are the feature and the label133

vectors of the ith instance, respectively, and d and t are the numbers of features134

and labels. The label vectors can be encoded so that yi
j = 1 if the ith instance is135

associated with the jth label and yi
j = −1 otherwise.136

Our aim is to learn from D a real valued function137

fl : Rd → R.138

for each label 1 ≤ l ≤ t, that is expected to predict a positive value if x is139

associated with the label and negative values otherwise.140

2.1. Optimization Framework141

In the following, we assume that the feature representations of the training142

instances are stored as row vectors in the data matrix X ∈ Rn×d. Thus the i, jth143
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entry of X contains the value of the jth feature in the ith training example. More-144

over, the labels for the training data points are stored in the matrix Y ∈ Rn×t,145

where the i, jth entry is 1 if the ith training example has the jth label, and −1146

otherwise. The predictor is a linear function that can be written as f(x) = xTW,147

where W ∈ Rd×t is a matrix of parameters and x ∈ Rd is a column vector con-148

taining the feature values of a data point.149

Training of multi-label predictors with training data X,Y can be expressed as150

finding a solution to the following problem:151

argminW∈Rd×t ‖XW −Y‖2F (1)152

subject to C(W)153

where ‖ · ‖F is the Frobenius matrix norm and C is a constraint function.154

One of the most well-known constraint functions is the quadratic one155

C(W) = ‖W‖2F < r, (2)156

where r ∈ R+. The feature selection setting, in which the number of feature157

extractors must not exceed a given limit, can be expressed as the following con-158

straint:159

C(W) = |{i | ∃j,Wi,j 6= 0}| ≤ k, (3)160

where k ∈ N. The discrete and non-convex nature of the constraint makes its161

optimization challenging. In the literature, there are two widely used strategies162

for tackling this problem. The first is to approximate the constraint with con-163

tinuous and convex functions and the second to use combinatorial optimization164

techniques.165

Multi-task lasso (Turlach et al., 2005) approximates (3) with the following:166

C(W) =
d∑

i=1

max
j
|Wi,j| ≤ r.167

Liu et al. (2009) have shown how the Multi-task lasso optimization problem can168

be efficiently solved for large data sets using the coordinate descent method. This169

approach is considered as a baseline method in our experiments. The computa-170

tional complexity of the training method of Liu et al. (2009) is O(nd2 + ndt +171

htd2 + hdt log(t)), where n, d, and t denote the numbers of data points, features172

and labels, respectively, and h denotes the number of iterations performed. The173
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number of iterations h depends on the magnitude of the regularization parameter174

and desired accuracy of solution, in the experiments we noted that the method in175

practice usually converged within tens of iterations. The memory consumption of176

the method isO(nd+nt+d2). The method scales well with respect to the number177

of instances and labels, but has a quadratic dependency on the dimensionality of178

the data, limiting its scalability to very high dimensional problems.179

Multi-label greedy RLS uses of both (2) and (3) simultaneously. In the next180

section, we present a novel algorithm for solving the induced optimization prob-181

lem efficiently by implementing greedy forward selection search using sophisti-182

cated matrix algebra shortcuts for speeding up computations.183

2.2. Multi-label greedy RLS184

Algorithm 1 High-level pseudocode of Multi-label greedy RLS.
1: S ← ∅ . The current set of selected features common for all tasks.
2: while |S| < k do . Select k common features.
3: e←∞
4: b← 0
5: for i ∈ {1, . . . , d} \ S do . Test all features before selecting.
6: eavg ← 0
7: for j ∈ {1, . . . , t} do
8: ei,j ← L(X:,S∪{i},Y:,j) . Compute LOO performance for task j.
9: eavg ← eavg + ei,j/t

10: if eavg < e then
11: e← eavg
12: b← i
13: S ← S ∪ {b} . Select the feature whose addition leads to lowest

LOO-error.
14: W← A(X:,S ,Y) . Train final models using the selected features.
15: return W, S

Let us next consider solving (1) using only the quadratic constraint (2). With185

the Lagrange multipliers technique, one can determine such a real-valued multi-186

plier λ > 0 for which the following unconstrained objective function provides an187

equivalent solution:188

argmin
W∈Rd×t

‖XW −Y‖2F + λ‖W‖2F .189

7



This multiplier is in the literature often called the regularization parameter, and the190

above modification of the optimization problem leads to the well-known regular-191

ized least-squares (RLS) learning method, also commonly known in the literature192

as ridge regression (Hoerl and Kennard, 1970), or least-squares support vector193

machine (Suykens et al., 2002). The RLS induces a convex optimization problem,194

with a closed-form solution expressible as a solution to a system of linear equa-195

tions. While the quadratic constraint has a regularizing effect guarding against196

overfitting, it does not enforce sparsity of the learned model. Hence, we use the197

additional constraint (3). However, due to the exponential number of different198

feature combinations, there is no longer a polynomial time algorithm for finding199

the global optimum for (1) when using both the constraints (2) and (3). Thus,200

we resort to a greedy search algorithm for traversing through the power set of201

features.202

We apply the greedy forward selection heuristic. By greedy, we indicate that203

the algorithm starts from an empty set of features and adds one feature at a time204

to the set but never removes any selected features from the set. At each search205

step, each non-selected feature is tested by temporarily adding it to the feature set,206

and computing the mean squared error obtained via leave-one-out (LOO) cross-207

validation for the resulting feature set (for a description of LOO performance, we208

refer to e.g. Lachenbruch (1967); Elisseeff and Pontil (2003)). The feature whose209

addition leads to lowest error is selected, after which the search proceeds to the210

next step. Once the allocated number of features has been chosen, the search stops211

resulting in the final model.212

In Algorithm 1 we describe the high-level pseudocode of the resulting feature213

selection algorithm. The outermost loop adds one feature at a time into the set of214

selected features S until the size of the set has reached the sparsity budget k. The215

middle loop goes through every feature that has not yet been added into the set of216

selected features. By L(X:,S∪{i},Y:,j) we represent the mean-squared LOO error,217

computed for a predictor trained for the jth task, using the features indexed by the218

set S∪{i}. Thus for the ith feature available for addition, the inner loop computes219

the average LOO performance over the t tasks for RLS predictors trained using220

the features S∪{i}. After going through all feature candidates, the algorithm then221

adds the feature with the best average LOO performance into the set of selected222

features. By A(X:,S ,Y), we denote a routine that trains the final predictor, by223

solving the problem (1) subject to the quadratic constraint (2), using only the224

features in the set S.225

Algorithm 1 can be in principle be straightforwardly implemented as a wrap-226

per algorithm (Kohavi and John, 1997), meaning that a computational wrapper227
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Table 1: Datasets.
Data sets domain labels features instances cardinality density
Scene image 6 294 2407 1.074 0.179
Yeast biology 14 103 2417 4.237 0.303
Emotions music 6 72 593 1.868 0.311
CAL500* music 87 68 502 23.010 0.264
Mediamill* text 9 120 41583 3.059 0.340
Delicious text 983 500 16105 19.020 0.019
Tmc2007 text 22 49060 28596 2.158 0.098

uses a black-box RLS solver, re-training it for each round of selection process,228

tested feature, task and round of cross-validation. While the resulting algorithm229

does have polynomial runtime, it is still highly impractical even for modest sized230

data sets. In our previous work we have shown that for single-task learning prob-231

lem, greedy RLS search can be implemented with linear time and memory com-232

plexities via matrix algebraic optimization (Pahikkala et al., 2010, 2012). Next,233

we generalize these results to the multi-label learning setting.234

Theorem 1. On a data set with n data points, d features and t labels, multi-label235

greedy RLS can select k features in O(kndt) time and with O(nd + nt) memory236

consumption.237

Proof. For detailed implementation description, computational complexity anal-238

ysis and proof of correctness, see Appendix B.239

For high-dimensional data multi-label greedy RLS can be expected to be faster240

than multi-task lasso, due to latters quadratic dependency on the dimensionality241

of the data. On the other hand, if the dimensionality is not too large, the methods242

can expected to perform similarly with respect to running times on small budget243

problems.244

3. Experiments245

In this section we present an experimental evaluation of the proposed multi-246

label greedy RLS (ML-gRLS) method, with a comparison to the multi-task lasso247

(MT-Lasso) baseline. We also show results for a popular multi-label method, ML-248

kNN (Zhang and Zhou, 2007), in order to provide a baseline on how well a widely249

applied multi-label method can perform on these problems when not subject to250

budget constraints. First, we describe the considered data sets. Next, we consider251

the problem of parameter selection for the methods, proposing suitable selection252

strategies based on experimental evidence. Finally, we evaluate the methods on253
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varying feature budget sizes on seven real-world data sets representing a variety254

of different types of application domains.255

All the test runs for the ML-gRLS method are carried out using the imple-256

mentation in RLScore1, a publicly available open source machine learning library257

developed by some of the present authors. The software is implemented using the258

Python programming language, and the NumPy and SciPy libraries. MT-lasso is259

also implemented in Python according to algorithm presented in (Liu et al., 2009).260

The experiments for the ML-kNN2 method are performed using the implementa-261

tion of the Mulan Java library (Tsoumakas et al., 2011b).262

3.1. Datasets263

We carry out our experiments using seven publicly available data sets (Scene,264

Yeast, Emotions, CAL500, Mediamill, Delicious and Tmc2007) that can be found265

from the web site of the Mulan library. The data sets represent different appli-266

cation domains such as biology, text or music. The properties of the data sets267

are summarized in Table 1. Two of the data sets are pre-processed by remov-268

ing some labels from the original ones (denoted by * in the table) to carry out269

10-fold cross-validation properly. For CAL500 we select only those labels that270

include more than 40 instances and for Mediamill only those labels that include271

more than 5000 instances. The table presents the number of labels, features and272

instances, and two often used characteristics in multi-label research, cardinality273

and density (Tsoumakas et al., 2010).274

3.2. Parameter selection275

Both the ML-gRLS and MT-Lasso optimization problems incorporate a regu-276

larization parameter λ, whose correct selection is crucial for achieving good pre-277

dictive performance, and in the case of MT-Lasso, the parameter also directly278

controls the number of selected features. Selecting suitable parameter value is279

not straightforward, in this section we explore this issue experimentally and pro-280

pose solutions. All the results presented in this section are based on 10-fold281

cross-validation (excluding large datasets Delicious and Tmc2007 for which 5-282

fold cross-validation is implemented), where the feature selection and model con-283

struction is performed on nine training folds, test performance computed on the284

tenth test fold, and final performances computed as averages over the ten cross-285

validation rounds.286

1available at https://github.com/aatapa/RLScore
2available at http://mulan.sourceforge.net
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Figure 1: The performance curves of the ML-gRLS method with respect to coverage and accuracy
criteria on the Scene data. All reg.params -curves represent prediction performances over different
regularization parameter values and LOO-selection -curve represents the prediction performance
based on LOO-error for a given budget. Only the curves on the grid [2−15, 2−14, ..., 25] are shown
in the figure.
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First, we consider the selection of λ for ML-gRLS. In Figure 1 we present the287

effects of using different regularization parameter values on the Scene dataset. We288

test each of the parameters in range [2−15, 2−14, ..., 215]. Figure 1 plots for differ-289

ent regularization parameters the coverage (top) and accuracy (bottom) against the290

number of selected features. The curves demonstrate that the correct choice of the291

regularization parameter is essential for finding a good model. Since ML-gRLS292

computes for each selected feature the leave-one-out squared error, a natural ap-293

proach is to use this directly as the selection criterion. In Figure 1 we have plotted294

the test errors achieved by choosing for each number of selected features from the295

grid the regularization parameter with lowest leave-one-out error. The approach296

proves to be reasonable, finding for the coverage measure the near optimal pa-297

rameters, and works also well for small budget values for the accuracy criterion.298

However, the suboptimal parameter selection in terms of accuracy for large fea-299

ture budgets suggests that the selection heuristic may not always perform well,300

possibly due to overfitting.301

For MT-Lasso algorithm, the first practical challenge is how to select λ in or-302

der to get a certain number of features with non-zero coefficients. As discussed by303

Friedman et al. (2010), the coordinate descent optimization based techniques for304

lasso training do not allow one to directly control the number of selected features,305

but rather it is necessary to test different regularization parameters and observe the306

number of selected features. Large enough value a for λ sets all the coefficients307

exactly equal to zero, whereas small enough value b sets all the coefficients to308

non-zero, that is, in the former case the model includes zero features and in the309

latter case it includes all the candidate features. Let rng = [a, b] be a range of310

the regularization parameters that generates all the possible sizes of the models311

in terms of the number of the features, where a and b have been selected experi-312

mentally. The approach used for example by Friedman et al. (2010) is to simply313

generate many candidate values for λ on the range rng, then build the models and314

find out how many features are selected for each value. In Figure 2 we present an315

experiment on Emotions dataset, where we plot the performance curve (Macro-316

averaged AUC) and the number of selected features curve over a regularization317

parameter λ. The scale for performance curve is set on the left vertical axis and318

the scale for the number of features curve is set on the right vertical axis. The319

range for the regularization parameter is rng = [40, 0] and a new model is cre-320

ated in every point on equally distributed grid [a, a − 0.1, a − 0.2, . . . , b]. The321

results demonstrate that the approach allows recovering models for a wide range322

of feature budgets, though at a quite steep computational price, and it cannot be323

guaranteed that all feature budget sizes are represented.324
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Figure 2: The prediction performance curve and the number of features curve of the MT-Lasso
method with respect to different regularization parameters on Emotion data.

The second challenge while using MT-Lasso is finding an optimal value λ for325

some given budget. This is due to the fact that an infinite number of regularization326

parameter values on range rng return equal number of features (=same budget)327

but possibly different prediction performance. Figure 2 presents clearly this phe-328

nomenon by showing that in areas where the number of selected features curve329

levels constant, the predictive performance curve still keeps changing. From the330

Figure 2 one can be derive visually an observation we made also on other data331

sets, that the optimal λ value for a given feature budget tends to be the smallest332

parameter value resulting in the same number of features being selected.333

3.3. Experimental comparison334

We carry out standard ten-fold cross-validation for all the methods on the five335

small data sets and five-fold cross-validation on the two large data sets. We cal-336

culate the classification performance for seven widely used measures. For a de-337

scription of measures see Appendix A. We compare ML-gRLS and MT-Lasso338

methods over different sizes of feature budgets. For each data set, budget size and339

performance measure we perform the Wilcoxon signed-rank test over the cross-340

validation results at 0.05 significance level in order to determine, whether the341
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performance differences between the two methods are statistically significant.342

We search the grid in range [2−15, 2−14, ..., 215] for selecting the regularization343

parameters λ for ML-gRLS, choosing for each feature set size the parameter based344

on leave-one-out cross-validation error. We train the method starting from zero345

features, up until all the features have been selected. For MT-Lasso, we first346

determine the range for regularization parameters that generates the minimum and347

maximum number of candidate features, and then define a parameter grid between348

these with a step size of 0.1 (a step size of 5.0 is selected for the large datasets).349

In cases where the grid does not generate all the possible feature subset sizes,350

missing performance values are linearly interpolated.351

Figure 3 shows the prediction performance curves for MT-Lasso and ML-352

gRLS methods on all seven datasets. The figure plots the average of the cross-353

validation results over the number of features in terms of macro-averaged AUC,354

(left) and Hamming Loss (right). The results for rest of the performance criteria355

show very similar behavior and are therefore left out from the figures, though356

some of the selected results are presented in the following tables.357

It can be noted, visually, that ML-gRLS outperforms MT-Lasso over a low358

budgets on all data sets but CAL500 and TMC2007 with respect to macro aver-359

aged AUC and Hamming-Loss. The performance differences between these two360

methods on CAL500 dataset are quite small which might be due the weak learn-361

ing results, shown in Figure 3, that does not show any improvement over entire362

budget range. It is also notable that ML-gRLS outperforms MT-Lasso over all363

budgets on the bigger data sets, such as Mediamill, Delicious and Tmc2007, with364

the exception that MT-lasso outperforms ML-gRLS over very small budget sizes365

on Tmc2007 (see Figure 3).366

Table 2 summarizes results in terms of all seven performance measures for367

some selected budgets marked as low, med and high, where budget size is 10, 45368

and 80 percents of all the candidate features, respectively. Moreover Table 3 sum-369

marizes results for large datasets Delicious and Tmc2007 over small budgets 100370

and 50 features, respectively. Each element in the table in this comparison con-371

tains mean and standard deviation values denoted by (mean± std.dev). The sta-372

tistically significant differences between the results of ML-gRLS and MT-Lasso373

according to Wilcoxon test are marked in bold. The "↑" indicates that the larger374

the value is, the better is the result and "↓" indicates the lower the better. Tables 2375

and 3 present also the results of ML-kNN method with respect to seven perfor-376

mance measures on the seven datasets. ML-kNN derives a model that includes all377

the available features ignoring feature selection process.378

The tables reveal the same findings that could be observed from the figures,379
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the ML-gRLS method is always comparable to MT-Lasso in terms of all eval-380

uation criteria and budget sizes used in this study on all data sets but CAL500381

and Tcm2007, and significantly outperforms baseline method on small budgets.382

The results of ML-kNN are not directly comparable with ML-gRLS and MT-383

Lasso due to different budget sizes. However, it can be seen that overall perfor-384

mances of feature selection methods in terms of all seven performance measures385

are slightly worse on small data sets to that of ML-kNN. On the other hand, on the386

two largest data sets, ML-gRLS clearly outperforms ML-kNN according to most387

performance measures, which might be due the large number of irrelevant features388

in the datasets. This may cause a worse prediction performance and results in an389

expensive dense model. To conclude, while MT-Lasso is competitive with ML-390

gRLS for unrestricted feature budgets, when the number of features is restricted391

ML-gRLS clearly outperforms MT-Lasso, making it the preferable method for392

such settings.393

4. Conclusions394

In this paper, we considered the problem of multi-label learning under re-395

stricted feature extraction budgets. That is, we concentrate on minimizing the396

number of features required for simultaneous prediction of several labels for a397

given data point. We proposed a novel greedy multi-label learning algorithm, that398

achieves high computational efficiency through matrix algebraic optimizations.399

As a baseline method we tested multi-task lasso based on l1,∞-regularization.400

Since the lasso controls the number of features only implicitly, enforcing401

strict budget constraints requires careful and time-consuming tuning of regular-402

ization parameter. In contrast, explicit control is possible with greedy methods.403

Moreover, small budgets are not the strongest area of lasso methods, because l1-404

regularization shrinks also the relevant features in addition to the non-relevant405

ones. This can be observed in our experimental results in which ML-gRLS was406

competitive on all considered real-world data sets and significantly outperformed407

MT-Lasso on small budgets.408

In this work we have made the assumption of each feature having equal ex-409

traction cost and each being independently produced. However, there are many410

applications for which this is not the case. For example, in visual recognition411

systems and their applications, features are often extracted in groups rather than412

individually, that is, the feature extraction cost is common for a whole group of413

features and it pays to simultaneously select all features belonging to such group414

instead of single feature at a time. Recently, many of the popular feature selec-415
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Table 2: Performance on the Scene, Yeast, Emotions, CAL500, and Mediamill.
ML-gRLS MT -lasso ML-kNN

Low Med High Low Med High

SCENE

Z.-O.Loss ↓ 0.600±0.029 0.529±0.023 0.535±0.031 0.990±0.007 0.724±0.013 0.537±0.024 0.367±0.032

Ham.Loss ↓ 0.118±0.005 0.106±0.006 0.106±0.007 0.178±0.002 0.133±0.003 0.106±0.006 0.085±0.008

Accuracy ↑ 0.431±0.027 0.505±0.022 0.498±0.029 0.010±0.007 0.292±0.015 0.492±0.022 0.674±0.030

One-error ↓ 0.285±0.017 0.246±0.026 0.246±0.025 0.369±0.033 0.257±0.020 0.239±0.024 0.229±0.028

Coverage ↓ 0.582±0.054 0.520±0.063 0.515±0.060 0.717±0.046 0.528±0.045 0.502±0.050 0.470±0.051

Rank.Loss ↓ 0.100±0.010 0.087±0.011 0.086±0.010 0.126±0.010 0.089±0.007 0.083±0.008 0.077±0.008

M.avg.AUC ↑ 0.910±0.009 0.923±0.011 0.924±0.011 0.864±0.007 0.916±0.009 0.926±0.010 0.933±0.007

YEAST

Z.-O.Loss ↓ 0.881±0.017 0.851±0.019 0.853±0.022 0.987±0.007 0.931±0.014 0.872±0.019 0.812±0.025

Ham.Loss ↓ 0.210±0.009 0.200±0.009 0.200±0.009 0.232±0.009 0.214±0.008 0.203±0.009 0.194±0.013

Accuracy ↑ 0.466±0.016 0.494±0.016 0.496±0.018 0.339±0.012 0.420±0.016 0.477±0.017 0.519±0.020

One-error ↓ 0.237±0.023 0.221±0.020 0.225±0.019 0.249±0.023 0.248±0.022 0.238±0.017 0.230±0.020

Coverage ↓ 6.574±0.244 6.386±0.226 6.374±0.235 6.551±0.206 6.387±0.210 6.349±0.219 6.232±0.278

Rank.Loss ↓ 0.182±0.016 0.170±0.015 0.171±0.015 0.195±0.015 0.181±0.016 0.172±0.015 0.166±0.017

M.avg.AUC ↑ 0.654±0.022 0.693±0.016 0.699±0.015 0.630±0.014 0.670±0.012 0.691±0.014 0.688±0.018

EMOTIONS

Z.-O.Loss ↓ 0.752±0.069 0.730±0.054 0.740±0.065 0.891±0.060 0.731±0.074 0.732±0.057 0.719±0.045

Ham.Loss ↓ 0.213±0.027 0.202±0.018 0.203±0.026 0.255±0.027 0.202±0.030 0.192±0.021 0.194±0.018

Accuracy ↑ 0.459±0.067 0.512±0.046 0.493±0.065 0.238±0.062 0.459±0.071 0.499±0.049 0.533±0.043

One-error ↓ 0.323±0.067 0.282±0.070 0.268±0.059 0.375±0.067 0.270±0.078 0.256±0.056 0.276±0.068

Coverage ↓ 1.915±0.182 1.839±0.214 1.819±0.189 2.064±0.230 1.829±0.207 1.791±0.185 1.826±0.145

Rank.Loss ↓ 0.189±0.032 0.173±0.038 0.167±0.030 0.218±0.036 0.168±0.031 0.161±0.031 0.168±0.025

M.avg.AUC ↑ 0.815±0.026 0.833±0.024 0.832±0.023 0.788±0.023 0.828±0.025 0.839±0.022 0.835±0.028

CAL500

Z.-O.Loss ↓ 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000

Ham.Loss ↓ 0.240±0.010 0.239±0.010 0.239±0.010 0.239±0.012 0.238±0.011 0.238±0.009 0.243±0.011

Accuracy ↑ 0.226±0.008 0.228±0.010 0.226±0.012 0.210±0.013 0.219±0.010 0.227±0.008 0.215±0.011

One-error ↓ 0.121±0.043 0.118±0.037 0.121±0.035 0.118±0.039 0.121±0.036 0.118±0.037 0.118±0.039

Coverage ↓ 75.40±0.974 75.50±1.241 75.88±1.273 76.35±0.732 75.48±1.003 75.18±1.181 77.58±0.880

Rank.Loss ↓ 0.275±0.014 0.274±0.014 0.274±0.012 0.277±0.008 0.269±0.009 0.269±0.011 0.288±0.010

M.avg.AUC ↑ 0.575±0.034 0.576±0.027 0.568±0.020 0.572±0.016 0.594±0.019 0.590±0.019 0.520±0.008

MEDIAMILL

Z.-O.Loss ↓ 0.847±0.010 0.812±0.006 0.806±0.006 0.890±0.004 0.854±0.005 0.831±0.006 0.731±0.009

Ham.Loss ↓ 0.190±0.004 0.177±0.002 0.174±0.002 0.220±0.003 0.192±0.003 0.184±0.003 0.164±0.003

Accuracy ↑ 0.552±0.007 0.580±0.004 0.587±0.004 0.477±0.005 0.548±0.004 0.565±0.004 0.616±0.005

One-error ↓ 0.128±0.008 0.111±0.003 0.109±0.004 0.175±0.005 0.125±0.004 0.115±0.005 0.111±0.006

Coverage ↓ 3.619±0.042 3.467±0.039 3.432±0.037 3.992±0.034 3.606±0.040 3.528±0.042 3.316±0.040

Rank.Loss ↓ 0.129±0.002 0.116±0.002 0.113±0.001 0.163±0.002 0.128±0.002 0.121±0.002 0.107±0.002

M.avg.AUC ↑ 0.779±0.004 0.809±0.003 0.815±0.003 0.722±0.004 0.787±0.003 0.799±0.003 0.823±0.004
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Figure 3: Performance curves (Hamming loss on the left and macro-averaged AUC on the right)
on seven data sets.
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Table 3: Performance on the two large data sets

Delicious Tmc2007

ML-gRLS MT -lasso ML-kNN ML-gRLS MT -lasso ML-kNN

Z.-O.Loss ↓ 1.000±0.000 1.000±0.000 0.998±0.001 0.793±0.005 0.869±0.004 0.820±0.005

Ham.Loss ↓ 0.027±0.000 0.030±0.000 0.018±0.000 0.078±0.001 0.095±0.001 0.076±0.001

Accuracy ↑ 0.174±0.002 0.114±0.001 0.105±0.002 0.486±0.003 0.389±0.003 0.430±0.007

One-error ↓ 0.355±0.005 0.596±0.005 0.391±0.009 0.288±0.004 0.422±0.003 0.326±0.007

Coverage ↓ 533.3±5.144 540.8±1.736 591.7±3.246 3.526±0.048 4.637±0.057 4.285±0.046

Rank.Loss ↓ 0.109±0.001 0.130±0.001 0.128±0.002 0.074±0.002 0.115±0.002 0.098±0.001

M.avg.AUC ↑ 0.770±0.003 0.747±0.002 0.641±0.003 0.882±0.003 0.845±0.002 0.778±0.004

tion approaches for single label learning problems have been extended to take416

account of the group structure, including the group lasso developed by Yuan and417

Lin (2006) and the grouped orthogonal matching pursuit Lozano et al. (2009),418

representing the lasso and greedy approaches, respectively. Extending our con-419

sideration of multi-label problems towards these concepts is a natural direction420

for future work.421

Appendix A. Evaluation measures422

Below, we use the notation Y i = {l | yi
l = 1} and Ŷ i = {l | fl(xi) > 0}423

to denote the sets of labels associated with and predicted for the ith instance,424

respectively. We also define a function425

rf (xi, l) =
{j | fj(xi) ≥ fl(x

i), 1 ≤ j ≤ t
}426

that ranks the labels according to their relevance to x.427

Given a test set T = {(xi,Y i) | 1 ≤ i ≤ v}, the evaluation metrics are defined428

as follows:429

1. The 0/1 loss measure430

1− 1

v

v∑
i=1

γ(Ŷ i,Y i),431

where432

γ(Ŷ i,Y i) =

{
1, if Ŷ i = Y i

0, otherwise
433
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indicates the exact match of the predicted set of labels and actual set of434

labels.435

2. The Hamming loss measure436

1

vt

v∑
i=1

|Ŷ i∆Y i|437

evaluates the prediction error and missing error at the same time where the438

prediction error corresponds to a prediction of an incorrect label and the439

missing error corresponds to a missed prediction of an actual label. Let440

a notation Ŷ i∆Y i denote the symmetrical difference (the logical XOR) be-441

tween the predicted set of labels Ŷ i and the actual set of labels Y i associated442

with an instance xi.443

3. The multi-label accuracy measure444

1

v

v∑
i=1

|Y i ∩ Ŷ i|
|Y i ∪ Ŷ i|

445

is the mean ratio of the intersection and union of the actual and predicted446

label sets.447

4. The one-error measure448

1

v

v∑
i=1

δ(argmin
1≤l≤t

rf (xi, l)),449

where450

δ(l) =

{
1, if l ∈ Y i

0, otherwise
451

indicates the frequency of the highest ranked label not being an actual label.452

5. The coverage measure453

1

v

v∑
i=1

max
l∈Yi

rf (xi, l)− 1454

indicates the distance, on the average, in the ranked list one has to go in455
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order to cover all the actual labels Y i assigned to an instance xi. Thus, the456

coverage extends top-ranked label evaluation used in the one-error to all the457

actual labels.458

6. The ranking loss measure459

1

v

v∑
i=1

1

|Y i||Y i|
|{(l1, l2) | rf (xi, l1) ≥ rf (xi, l2), (li, l2) ∈ Y i × Y i}|,460

where Y i
= {1, . . . , t} \ Y i indicates how often the actual label l1 ∈ Y i

461

receives lower or equal rank than the label l2 /∈ Y i.462

7. The macro-averaged AUC measure463

1

t

t∑
i=1

AUCi464

is defined as an averaged area under ROC curve (AUC) (Hanley and Mc-465

Neil, 1982; Huang and Ling, 2005) over all the labels, where AUC is first466

calculated separately for each label. In the following, we denote by AUCi467

the AUC computed for the ith label.468

Appendix B. Pseudocode469

Detailed pseudocode for multi-label greedy RLS is presented in Algorithm 2.470

Proof of Theorem 1. We start by finding a solution for the multi-label problem
with the quadratic regularizer for a fixed set of features S:

argmin
W∈R|S|×t

{
‖X:,SW −Y‖2F + λ‖W‖2F

}
Using standard linear algebra and matrix inversion identities (see e.g. Henderson
and Searle (1981)), a solution to the above problem can be expressed as

W = (X:,S)TGY,

where
G = (X:,S(X:,S)T + λI)−1
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and I is the identity matrix of size n× n.471

In order to perform feature selection computationally efficiently, the algorithm472

maintains, in addition to the set S of selected features, the following data struc-473

tures in memory:474

A = GY,475

g = diag(G),476

C = GX,477

where diag(G) denotes a vector that consists of the diagonal entries of G. The478

greedy RLS algorithm starts from an empty set of selected features, and hence479

the values of A, g, and C are initialized to λ−1Y, λ−11, and λ−1X, respectively,480

where 1 ∈ Rn is a vector having every entry equal to 1. This initialization requires481

O(nt+ nd) time and memory.482

The greedy RLS algorithm uses LOO-CV as a selection criterion, and we next
recollect how this can be computed efficiently for RLS models. This computa-
tional short-cut is a multi-label modification of a classical result for RLS (see e.g.
Elisseeff and Pontil (2003) and references therein). Provided that we have the
matrix A and the vector g available, the squared LOO error for the jth training
example and the hth task is

(gj)
−2(Aj,h)2.

This involves only a constant number of standard floating point operations, and483

hence the average squared LOO error over the whole data set and all tasks can be484

computed in O(nt) time.485

Assume that we have computed the matrix A and the vector g corresponding486

to the current set of selected features S. Then, to find out how much the LOO487

error would change if we would also select the ith feature, we have to update A488

and g so that they corresponding to the updated set S ∪ {i}.489

Ã = (X:,S(X:,S)T + X:,i(X:,i)
T + λI)−1Y,490

= (G−1 + X:,i(X:,i)
T)−1Y,491

= (G− u(X:,i)
TG)Y492

= A− u(X:,i)
TGY,493

where the second last equation follows from the Woodbury matrix inversion for-
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mula (see e.g. Henderson and Searle (1981)) and

u = C:,i(1 + (X:,i)
TC:,i)

−1.

The vector g can be updated in an analogous way, that is, the jth entry of g̃ is494

obtained from495

g̃j = (G− u(X:,i)
TG)j,j496

= (G− u(C:,i)
T)j,j497

= gj − ujCj,i,498

From these, we observe that the matrix A can be updated in O(nt) time, the same499

which is spent for computing the LOO error for all tasks, and the vector g in500

O(n) time. Thus, given that we have the above mentioned cache memories, the501

computation of LOO error for the updated feature sets is not more expensive than502

computing it for the current set. If the LOO computation is performed for every503

feature that has not yet been selected, the complexity of a single selection step is504

O(ndt).505

After the feature that decreases the LOO error the most is found, its index is506

added to the set of selected features and the cache memories have to be updated507

accordingly. The matrix A and the vector g can be updated similarly as in the508

LOO computation. The matrix C is updated again in an analogous way509

C̃ = C− u((X:,i)
TC).510

This update operation requires O(nd) time but this is dominated by the time spent511

for searching the best feature.512

The algorithm selects altogether k features and every time it performs the513

search for the best feature to be added. Thus, the overall time complexity of514

the whole selection process is O(kndt). As a final step, the algorithm returns515

W = (X:,S)TA, whose computation requiresO(knt) time. The space complexity516

of the algorithm is dominated by the matrices C and A that require O(nd) and517

O(nt) space, respectively.518
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Algorithm 2 Multi-label greedy RLS
1: A← λ−1Y
2: g← λ−11
3: C← λ−1X
4: S ← ∅
5: while |S| < k do
6: e←∞
7: b← 0
8: for i ∈ {1, . . . , d} \ S do
9: u← C:,i(1 + (X:,i)

TC:,i)
−1

10: ei ← 0
11: Ã← A− u((X:,i)

TA)
12: for h ∈ {1, . . . , t} do
13: for j ∈ {1, . . . , n} do
14: g̃j ← gj − ujCj,i

15: ei ← ei + (g̃j)
−2(Ãj,h)2

16: if ei < e then
17: e← ei
18: b← i
19: u← C:,b(1 + (X:,b)

TC:,b)
−1

20: A← A− u((X:,b)
TA)

21: for j ∈ {1, . . . , n} do
22: gj ← gj − ujCj,b

23: C← C− u((X:,b)
TC)

24: S ← S ∪ {b}
25: W← (X:,S)TA
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