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Abstract

A/B testing is a popular tool for guiding mobile game devel-
opment. The developer releases different versions of a game
to different test cohorts, and observes which version has the
best player retention or monetization. Correctly determining
whether the differences are statistically significant is however
challenging. Typically the analysis needs to be done on small
and heterogeneous player cohorts, with differing follow-up
times and unknown player churn. In this paper, we show for
the first time how these issues can be properly addressed us-
ing the Cox model for recurrent events. The method enables
a multivariate A/B-test, that allows determining which game
version has the highest player retention or purchase rate, with
confidence intervals provided. We demonstrate the benefits
of the approach in multiple game development problems, on
real-world free-to-play mobile game data.

Introduction
Game analytics has become an important tool in developing
successful games (El-Nasr, Drachen, and Canossa, 2013),
with modern analytics platforms making gathering of player
data remotely easy. For free-to-play mobile game develop-
ers, this has lead to an iterative game development model
based on A/B-testing. When testing new features for a game,
two or more variants of the game are distributed to different
user cohorts, acquired for example via targeted advertise-
ments on social media. By comparing the player behavior in
these cohorts, the developer aims to determine which variant
of the game is the most engaging, guiding thus further devel-
opment of the game. In this work, we consider two metrics
of engagement, retention rate and the purchase rate, which
characterize the amount of time and money spent by players
on a game. Retention rate is one of the most popular industry
statistics (Seufert, 2014) and thus a natural choice for analy-
sis. Purchase rate directly measures the number of purchases
made by users, but its usability is limited to game versions
that already have working monetization mechanisms imple-
mented.

In order to implement A/B-testing properly, game devel-
opers require methods that allow estimating these metrics re-
liably from player data, as well as determining whether dif-
ferences in metrics between different game variants are sta-
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tistically significant, or simply due to random chance. This
is made challenging due to a number of characteristics of the
player data:

1. Sample size: it is not feasible for small developers to ob-
tain large test cohorts for each A/B-test, since each player
obtained via targeted advertising costs money.

2. Limited time window: player activity data is available
only until the date of analysis. If players are obtained over
time, the length of data available for different players may
range from weeks to only day or two.

3. Churn uncertainty: it is unknown whether any given
player has churned (i.e. permanently quit the game) after
the last known session, or will return in the future.

4. Confounding variables: differences in user cohorts in
terms of variables such as operating system, country etc.
may bias the analysis, if not controlled for.

While game analytics has become a subject of significant
interest in recent years in the academic game research lit-
erature, we are not aware of a proposed method that would
address all these issues. Recently, methods from the field
of survival analysis, such as the classical Cox regression
model, have been used in game analytics to analyze player
churn (Allart et al., 2016; Perián̄ez et al., 2016). However,
the practical applicability of the standard Cox model is lim-
ited, since fitting the model requires knowing which users
have already churned. Further, the classical version of the
method is used to model time to a single event such as churn
or first purchase made, rather than session or purchase rates.

In this work we propose using recurrent event Cox re-
gression (Cook and Lawless, 2007) to model retention and
purchase rates. The method can naturally handle the lim-
ited and differing follow-up times for players, is not affected
by churn uncertainty, allows control for confounding vari-
ables, and provides confidence intervals for the analyses.
The method allows determining whether one game version
has significantly better retention or purchase rate than the
other. Further, the method has a simple interpretation and
is straightforward to apply, for example using the statistical
packages available for the R-language (Moore, 2016). We
provide numerous examples on how different types of A/B-
tests may be performed using the method on data from a real
in-development free-to-play mobile game.



Duration and rate based metrics

Figure 1: Time-lines for 10 hypothetical players followed for
14 days. Session starts are denoted with crosses, and lengths
with line segments. A circle denotes the last session avail-
able in the data. On the right, we have summed together the
session times of each player, resulting in the total playtime
over this 14 days period.

In order to illustrate different types of player retention re-
lated metrics and prediction problems, we present 10 player
time-lines in Figure 1. In this example the considered events
are player sessions, but purchases can be analyzed analo-
gously. There are two ways to aggregate the data, resulting
in duration and rate based metrics.

Duration based metrics
Duration based metrics measure the sum of the variable of
interest, such as the number of sessions, until the player
churns. The obvious problem with this approach is that ex-
cluding subscription based games users do not tell when
they have churned. Rules based on player inactivity have
been used to impute churn status to data (see e.g. Hadiji et
al. (2014); Runge et al. (2014); Tamassia et al. (2016)), but
these can introduce biases in analyses.

Playtime, measures the total time (e.g. hours) a player
spends playing a game before churning. Previously, Sifa,
Bauckhage, and Drachen (2014) have analyzed the distri-
bution of playtimes on Steam, whereas Allart et al. (2016);
Viljanen et al. (2017) used survival analysis methods for
playtime analysis. Days active, denotes the number of days
from installing the game until a player churns. Recently,
Perián̄ez et al. (2016) has proposed a survival ensemble
model for predicting number of active days. Churn classi-
fication, refers to classifying whether a player will churn
from the game within some specified time range in the future
(see e.g. Chen, Huang, and Lei (2009); Hadiji et al. (2014);
Runge et al. (2014); Drachen et al. (2016); Perián̄ez et al.
(2016); Sifa et al. (2016); Tamassia et al. (2016) for pro-
posed classification methods). Classification and regression
of customer purchases was considered by Sifa et al. (2015).
Metrics such as session times (Chen, Huang, and Lei, 2009),
total number of sessions (Weber, Mateas, and Jhala, 2011),
gates cleared (Debeauvais and Lopes, 2015; Isaksen, Gop-
stein, and Nealen, 2015), and several other activity measures
(Feng, Brandt, and Saha, 2007; Tarng, Chen, and Huang,
2008) have also been considered.

Rate based metrics
Rate based metrics measure the rate at which a given event
occurs over each unit of time. Retention rate, or simply re-
tention, is a very popular metric in the game industry (El-
Nasr, Drachen, and Canossa, 2013; Seufert, 2014), that is
implemented in most major game analytics platforms. Given
a cohort of users starting on day 0, the (discrete) retention
rate on day k denotes the fraction of players returning to play
on the k:th day. In Figure 1, the retention rate corresponds to
summing the player sessions over the y-axis. For example,
retention rate for day 7 is 20%, since two players play on
the seventh day. The retention rate combines both longevity
and frequency of play in one metric. Analogously to reten-
tion, we can analyze purchase rate denoting the fraction of
players making a purchase over some time period.

The advantage of rate based metrics is that computing
them does not require any information beyond the last ob-
served date in the data, such as which players have already
churned, or how far in the future current active players will
churn. Despite its popularity in the industry, retention rate
has not been much studied in academic game analytics lit-
erature, with some exceptions (Viljanen et al., 2016). Re-
current event survival analysis has however been used for
example in medicine and reliability engineering to analyze
rate based statistics such as frequencies of asthma attacks or
machine faults (Cook and Lawless, 2007).

Recurrent event analysis of rate metrics
Session and Purchase Rates
Let N(t) denote the number of events, i.e. sessions or pur-
chases, in the interval (0, t] for a player. Here, 0 denotes the
time when a player first starts playing the game, and t can
be measured for example in seconds, hours or days. Further,
let ∆N(t) denote the number of events in a very small in-
terval [t, t + ∆t). The rate function, that gives the instanta-
neous probability of an event at time t is defined as the limit
ρ(t) = lim∆t→0

P [∆N(t)=1]
∆t .

By integrating the rate function on interval (0, t], one ob-
tains the expected cumulative number of events up to time t
(Cook and Lawless, 2007), called the mean function of re-
current events µ(t) = E[N(t)] =

∫ t

0
ρ(u)du. Given a real

player cohort, we can estimate µ(t) non-parametrically as
follows. Let {t1, ..., tm} denote the distinct times at which
one or more events (i.e. session or purchase) happened. The
follow-up times of players differ, as some may have been
followed for weeks, while others may have only recently in-
stalled the game. The number of players who have been ob-
served at least until time ti is denoted as ri. Finally, the num-
ber of events at time ti (i.e. distinct players starting a session
or making a purchase), is denoted as di. The Nelson-Aalen
(NA) estimator µNA(t) =

∑
ti≤t

di

ri
provides an unbiased

estimate of the mean function (Cook and Lawless, 2007).
In Figure 2, we plot empirical estimates of session rate

ρ(t) and mean cumulative number of sessions µ(t) for in-
development mobile game, where an A/B-test comparing
three variants of the game was performed. The session rate
is high in the beginning when players have just started, but



Figure 2: Session and purchase data from a mobile game,
with three different randomly assigned progression speed
cohorts. Player time-lines of events (top), session rates (mid-
dle), and mean number of sessions (bottom).

soon drops steeply as they lose interest and churn out. Cor-
respondingly, µ(t) rises at first steeply, flattening out when
most players have churned. The long tail corresponds to
few dedicated players, who play up until a year. Compar-
ing the cumulative session plots would suggest that out of
the three game versions ‘b faster’has the highest player re-
tention. Next, we introduce a statistical model that allows us
to test this intuition.

The Cox Model as an A/B-test
The Cox proportional hazards model is a simple and ro-
bust regression model for rate functions (Cook and Law-
less, 2007). It allows us to estimate from data the effect
explanatory variables such as game version, or country of
residence, have on the rate function. The model does not
assume that the rate function would take any specific para-

metric form. Instead, it assumes that whatever form the rate
function has, explanatory variables affect the rate by propor-
tional changes.

This assumption can be illustrated as follows. Let ρA(t)
denote the (session or purchase) rate function for game ver-
sion A. Then we assume that for the other version B, the rate
function takes form ρB(t) = ψBρA(t), that is, the rate for
version B is proportional to that of A. The coefficient ψB

describes the relationship between the two rates. If ψB = 1,
there is no difference. If ψB > 1, B has a higher rate, and if
ψB < 1, A has the higher rate.

More generally, let C = C1×C2× ...×Ck denote differ-
ent categorical variables describing a group of players. For
example, we could have C1={A, B, C}, C2={android, ios},
and C3={US, GB, AU...}. Further, let b ∈ C denote a base-
line group, whose (unknown) rate is defined as ρ0(t). The
Cox model makes the following assumption about the rela-
tionship that holds between the baseline rate ρ0(t), and the
rate ρ(t|x) of any other group x ∈ C:

ρ(t|x) = ρ0(t)

k∏
i=1

ψxi
, (1)

where ψbi = 1 for all values of i.
For example, assume b = (A, android, US). Then,

ρ(t|(B, android,GB)) = ψBψGBρ0(t) Here, the rate of the
baseline group is scaled by ψB since the players have game
version B instead of A, and by ψGB since they are from
Great Britain instead of US. The android platform does not
affect the rate, since ψandroid = 1 because the baseline
group consists of android users.

In order to fit the Cox model to a data set of players, the
information required about each player consists of the times
at which they played a session (or made or purchase), the
length of time the player was observed for, and the values of
the categorical variables for the player. After fitting the Cox
model, we recover the ψ coefficients, as well as confidence
intervals around them.

When estimating confidence intervals for rates it is com-
mon to assume that the events follow a Poisson process,
meaning that they happen independent of process history.
This is clearly an unrealistic assumption for player data.
A player who has not returned for 90 days has a much
smaller probability of playing today than a player who has
played yesterday. Since inactivity predicts future inactivity,
the probability of playing is not in fact independent of player
history. We stress the importance of this difference; incorrect
use of the independence assumption will lead to narrow con-
fidence intervals with high optimistic bias. Instead, we use
the general (robust) confidence intervals that do not rely on
this assumption (Cook and Lawless, 2007).

The proportional hazards model is the most efficient test
when the underlying assumption applies, but it is also robust
to departures as long as the rates are uniformly greater or
smaller. If one game version is better initially and worse on
a later date, so that the rates cross each other, the difference
is not reported in the coefficient estimates which in a sense
measure the average difference (Cook and Lawless, 2007).
From a gaming perspective, this interpretation is acceptable.



Model applications
Hipster Sheep Data Set
Our data set consists of users acquired to the Hipster Sheep,
a puzzle-based free-to-play mobile game, where the player
guides a sheep through a maze, while gathering collectibles
and avoiding dangers. Current version of the game can be
downloaded in the App Store and the Google Play store.

Several different player cohorts were acquired over the
development time of the game through paid marketing. This
was done both for testing development progress (i.e. how
high retention the current version has), as well as to perform
A/B test comparisons in order to decide among alternative
designs. There was also some organic user acquisition, such
as users inviting friends or discovering the game in Google
Play. This unplanned acquisition allows us to later compare
acquisition countries and versions more broadly. We filtered
the data to players in United States (US), Great Britain (GB),
Australia (AU) and Netherlands (NL) where acquisition was
performed. This was done to exclude developer devices, and
ensure that the users are comparable by acquisition method.
User acquisition is visualized in Figure 3, where early-2016
versions were pooled together to obtain a significant user
cohort.

We apply the Cox Model to three different ABC-test sce-
narios in the following three sections. This allows us to eval-
uate real-world game development suitability of the model:

1. Cohort comparison: Players were randomly assigned to
three game versions with different progression speeds to
evaluate the optimal choice in terms of retention.

2. Development progress: User acquisition was performed
over game versions to test retention and monetization. We
evaluate the degree of improvement.

3. Optimal user cohort: Since user acquisitions consisted of
different countries, platforms and game versions, we eval-
uate who are the best users to market the game to.

We finally discuss the importance of stratification for correct
interpretation. The Cox model analyses are performed using
the R survival package.

Figure 3: User acquisition was performed during Hipster
Sheep development to test and improve game quality. Mul-
tiple versions were tested over 1.5 years.

Comparison by A/B/C-group
To evaluate optimal progression speed, in Hipster Sheep de-
velopment version 1.18 the users were randomly assigned
into different game versions when they installed the game.
Progression speed was altered by adding or removing lev-
els and disabling or unlocking earlier certain game fea-
tures. This setting is an example of an ABC-test with 3
separate player cohorts: a normal (596 players, 10035 ses-
sions), b faster (605 players, 11872 sessions) and c fastest
(610 players, 10050 sessions). Since monetization mechan-
ics were not yet fully implemented in version 1.18 we skip
purchase analysis.

In Figure 2, we see that the Nelson-Aalen estimate of
the expected cumulative number of sessions µ(t) suggests
that b faster has the highest retention, whereas a normal and
c fastest are roughly equal. To test this assumption, we con-
sider A as baseline group, and find the coefficients ψB and
ψC , with 95% confidence intervals, by fitting the Cox model.
The estimated coefficients in Figure 4 support the visual ob-
servation; b faster is 18% better than a normal in terms of
session rate ψB , whereas c fastest is marginally (1%) worse.
However, the confidence intervals around both b faster and
c fastest both contain value 1.0, meaning that the we cannot
reject the null hypothesis that the rates do not differ from
a faster. To conclude, there is not enough evidence to con-
clude at p = 0.05 confidence level that b faster really corre-
sponds to a substantial improvement over the other versions.

Figure 4: Session rate ratio of b faster and c fastest cohorts
relative to the baseline a normal with robust 95% confidence
intervals.

Comparison by Version

Android 1.11 1.15 1.18 1.2x
Players. 983 1463 1811 570
Sessions 12353 25340 31847 11283

Purchases 1 3 14 4
iOS 1.31 1.32 1.33 1.35

Players. 2518 1760 1894 3751
Sessions 19984 12871 14603 29600

Purchases 62 56 79 174

Table 1: Cohort Statistics for Android and iOS Versions

Development progress may be evaluated through im-
provements in retention and monetization over consecutive



Figure 5: Cumulative number of sessions and purchases for
four Android versions and four iOS versions.

game versions (Seufert, 2014). Table 1 lists four user acqui-
sitions both for iOS (AU/NL) and Android (US/GB). Cox
model is fitted separately to the iOS and Android cohorts.

The cumulative rate plots (Figure 5) suggest that for
Android the changes 1.11 → 1.15 and 1.18 → 1.2x uni-
formly increased retention rates, whereas 1.15→ 1.18 was a
paradigm shift with decreased early retention (0d 30d lower
slope) balanced by higher retention (30d 180d steeper slope)
over several subsequent months. For the iOS versions reten-
tion remained stable, whereas monetization appears to im-
prove after each release. The plots are in line with the Cox
rate ratio estimates (Figure 6). Relative to the 1.18 retention
rate, the first version 1.11 is 29% lower, 1.15 is only 2%
lower, and 1.2x finally improved 13%. Version 1.18 is sta-
tistically significantly better than 1.11, whereas other differ-
ences are not significant. Compared to iOS 1.31 version, for
later versions monetization was improved by 29%, 69% and
88%, but the improvements are not statistically significant.

Comparison by Multiple Features
The targeted platform was not the only feature that varied
in versions, but the acquisition source also varied. The early
acquisitions for android were located in United States (US)
and Great Britain (GB), whereas the new iOS acquisitions
were located in Australia (AU) and Netherlands (NL). There
was small-scale acquisition and organic discovery in the new
1.31, 1.32, 1.33 and 1.35 versions for android, located pri-
marily in US and GB. These statistics are listed in Table 2,
and they allow us to perform AB-tests with multiple features
simultaneously across the categories.

It is possible to obtain an estimate for each segment sim-
ply by forming 32 mutually exclusive cohorts from 2 plat-

Figure 6: Session and purchase rate ratios with robust confi-
dence intervals in Android development versions w.r.t 1.18
and current iOS versions w.r.t. 1.31. Retention improves dur-
ing development and monetization was adjusted later.

Platform Country 1.31 1.32 1.33 1.35

android

US 23 152 8 17
GB 40 232 5 13
AU 3 15 1 5
NL 0 0 0 1

iOS

US 20 19 17 36
GB 6 3 6 6
AU 1034 764 797 1843
NL 1484 996 1097 1908

Table 2: Cohorts: 2 Players, 4 Countries, 4 Versions

forms, 4 countries and 4 versions. However, this approach
would quickly result in not having enough data for the co-
horts, and would not be informative on the effect of a partic-
ular feature. Rather, Cox regression allows us to perform the
segment based analysis and estimation of feature effects.

The country may be expected to influence retention
slightly but, given cultural factors and income levels, es-
pecially monetization should be affected. Since most an-
droid devices cost less than iOS devices, platform may also
contribute to monetization differences. We already observed
that the version changes both retention and monetization.
Since the composition of user countries also changes across
versions (see Table 2), this difference could potentially be
caused by the change in the ratio of countries in the sample.

The Cox model estimates in Figure 7 answer these ques-
tions. The iOS retention rate differs significantly, being only
half (0.47) of Android retention rate. The purchase rate is
estimated four-fold (4.01) in comparable cohorts, though
the confidence interval for this estimate has slight overlap
with value 1.0, meaning that null hypothesis cannot be re-



Figure 7: The coefficient forest plot displays how each cate-
gorical feature changes the session and purchase rate relative
to android, 1.31 or US baseline.

jected. Estimates for versions relative retention rates (0.92,
0.97, 1.00, vs. 0.93, 0.94, 0.98) and purchase rates (1.29,
1.69, 1.88 vs. 1.16, 1.70, 1.61) change slightly from previous
ones, due to correction for changes in country and platform,
since these are included as features.

Stratification

Figure 8: Comparing 1.2x and 1.3x directly implies that re-
tention declined precipitously; stratifying on platform shows
that this is caused by the fact that 1.3x included many iOS
players who have worse retention in general.

Suppose we are analyzing how the upgrade from 1.2x to
1.3x affected retention. Figure 8 shows that direct compari-
son of these cohorts implies 1.2x retention (red) dropped to
under a half in 1.3x (purple). However, one needs to take into
into account that 1.2x consisted of Android users, whereas
1.3x included mostly iOS users. Looking at the 1.3x upgrade

just for Android (blue), the retention stayed the same! Be-
cause the iOS users in 1.3x (green) play less, having them
reduced retention.

Figure 9: The importance of stratification is demonstrated
by the misleading coefficient estimate of the non-stratified
model compared to stratified and full model with platform
covariate included.

Stratification allows reliable analysis in such cases. Strati-
fication by platform can be implemented by analyzing player
data from each platform separately. However, a better alter-
native to naive stratification is to model the relationship be-
tween the platforms explicitly by adding them to the Cox
model as a feature. This achieves the same goal as stratifica-
tion, and we also get an explicit estimate of the convoluting
effect. In Figure 9 we have fit three Cox models to the data
displayed in Figure 8 The direct comparison we discussed
previously produces a highly significant 58% smaller reten-
tion (0.42), whereas the stratified and the feature added ver-
sion have a barely noticeable 4% change, as was expected.
The full model also estimates the effect of the iOS platform,
which we can see at 59% reduction (0.41) was the actual
cause of reduced retention in the direct comparison.

Conclusion
We introduced the use of recurrent event Cox model as a sci-
entific multivariate test for comparing session and purchase
rates between player cohorts. The method allows a game an-
alyst to quantify effect size and assess statistical significance
with respect to retention and monetization. We presented a
number of practical use cases based on data from free-to-
play game. These included choosing the best way to imple-
ment a feature into a game, following over time how much
better (or worse) each release is, and evaluating and strat-
ifying on effects variables such player platform or country
have on retention and monetization. The method constitutes
the first tool proposed in the literature, that allows statistical
comparison of retention and purchase rates of games, while
allowing churn uncertainty and differing follow-up times of
players. We believe that the proposed approach provides
both a valuable theoretical model for academic game ana-
lytics, as well as a very practical tool for game developers
wanting to implement comparison tests.
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