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Abstract Binary classification tasks are among the most
important ones in the field of machine learning. One promi-
nent approach to address such tasks are support vector ma-
chines which aim at finding a hyperplane separating two
classes well such that the induced distance between the hy-
perplane and the patterns is maximized. In general, sufficient
labeled data is needed for such classification settings to ob-
tain reasonable models. However, labeled data is often rare
in real-world learning scenarios while unlabeled data can be
obtained easily. For this reason, the concept of support vec-
tor machines has also been extended to semi- and unsuper-
vised settings: In the unsupervised case, one aims at finding
a partition of the data into two classes such that a subse-
quent application of a support vector machine leads to the
best overall result. Similarly, given both a labeled and an un-
labeled part, semi-supervised support vector machines favor
decision hyperplanes that lie in a low density area induced
by the unlabeled training patterns, while still considering the
labeled part of the data.

The associated optimization problems for both the semi-
and unsupervised case, however, are of combinatorial nature
and, hence, difficult to solve. In this work, we present effi-
cient implementations of simple local search strategies for
(variants of) the both cases that are based on matrix update
schemes for the intermediate candidate solutions. We evalu-
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ate the performances of the resulting approaches on a vari-
ety of artificial and real-world data sets. The results indicate
that our approaches can successfully incorporate unlabeled
data.1

1 Introduction

One important learning task in the field of machine learning
is binary classification, where patterns from two classes are
given. For instance, the task to automatically classify emails
as spam or not spam belongs to this type of learning
problem. In order to achieve a satisfying classification per-
formance, sufficient labeled data is essential in most cases.
Such labeled data is often scarce in real-world applications.
However, unlabeled data is mostly available in great quan-
tities. In contrast to supervised learning schemes, semi- and
unsupervised techniques try to take advantage from these
large amounts of (additional) unlabeled data to improve the
quality of the final models.

The concepts of semi- and unsupervised support vector
machines (Bennett and Demiriz 1999; Joachims 1999; Xu
et al. 2005) are among the most prominent techniques in
this field to address binary classification tasks and depict the
direct extensions of the well-known concept of support vec-
tor machines (SVMs) (Vapnik 1998) to the semi- and unsu-
pervised case: Given a set of labeled training patterns, the
goal of a standard support vector machine consists in find-
ing a hyperplane separating both classes well such that the
distance between the hyperplane and the patterns is large,
see Figure 1 (a). The latter concept can also be considered
in unsupervised learning scenarios. Here, the goal consists
in finding the optimal partition of the data into two classes

1 The unsupervised case was originally proposed by Gieseke et al.
(2009). The derivations presented in this work are new and compre-
hend the old ones (for the unsupervised setting) as a special case.
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(a) SVM (b) MMC (c) S3VM

Fig. 1 In a fully supervised setting, we are only given labeled training patterns (red squares and blue triangles). Hence, if only a small amount of
data is given, the application of a standard support vector machine cannot yield a reasonable model, see Figure (a). In the unsupervised case, the
task is to find the optimal partition of the data into two classes such that a subsequent application of a support vector machine leads to the best
result, see Figure (b). Finally, in the semi-supervised setting, we are given both labeled and unlabeled data. Here, the goal of the learning process
consists in finding the correct assignment of the unlabeled patterns such that the induced decision hyperplane passes through the low-density area
defined by all patterns.

(fulfilling some constraints) such that a subsequent applica-
tion of a support vector machine leads to the best possible
result, see Figure 1 (b). Semi-supervised support vector ma-
chines can be seen as an intermediate approach between the
latter two ones. Given both parts of the data, the aim of the
corresponding learning task consists in finding a hyperplane
which separates both classes (induced by the labeled part of
the data) and, at the same time, passes through a low-density
area induced by all patterns, see Figure 1 (c). Again, one is
interested in the optimal assignment of the unlabeled pat-
terns (to the two classes).2.

In this work, we present efficient optimization approach-
es for variants of the original problem definitions. The key
idea consists in accelerating simple optimization strategies
by means of computational shortcuts for the intermediate
solutions making an extensive (recurrent) search possible.
In the remainder of this section, we give a formal definition
of the learning tasks addressed in this work along with a
brief introduction of related evolutionary optimization tech-
niques and the corresponding literature. Afterwards, we for-
malize the mathematical background of the mentioned vari-
ants which we approach in Section 3 by means of our op-
timization strategies. In Section 4, we evaluate the benefits
of the proposed schemes on several artificial and real-world
data sets, followed by conclusions drawn in Section 5.

2 Problem setting

We start by giving a short overview of related evolutionary
optimization techniques and by introducing some notations.

2 Note that semi-supervised support vector machines do no neces-
sarily lead to better classification models. In general, a low-density
area indicating the classification boundaries is required. In the liter-
ature, this requirement is called the cluster assumption (Chapelle et al.
2006b; Zhu and Goldberg 2009).

2.1 Evolutionary Optimization

We consider an evolutionary algorithm (EA) (Fogel 1966;
Holland 1975; Rechenberg 1973; Beyer and Schwefel 2002;
Schwefel 1977) as optimization approach which belongs to
the class of stochastic optimizers for derivative-free opti-
mization problems. A history of more than forty years of
active research on evolutionary computation has proven that
stochastic optimization algorithms are powerful search tech-
niques. Inspired by evolutionary processes in nature, evolu-
tionary algorithms optimize by evolving sets of search points
until satisfying results are obtained.

The basis of evolutionary search is a population P :=

{y1, . . . ,yµ} of candidate solutions, also called individu-
als. The optimization process takes place in three steps: (1)
the recombination operator selects ν ∈ N parental individ-
uals and combines their parts to new candidate solutions,
(2) the mutation operator adds random noise to these pos-
sible solutions, and (3) when ν solutions have been pro-
duced, the µ ∈ N best-performing individuals are selected
to form the new population P of the subsequent iteration,
also called generation. The quality of the intermediate indi-
viduals is measured in terms of a so-called fitness function
F : Y → R. Given the new population, the process starts
again until a termination condition is reached. Typical termi-
nation conditions are the accomplishment of a certain solu-
tion quality or an upper bound on the number of generations.
This general type of an evolutionary algorithm is denoted by
(µ+ν)-EA.

We will also focus on the special case where µ = 1 and
ν = 1, i.e., on so-called (1+1)-EAs. The latter type of evolu-
tionary algorithms does not use a population of individuals,
but produces only one mutated individual in each genera-
tion and selects the better one (of the two intermediate solu-
tions) for the next generation. Usually, the (1+1)-EA starts
with a randomly chosen bit string y of length n and applies
a bit flip mutation with probability 1/n, see Algorithm 1.
Its simplicity allows advanced theoretical investigations. In
particular, it belongs to the first evolutionary algorithm for
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Algorithm 1 (1+1)-EA
1: Initialize y ∈ {−1, 1}n uniformly and randomly
2: Generate mutated individual y′ by flipping each coordinate of y

with probability 1/n
3: Replace y with y′ if F (y′) ≤ F (y)
4: Repeat steps 2 and 3 until termination criterion is fulfilled

which the optimization time has been analyzed theoretically
on various function classes (Droste et al. 2002).

2.2 Notations

We use [m] to denote the set {1, . . . ,m}. Further, the set
of all m × n matrices with real coefficients is denoted by
Rm×n. Given a matrix M ∈ Rm×n, we denote the ele-
ment in the i-th row and j-th column by [M]i,j . For two
sets R = {i1, . . . , ir} ⊆ [m] and S = {k1, . . . , ks} ⊆ [n]

of indices, we use MR,S to denote the matrix that contains
only the rows and columns of M that are indexed by R and
S, respectively. Moreover, we set MR,[n] = MR.

Note that the appendix gives a brief overview on matrix
calculus that is related to the content presented in this work.

2.3 Classification Framework

We will now sketch the mathematical framework of regu-
larized risk minimization and its extension to semi- and un-
supervised scenarios. More specifically, we will extend the
concept of regularized least-squares classification (Rifkin
et al. 2003) to these scenarios, which will pave the way
for efficient implementations of the proposed local search
schemes.

2.3.1 Classification Scenarios

In binary classification scenarios, we are given a set T ′ =

{(x′1, y′1), . . . , (x′l, y
′
l)} consisting of training patterns x′i be-

longing to a set X and associated class labels y′i ∈ Y =

{−1,+1}. The goal of the corresponding learning task con-
sists in finding a good model (i.e., a prediction function f :

X → Y ) which generalizes well on unseen data, i.e., which
is able to predict appropriate labels for new patterns not be-
ing in the training set. In unsupervised classification sce-
narios (i.e., clustering scenarios), we are only given a set
T = {x1, . . . ,xu} ⊂ X of unlabeled training patterns.
One is then interested in detecting clusters, i.e., in partition-
ing the data into groups each containing similar patterns.
Finally, semi-supervised learning scenarios lie in between
these two settings. Similar to the supervised case, the goal
consists in finding a model which can predict meaningful la-
bels for unseen patterns. However, in the training phase, one
is given both a labeled set T ′ and an unlabeled set T and the

aim consists in deriving a good model based on both parts
of the data.

2.3.2 Regularized Risk Minimization

Let L : Y × R → [0,∞) denote a loss function measuring
the performance of some prediction function f . The goal of
supervised learning is to achieve minimal expected risk, also
known as generalization error∫

X×Y
L
(
y, f(x)

)
P (x, y)dxdy,

where P (x, y) is the unkown (but fixed) probability distribu-
tion generating the data. Since the distribution is unknown,
we are rather limited using an empirical estimate of the risk
computed on a training set sampled from the distribution. In
this case regularization techniques are commonly applied in
order to avoid overfitting to the training set.

Support vector machines can be seen as a special case of
regularization problems of the form

inf
f∈H

1

l

l∑
i=1

L
(
y′i, f(x′i)

)
+ λ||f ||2H, (1)

where λ > 0 is a regularization parameter, and ||f ||2H the
squared norm in a reproducing kernel Hilbert space (RKHS)
H ⊆ RX = {f : X → R} induced by a kernel func-
tion k : X × X → R (Evgeniou et al. 2000; Steinwart
and Christmann 2008).3 With a kernel, we refer to a sym-
metric function that satisfies the Mercer’s condition (see e.g.
Steinwart and Christmann (2008)) on X , indicating that, for
any set of points {x1, . . . ,xl} ⊂ X , the matrix K ∈ Rl×l,
whose entries are defined as [K]i,j = k(xi,xj), is positive
semidefinite. Further, for a Mercer kernel k, there exists a
feature space F and a feature mapping Φ : X → F such
that k(x,x′) is the inner product of Φ(x) and Φ(x′) in F .

For binary classification problems, the most natural loss
function is the so-called zero-one loss L(y, t) = 1{sgn(t)6=y}
with y ∈ {−1,+1}. This loss function has value 0 when-
ever the prediction is correct (yt ≥ 0), and value 1 when an
incorrect prediction is made (yt < 0), see Figure 2 (a). How-
ever, it is well-known that its use in the context of the above
task leads to intractable optimization problems. Hence clas-
sification methods usually resort to convex and continuous
approximations of this loss function instead.

3 For the sake of simplicity, the offset set b ∈ R is omitted in the lat-
ter formulation. From both a theoretical as well as a practical point of
view, the additional term does not yield any known advantages for ker-
nel functions like the RBF kernel (Rifkin 2002; Steinwart and Christ-
mann 2008). However, for the linear kernel, the offset term can make
a difference since it addresses translated data. In case such an offset
effect is needed for a particular learning task, one can add a dimension
of ones to the input data to obtain a (regularized) offset term (Rifkin
2002).
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Fig. 2 A natural loss function is the zero-one loss defined as L(y, t) = 1{sgn(t)6=y}, see Figure (a) for the case of y = 1. However, using
this loss function leads to intractable optimization problems. A well-known surrogate loss function for binary classification tasks is the hinge
loss L(y, t) = max(0, 1 − yt) that leads to standard support vector machines, see Figure (b). The square loss L(y, t) = (y − t)2, depicted in
Figure (c), is another well-known loss function and leads to the concept of least-squares support vector machines.

A well-known surrogate function for binary classifica-
tion tasks with Y = {−1,+1} is the hinge loss L(y, t) =

max(0, 1−yt), which leads to the optimization criterion in-
duced by standard support vector machines (Schölkopf et al.
2001; Steinwart and Christmann 2008), see Figure 2 (b). In
this work, we will focus on another well-known loss func-
tion in this context, the square lossL(y, t) = (y − t)2 shown
in Figure 2 (c). By inserting this loss function into the above
minimization problem (1), one obtains

inf
f∈H

1

l

l∑
i=1

(
y′i − f(x′i)

)2
+ λ||f ||2H, (2)

which leads to the so-called least-squares support vector
machines (Suykens and Vandewalle 1999), also known as
regularized least-squares classification (Rifkin et al. 2003).
Due to the representer theorem (Schölkopf et al. 2001), any
minimizer f∗ ∈ H of the task (2) has the form

f∗(·) =

l∑
i=1

cik(x′i, ·) (3)

with appropriate coefficients c = (c1, . . . , cl)
T ∈ Rl. Hence,

by using ||f∗||2H = cTKc (Schölkopf et al. 2001), where
K ∈ Rl×l is the symmetric kernel matrix with entries of the
form [K]i,j = k(x′i,x

′
j), one can rewrite the problem (2) as

minimize
c∈Rl

1

l
(y′ −Kc)

T
(y′ −Kc) + λcTKc, (4)

where y′ = (y′1, . . . , y
′
l)

T. The optimization problem is con-
vex and, thus, easy to solve given standard techniques for
convex optimization (Rifkin et al. 2003; Boyd and Vanden-
berghe 2004).

2.3.3 Unsupervised Learning Settings

As mentioned above, support vector machines can be ex-
tended to unsupervised learning settings as well. One of these
extensions, known as maximum margin clustering (Xu et al.
2005), leads to a combinatorial problem. Briefly put, the
idea is to search for an optimal partition of the unlabeled

training patterns into two classes such that a subsequent ap-
plication of a support vector machine (or one of its vari-
ants) yields the best overall result. From a regularization per-
spective, one searches for a function f∗ ∈ H and a vector
y∗ ∈ {−1,+1}u for the unlabeled patterns which are opti-
mal with respect to

minimize
f∈H,y∈{−1,+1}u

1

u

u∑
i=1

L
(
yi, f(xi)

)
+ λ||f ||2H (5)

s.t.

∣∣∣∣∣ 1u
u∑
i=1

max(0, yi)− bc

∣∣∣∣∣ < ε,

where λ > 0, bc ∈ [0, 1], and ε > 0 are user-defined pa-
rameters. By applying the representer theorem (Schölkopf
et al. 2001) to the task (5) for a fixed partition vector y ∈
{−1,+1}u, the corresponding optimal function f∗ ∈ H can
be shown to have the form

f∗(·) =

u∑
i=1

cik(xi, ·) (6)

with appropriate coefficients c = (c1, . . . , cu)
T ∈ Ru. Plug-

ging in different loss functions leads to various (related) op-
timization tasks; using the hinge loss L(y, t) = max(0, 1−
yt) yields the original optimization task (Xu et al. 2005). By
using the square loss L(y, t) = (y − t)2, one can reformu-
late the above optimization problem as

minimize
c∈Ru,y∈{−1,+1}u

J1(c,y) = (Dy −DKc)
T
(Dy −DKc)

+ λcTKc (7)

s.t.

∣∣∣∣∣ 1u
u∑
i=1

max(0, yi)− bc

∣∣∣∣∣ < ε,

where K is the kernel matrix (based on x1, . . . ,xu) and
where D a diagonal matrix with entries of the form [D]i,i =√

1
u for i = 1, . . . , u.
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2.3.4 Semi-Supervised Learning Settings

The goal of the semi-supervised learning process is to find
an optimal prediction function for unseen data based on both
the labeled and the unlabeled part of the data. More pre-
cisely, we search for a function f∗ ∈ H and a labeling vector
y∗ = (y∗1 , . . . , y

∗
u)

T ∈ {−1,+1}u for the unlabeled training
patterns which are optimal with respect to

minimize
f∈H,y∈{−1,+1}u

1

l

l∑
i=1

L
(
y′i, f(x′i)

)
(8)

+ λ′
1

u

u∑
i=1

L
(
yi, f(xi)

)
+ λ||f ||2H

s.t.

∣∣∣∣∣ 1u
u∑
i=1

max(0, yi)− bc

∣∣∣∣∣ < ε,

where λ′, λ > 0 are cost parameters. Exactly as for the un-
supervised case, the partition vector y has to fulfill a balance
constraint (in the semi-supervised case, the parameter bc can
be estimated based on the labeled part of the data). Hence,
compared to the unsupervised case, the labeled part of the
data is also taken into account. Again, by applying the repre-
senter theorem (Schölkopf et al. 2001) for the task (8) given
a fixed partition vector y ∈ {−1,+1}u, the corresponding
optimal function f∗ ∈ H can be shown to have the form

f∗(·) =

l∑
i=1

cik(x′i, ·) +

l+u∑
i=l+1

cik(xi−l, ·) (9)

with appropriate coefficients c = (c1, . . . , cl+u)
T ∈ Rl+u.

As above, plugging in different loss functions yields differ-
ent optimization tasks; again, using the square loss leads to

minimize
c∈Rn,y∈{−1,+1}n

J2(c,y) = (Dy −DKc)
T
(Dy −DKc)

+ λcTKc (10)

s.t.

∣∣∣∣∣ 1u
n∑

i=l+1

max(0, yi)− bc

∣∣∣∣∣ < ε,

and yi = y′i for i = 1, . . . , l,

where K is the kernel matrix (induced by x′1, . . . ,x
′
l and

x1, . . . ,xu), D a diagonal matrix with entries [D]i,i =
√

1
l

for i = 1, . . . , l, and [D]i,i =
√

λ′

u for i = l+ 1, . . . , n, and
where n = l + u.

2.4 Related Work

Unlike the supervised case, the optimization problems in-
duced by the unsupervised and the semi-supervised crite-
ria are not solvable by convex optimization, but rather re-
quire a combinatorial search. A trivial approach to solving

the induced optimization tasks consists in testing every fea-
sible assignment of the vector y and to report the best result
found during the overall process. Of course, this brute-force
approach is only possible for a very small amount of unla-
beled data due to its exponential runtime. However, since
the learning tasks are very appealing from a practical point
of view, several heuristics addressing the optimization tasks
have been proposed in the literature (which can deal with
larger data sets at the cost of possibly suboptimal solutions).
In the remainder of this section, we sketch the key ideas of
some of these approaches.

2.4.1 Maximum Margin Clustering

The first attempts at coping with the combinatorial nature of
the optimization task induced by the unsupervised learning
setting consisted in relaxing the definition to form semidef-
inite programming problems (Xu et al. 2005; Valizadegan
and Jin 2007). However, these approaches resort to solv-
ing semidefinite programming problems which is computa-
tionally expensive. The approach proposed by Zhang et al.
(2007) aims at practical runtimes such that one can deal
with large data sets. One of their key insights consisted in
the replacement of the hinge loss by several other loss func-
tions including the square loss. The cutting plane algorithm
is one of the most recent techniques (Zhao et al. 2008a). It
is based on constructing a sequence of successively tighter
relaxations of the problem statement and each of the in-
termediate tasks is solved using the so-called constrained
concave-convex procedure. In addition to these methods, ex-
tensions to multiclass scenarios have been proposed in the
literature (Xu and Schuurmans 2005; Zhao et al. 2008b).

2.4.2 Semi-Supervised Support Vector Machines

One of the first heuristics was proposed by Joachims (1999);
the key idea of his approach was to first classify all unlabeled
patterns via a standard support vector machine (trained on
the labeled part of the data) and to subsequently improve
the objective value by a simple label switching strategy. In
recent years, a variety of techniques has been proposed to
tackle the problem. Among these techniques are concave-
convex procedures (Fung and Mangasarian 2001; Collobert
et al. 2006), gradient descent approaches (Chapelle and Zien
2005), semidefinite programming (Bie and Cristianini 2004;
Xu and Schuurmans 2005), deterministic annealing (Sind-
hwani et al. 2006), and various other methods (Bennett and
Demiriz 1999; Chapelle et al. 2006a). In addition, the prob-
lem has recently gained attention in the field of evolution-
ary computation (Silva et al. 2009; Mierswa 2009). Due
to lack of space we refer the reader to corresponding sur-
veys (Chapelle et al. 2008) and books (Chapelle et al. 2006b;
Zhu and Goldberg 2009) for an overview.
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We would like to point out that most of the related semi-
supervised schemes improve a single initial guess obtained
via training a supervised model on the labeled part of the
data (Chapelle and Zien 2005; Chapelle et al. 2006a; Col-
lobert et al. 2006; Joachims 1999). This renders such ap-
proaches deterministic and, hence, no restarts are required.
On the one hand, this sounds tempting since the computa-
tional cost is normally reduced dramatically by this modi-
fication. On the other hand, considering only a single can-
didate solution might not be sufficient for obtaining satis-
fying results, especially if the initial guess is bad due to a
very small set of labeled patterns. In this work, we present
a stochastic optimization framework that can test a huge
amount of possible candidate solutions. Naturally, the ap-
proach can also be adapted to yield a comparable single-
restart scheme. Still, in the latter case, the execution of this
single run is accelerated significantly by means of the pre-
sented computational shortcuts (depicted below).

3 Efficient Optimization Approach

Computing solutions for the optimization tasks (7) and (10)
is difficult since the optimal partition vectors are not known
beforehand. In this section, we describe our local search
strategy to address both tasks. Since the unsupervised case
can be seen as a special case of the semi-supervised one, we
will focus on the description of the semi-supervised case and
will only sketch the derivations for the unsupervised setting.

3.1 Dealing with the Semi-Supervised Case

We resort to the following simple evolutionary optimiza-
tion strategy depicted in Algorithm 2: Starting with an ini-
tial population P0 = {y1, . . . ,yµ} ⊆ {−1,+1}n consist-
ing of randomly generated candidate solutions, we iterate
over a sequence of τ generations.4 In each generation, we
generate ν new (mutated) individuals, compute their fitness
values, and take the best performing candidates out of the
set {y1, . . . ,yµ+ν} of intermediate solutions; mutations of a
(parental) individuals consist in flipping single coordinates.
The resulting population obtained in each generation is then
used as initial population for the next generation. To com-
pute the fitness values for each candidate solution, we use
the following fitness function:

F (y) = min
c∈Rn

J2(c,y), (11)

where J2 is the objective function given in (10). Once the
overall process is finished, the best individual along with its

4 The random generation of an initial candidate solution takes the
class ratio given by the balance constraint into account, i.e., for an
initial candidate solution y we have yi = 1 with probability bc and
yi = −1 with probability 1− bc for i = l+ 1, . . . , n.

Algorithm 2 (µ+ ν)-EA
Require: A set of training patterns T ′ = {(x′1, y′1), . . . , (x′l, y

′
l)}

with associated class labels, a set of training patterns T =
{x1, . . . ,xu} without class labels, model parameters λ′, λ, r, ε
and optimization parameters µ, ν, τ .

Ensure: An approximation (c∗,y) for the problem (10).
1: Initialize P0 = {y1, . . . ,yµ} ⊆ {−1,+1}n
2: Compute the fitness F (yj) for each yj ∈ P0

3: t = 0
4: while t < τ do
5: for i = 1 to ν do
6: Randomly select parent y ∈ Pt
7: Generate valid mutated individual yµ+i
8: Compute fitness F (yµ+i)
9: end for

10: Compute sorted sequence yi1 , . . . ,yiµ+ν

11: Pt+1 = {yi1 , . . . ,yiµ}
12: t = t+ 1
13: end while
14: Compute c∗ for minimizec∈Rn J2(c,yi1)
15: return (c∗,yi1)

corresponding vector c∗ is returned. Throughout the execu-
tion of the algorithm, it is ensured that only valid candidate
solutions are generated, i.e., partition vectors fulfilling the
corresponding constraints.

3.1.1 Fitness Computations . . .

The task (11) for fixed vector y can be solved as follows:
The function H(c) = J2(c,y) is differentiable with

∇H(c) = −2(DK)
T
(Dy −DKc) + 2λKc.

Further, H is convex since K and thus the Hessian

∇2H(c) = 2(DK)
T
DK + 2λK

is positive semidefinite. Hence, ∇H(c) = 0 is a necessary
and sufficient condition for optimality (Boyd and Vanden-
berghe 2004). An optimal solution c∗ for the task (11) can
therefore be obtained via

c∗ = D(DKD + λI)
−1

Dy = DGDy. (12)

with G = (DKD + λI)
−1.5 Hence, once the matrix G is

computed and stored in memory, one can compute the op-
timal c∗ for each (modified) partition vector y and the re-
sulting optimal value F (y) = J2(c∗,y) in O(n2) time by
performing simple matrix calculations.

5 If K is invertible, then

−2(DK)T(Dy −DKc) + 2λKc = 0

⇔ (DK)T(DKD + λI)D−1c = (DK)TDy

⇔ c = DGDy

If K is not invertible, then the latter equation can be used as
well since we only need a single solution (if c = DGDy, then
(DK)TG−1D−1c = (DK)TDy holds as well).
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3.1.2 . . . and How to Speed Them Up

The recurrent computation of the intermediate fitness values
F (yµ+i) in Step 8 of Algorithm 2 is still cumbersome, espe-
cially if a lot of reruns are performed to tackle the problem
of bad local optima (see Section 4). However, it is possible
to update these intermediate solutions more efficiently when
only a small number of coordinates is flipped per mutation.

Coordinate Flips Revisited: For simplicity, we assume that
only one coordinate is flipped per mutation. In this case, the
computation of F (yµ+i) in Step 8 can be accelerated by
making use of the corresponding result for the predecessor.
Various update schemes are possible. In the following, we
present a closed-form update scheme which permits a di-
rect application of an additional approximation scheme: Let
ȳ = yµ+i and let y denote its predecessor. By plugging
Equation (12) into (10), one gets
F (ȳ) = (Dȳ −DKc∗)

T
(Dȳ −DKc∗) + λ(c∗)

T
Kc∗

= ȳTD
(
I−KG−GK + GKKG + λGKG

)
Dȳ

= ȳTDV
(
I− 2ΛΛ̃ + Λ2Λ̃2 + λΛΛ̃2

)
VTDȳ

= ȳTDV
(
I + (−2I + Λ̃Λ + λΛ̃)ΛΛ̃

)
VTDȳ

= ȳTDV
(
I + (−2I + Λ̃(Λ + λI))ΛΛ̃

)
VTDȳ

= ȳTDV
(
I + (−2I + I)ΛΛ̃

)
VTDȳ

= ȳTDV
(
I−ΛΛ̃

)
VTDȳ

= 1 + λ′ − ȳTDVΛΛ̃VTDȳ, (13)
where K = DKD, VΛVT is the eigendecomposition (see
the appendix) of K, and where Λ̃ = (Λ + λI)−1. Hence,
given the vector ȳTDV ∈ Rn, one can compute F (ȳ) in
O(n) time since ΛΛ̃ is a diagonal matrix. Further, the lat-
ter auxiliary information can be updated efficiently for the
successor ȳ via

ȳTDV = yTDV − 2yj(DV){j}

in O(n) runtime (where j denotes the flipped coordinate).
To sum up, one can update the fitness values spendingO(n)

time if a single (or a constant amount) of coordinates is
flipped per mutation. The eigendecomposition of the ma-
trix can be obtained in O(n3) and the auxiliary informa-
tion for all µ initial candidate solutions in O(µn2) runtime
(in practice and up to machine precision). Hence, since a
large amount of single flips are performed during the (re-
current) execution, the computational shortcut yields a sig-
nificant runtime reduction making an extensive search pos-
sible.6 Similar to the previous results obtained for the un-
supervised case (Gieseke et al. 2009), we have shown the
following theorem:

6 As mentioned, various other update schemes are possible. An-
other update scheme, for instance, consists in updating the terms in

Theorem 1 By spending O(n3 + µn2) time in the prepro-
cessing phase, each fitness evaluation F (yµ+i) in Step 8 of
Algorithm 2 can be performed in O(n) time. The storage
requirement is O(n2).

The above shortcut yields a significant speed-up for the over-
all execution of the stochastic search. However, when deal-
ing with a large amount of unlabeled data, two bottlenecks
arise, namely the cubic preprocessing time and the quadratic
space consumption for storing the matrices. We will now
sketch a way to shorten both drawbacks.

Kernel Matrix Approximation: A common tool for decreas-
ing these computational costs is the so-called Nyström ap-
proximation, which is based on replacing the kernel matrix
K ∈ Rn×n by the following matrix:

K̃ = (KR)T(KR,R)−1KR ∈ Rr×r (15)

Here, the set R = {i1, . . . , ir} ⊂ {1, . . . , n} of indices de-
termines the sub-columns to be selected of the original ker-
nel matrix, see, e.g., Rifkin et al. (2003). This scheme re-
duces both the preprocessing time as well as the space con-
sumption. Surprisingly, it can also be incorporated into the
above framework in an efficient manner leading to an update
time of O(r) for each fitness evaluation:

Theorem 2 By spending O(nr2 + µnr) time in the prepro-
cessing phase, each fitness evaluation F (yµ+i) in Step 8 of
Algorithm 2 can be performed inO(r) time. The storage re-
quirement is O(nr).

For the sake of exposition, we defer the proof to the ap-
pendix. Note that the parameter r determines a trade-off be-
tween computational savings and accuracy of the approxi-
mation. As pointed out by Rifkin (2002), a small amount of
randomly selected indices works well in practice.7

3.2 Dealing with the Unsupervised Case

The unsupervised and the semi-supervised essentially vary
only in the definition of the diagonal matrix D. In princi-
ple, we can make use of the same optimization approach for
the unsupervised case as for the semi-supervised one. The
main modification to be made consists in replacing the fit-
ness function by

F (y) = min
c∈Ru

J1(c,y). (16)

(10) individually, i.e., to handle the first term by updating the vector
DKc∗ = DKDGDy and therefore (Dy −DKc∗)T(Dy−DKc∗)
in linear time. Similarly, the second term can be handled in linear time
(by first updating Kc∗ = KDGDy separately). Note that one can
also consider one of the predecessors of Equation (13).

7 Naturally, in case a too small subset is selected, the performance
of the final model can be bad.
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Data Set n d Comment

Gaussian2C 500 500 artificial data set
Gaussian4C 500 500 artificial data set
Moons 200 2 artificial data set
COIL(3,6) 144 400 reduced dimension, rescaled pixel values
COIL(5,9) 144 400 reduced dimension, rescaled pixel values
COIL(6,19) 144 400 reduced dimension, rescaled pixel values
COIL(18,19) 144 400 reduced dimension, rescaled pixel values
USPS(2,5) 1,645 256 rescaled pixel values
USPS(2,7) 1,721 256 rescaled pixel values
USPS(3,8) 1,532 256 rescaled pixel values
USPS(8,0) 2,261 256 rescaled pixel values
MNIST(1,7) 1,000 784 rescaled pixel values
MNIST(2,5) 1,000 784 rescaled pixel values
MNIST(2,7) 1,000 784 rescaled pixel values
MNIST(3,8) 1,000 784 rescaled pixel values

Table 1 Data Sets

The remaining (matrix) derivations are basically the same.
For the computational shortcuts, however, the additional λ′

term vanishes, i.e., we end up with

F (ȳ) = 1− ȳTDVΛΛ̃VTDȳ. (17)

Thus, the derivations depicted above encompass the previ-
ous results (Gieseke et al. 2009) as a special case.

4 Experimental Analysis

We conduct several experiments to assess the performance
of the proposed framework. In the remainder of this section,
we describe the experimental setup and the outcome of the
experimental evaluation. Since both the semi-supervised and
the unsupervised settings are very similar to each other, we
will again focus on the semi-supervised case. The reason for
this setup is the fact that we can resort to the true labels (in
the test set) to evaluate the final performance of the compet-
ing approaches (which is not possible/more complicated in
real-world unsupervised settings).

4.1 Experimental Setup

We start by describing the experimental setup including de-
tails related to the considered data sets and to the implemen-
tation of the proposed framework.

4.1.1 Data Sets

For our evaluation, we resort to several artificial and real-
world data sets, see Table 1 for an overview.

Artificial Data Sets: The first artificial data set is composed
of two Gaussian clusters; to generate it, n/2 points are drawn
from each of two multivariate Gaussian distributions Xi ∼
N (mi, I), where m1 = (−2.5, 0.0, . . . , 0.0) ∈ Rd and
m2 = (+2.5, 0.0, . . . , 0.0) ∈ Rd. The class label of a point
corresponds to the distribution it was drawn from, see Fig-
ure 3 (a). If not noted otherwise, we use n = 500 and
d = 500 and denote the induced data set by Gaussian2C.
The second artificial data set aims at generating a (possibly)
misleading structure: Here, n/4 points are drawn from each
of four multivariate Gaussian distributions Xi ∼ N (mi, I),
where

m1 = (−2.5,−5.0, 0.0, . . . , 0.0) ∈ Rd,
m2 = (−2.5,+5.0, 0.0, . . . , 0.0) ∈ Rd,
m3 = (+2.5,−5.0, 0.0, . . . , 0.0) ∈ Rd,
m4 = (+2.5,+5.0, 0.0, . . . , 0.0) ∈ Rd,

see Figure 3 (b). The points drawn from the first two dis-
tributions belong to the first class and the remaining one
to the second class. Again, we fix n = 500 and d = 500

and denote the corresponding data set by Gaussian4C.
Note that these artificial data sets induce easy learning tasks
in, e.g., two dimensions, even given only few labeled pat-
terns, see again Figures 3 (a) and (b). However, the high-
dimensional variants depict quite challenging learning tasks
for supervised models given only few labeled patterns due
to the noise present in the data.8 Finally, we consider the
well-known two-dimensional Moons data set with n = 200

points; its distribution is shown in Figure 3 (c).

Real-World Data Sets: In addition to these artificial data
sets, we make use of several real-world data sets including
the COIL (Nene et al. 1996) data set and the USPS data set
(where the latter one consists of both the training and test
set of the original USPS data set (Hastie et al. 2009)). For
the COIL data set, we reduce the input dimensions of each
image from 128 × 128 to 20 × 20 and use COIL(i,j) to
denote the binary classification task induced by the objects i
and j out of the available 20 objects, see Figure 4 (number-
ing is from left to right and from top to bottom). A similar
notation is used for the binary classification tasks induced
by the 10 classes present in the USPS data set. For both the
COIL and the USPS data set, we rescaled all pixels such
that the resulting values lie between 0.0 and 1.0. Finally,
we consider the digits data set from the MNIST database9,
where we again focus on pairs of classes, which seem to be
difficult to differentiate. Also, we restrict the size of the data
set to n = 1000 (taking the first patterns in the original train-
ing set containing 60, 000 elements) and perform the same

8 Similar data sets are often used in related experimental evalua-
tions, see, e.g., Chapelle et al. (2006b)

9 http://yann.lecun.com/exdb/mnist/
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(a) Gaussian2C (b) Gaussian4C (c) Moons

Fig. 3 Distribution of all artificial data sets (d = 2). The red squares and blue triangles depict the labeled part of the data; the remaining black
points correspond to the unlabeled part. Note that the two Gaussian data sets depict easy learning instances for d = 2, even given only few
labeled patterns. However, the noise present in the data render the induced tasks difficult to approach in high dimensions (d = 500) in case only
few labeled patterns are given (for supervised models). Further, the Gaussian4C data set exhibits a misleading structure for semi-supervised
learning schemes since the pure clustering solution (horizontal separation) differs from the pure classification solution (vertical separation). Hence,
local search schemes can easily get stuck in the wrong local optimum corresponding to the pure clustering solution.

Fig. 4 COIL Data Set

rescaling for the pixel values as for the USPS and the COIL
data sets.

4.1.2 Implementation Details

We implemented our approach with Python 2.6.5 in-
cluding the Numpy package. The runtime analyses are per-
formed on a 2.66GHz Intel CoreTM Quad PC run-
ning Ubuntu 10.04. We call the resulting implementa-
tion semi-supervised regularized least-squares classification
(S2RLSC).

4.1.3 Competing Approaches

In addition to the supervised regularized least-squares clas-
sifier (RLSC), we use standard support vector machines to
compare the efficiency of our approach (where we resort
to the LIBSVM implementation provided by Chang and Lin
(2001)). To tune the involved parameters λ (for RLSC) and
C (for LIBSVM), we again perform grid search with λ,C ∈
{2−10, . . . , 210}. As semi-supervised competitor, we con-
sider the UniverSVM approach proposed by Collobert et al.
(2006) and perform a grid search for tuning C and C∗ with
(C,C∗) ∈ {2−10, . . . , 210} × { 0.01u , 1.0u ,

100.0
u }. The ratio

between the two classes is provided to the algorithm via the
-w option. Except for the option -S option (which we set to
−0.3), the default values for the remaining parameters are
used.

Fig. 5 USPS Data Set

4.2 Model Selection

If not noted otherwise, the first half of each data set is used
as training and the second half as test set. To induce a semi-
supervised scenario, we split up the training set into a la-
beled and an unlabeled part and use different ratios for the
particular setting; the specific amount of data is given in
brackets for each (instance of a) data set, where l, u, t de-
notes the number of labeled, unlabeled, and test patterns, re-
spectively (e.g., Gaussian2C[l=25,u=225,t=250]).
For all experiments the average classification error (along
with the one standard deviation) on the test set over 10 ran-
dom partitions into labeled, unlabeled, and test patterns, is
reported.

4.2.1 Parameters

To select the final models, several parameters need to be
tuned. In a fully supervised setting, this is usually done via
an extensive grid search over all involved parameters. How-
ever, in a semi-supervised setting, model selection (i.e., the
selection of the actual approach along with its parameters)
is more difficult due to the lack of labeled data and is widely
considered to be an open issue (Chapelle et al. 2006b). Given
only a small amount of labeled patterns, common approaches
(like grid search along with cross-validation) might yield
meaningless models. In the related literature this problem
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is often tackled by setting the involved parameters to rea-
sonable values based on expert knowledge or by using the
test set to tune the parameters (which is not possible in real-
world scenarios).10

Due to this model selection problem, we consider two
scenarios to select (non-fixed) parameters. The first one is a
non-realistic scenario where we make use of the test set to
evaluate the model performance. The second one is a real-
istic scenario where only the labels of the labeled part of
the training set are used for model evaluation (via 5-fold
cross-validation). The reason for the non-realistic scenario
is the following: By making use of the test set (with a large
amount of labels), we can first evaluate the flexibility of the
model. More precisely, we can first investigate if the model
is in principle capable of adapting to the inherent structure
of the data while ignoring the (possible) problems caused
by a small validation set. Note that even given good param-
eters one still has to solve the combinatorial problem(s). In
both scenarios, we first tune the non-fixed parameters via
grid search and subsequently retrain the final model on the
whole training set with the best performing set of parame-
ters.

Model Parameters: We pursue the following way of select-
ing (and evaluating) the models: As similarity measures we
consider both a linear

k(xi,xj) = 〈xi,xj〉 (18)

and a radial basis function (RBF) kernel

k(xi,xj) = exp

(
−||xi − xj ||2

2σ2

)
(19)

with kernel width σ (Hastie et al. 2009). To select σ for the
RBF kernel, we consider a small set {0.1s, 0.5s, 1s, 5s, 10s}
of possible assignments, where the value s is given by√√√√ d∑
k=1

(max([x1]k, . . . , [xn]k)−min([x1]k, . . . , [xn]k))
2

and is thus a rough estimate of the maximum distance be-
tween any pair of samples. To tune the cost parameters λ and
λ′, we consider a small grid (λ, λ′) ∈ {2−10, . . . , 210} ×
{0.1, 1} of parameters. Concerning the balance constraint,
we set bc to an estimate obtained from all available labels
(i.e., using all labels available in the data sets in the non-
realistic scenario and using only those labels given in the

10 For instance, Chapelle et al. (2006b) propose to make use of the
test set to select the model parameters: “This allowed for finding hy-
perparameter values by minimizing the test error, which is not possible
in real applications; however, the results of this procedure can be useful
to judge the potential of a method. To obtain results that are indicative
of real world performance, the model selection has to be performed
using only the small set of labeled points.”

training set for the realistic scenario). Further, we fix ε = 0.1

and ε = 0.2 in the non-realistic and realistic scenario, re-
spectively.

Optimization Parameters: Concerning the local search, we
again consider two setups: In the first one we fix µ = 5 and
ν = 25, and stop the process if no changes have occured for
n iterations. Also, we select the coordinate to be flipped for a
single mutation uniformly and randomly. In the second one,
we consider the special case of a (1+1)-EA, i.e., we set µ =

1 and ν = 1, stop the iterative process if no changes have
occured for n iterations, and use a round-robin scheme to
select the coordinate. Also, since our approach is susceptible
to the problem of local optima, we take the best out of 10

runs for model selection (i.e., during grid search) and put
more optimization effort into generating the final models by
taking the best out of 50 runs.

4.2.2 Model Flexibility

As sketched in Section 1, semi-supervised approaches try to
take advantage from unlabeled data to improve the gener-
alization performance. This is possible since unlabeled data
can reveal more information about the underlying structure
of the data. To depict this issue, we consider the artificial
Moons[l=5,u=95,t=100] data set. To select appropri-
ate model parameters, we make use of the test set (i.e., we
consider the non-realistic scenario and perform a grid search
over the non-fixed parameters) and consider the optimiza-
tion setup with µ = 5 and ν = 25. As similarity measure,
we resort to the RBF kernel. In Figure 6, the outcome of
the two supervised approaches and our semi-supervised ap-
proach is shown. It can be clearly seen that the supervised
approaches are not able to generate a reasonable model. The
semi-supervised approach, however, can successfully incor-
porate the additional information given by the unlabeled data
and generates an appropriate model.

4.2.3 Amount of Data

As motivated above, sufficient labeled data is essential for
supervised learning approaches to yield good models. For
semi-supervised approaches, the amount of unlabeled data
used for training is an important issue as well. To analyze
how much labeled and unlabeled data is needed for our semi-
supervised approach to induce good models, we consider the
Gaussian2C and the Gaussian4C data sets and vary the
amount of labeled and unlabeled data. For this experiment,
we consider the non-realistic scenario, use the optimization
setup with µ = 5 and ν = 25, and resort to the linear kernel
as similarity measure. As baseline, we consider the super-
vised RLSC approach. First, we vary the amount of labeled
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(a) RLSC (6.3± 1.6) (b) LIBSVM (7.6± 3.1) (c) S2RLSC (0.0± 0.0)

Fig. 6 The red squares and the blue triangles depict the labeled data; the black dots the unlabeled data. Both supervised approaches (RLSC and
LIBSVM) are not able to infer a good/correct model due to the lack of labeled data whereas our semi-supervised approach (S2RLSC) can success-
fully incorporate the unlabeled data. The average test error (with one standard deviation) over 10 random partitions into labeled, unlabeled, and
test patterns, are given in brackets.
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Fig. 7 If not sufficient labeled data is available, the supervised approach (RLSC) fails to yield good models on both data sets. Our semi-supervised
approach (S2RLSC) can successfully incorporate unlabeled data to improve the generalization performance, see Figures (a) and (b). However,
sufficient unlabeled data is needed for the learner to yield a small test error, see Figures (c) and (d).

data from 5% to 80% with respect to the size of the train-
ing set; the remaining part the training set is used as unla-
beled data. In Figures 7 (a) and (b), the result of this ex-
periment is shown: Given more than 20% labeled data, the
semi-supervised approach performs better compared to the
pure supervised approach whereas the performance gain is
higher on the Gaussian2C as on the Gaussian4C data
set. Now, we fix the amount of labeled data to 20% and
vary the amount of unlabeled data from 5% to 80% with
respect to the size of the training set, see Figures 7 (c) and
(d). Clearly, the semi-supervised approach is only capable of
generating an appropriate model once sufficient unlabeled
data is given.

4.3 Classification Performance

We consider both the realistic and the non-realistic scenario
to evaluate the classification performance of all competing
approaches. Further, we consider up to three different ra-
tios of labeled and unlabeled data for each particular data
set. Again, the average test errors and the one standard de-

viation obtained on 10 random partitions of each data set
into labeled, unlabeled, and test patterns are reported. For
all data sets and for all competing approaches, a linear ker-
nel is used. For our approach, we consider the optimization
setup with µ = 5 and ν = 25.

4.3.1 Non-Realistic Scenario

In Table 2, the results for the non-realistic scenario are re-
ported. It can be clearly seen that the semi-supervised ap-
proaches yield better results compared to the supervised ones.
The results also indicate that by taking more labeled data
into account, the gap between the performances of the su-
pervised (RLSC and LIBSVM) and the semi-supervised ap-
proaches (UniverSVM and S2RLSC) becomes smaller. Still,
in the latter cases, the semi-supervised approaches yield bet-
ter results. Hence, both semi-supervised approaches can in-
corporate the unlabeled data and seem being able to approx-
imate the induced combinatorial problems successfully.



12 Fabian Gieseke et al.

Data Set RLSC LIBSVM UniverSVM S2RLSC

Gaussian2C[l=25,u=225,t=250] 10.6± 2.3 13.0± 2.9 1.0± 0.5 0.8± 0.5

Gaussian2C[l=50,u=200,t=250] 4.9± 1.9 5.8± 2.2 1.0± 0.4 0.8± 0.6

Gaussian4C[l=25,u=225,t=250] 16.1± 7.0 17.4± 6.6 7.6± 12.2 16.4± 22.2

Gaussian4C[l=50,u=200,t=250] 6.1± 2.1 6.7± 1.5 1.6± 0.8 1.0± 0.7

COIL(3,6)[l=14,u=101,t=29] 14.5± 7.7 13.4± 7.0 2.8± 3.7 5.1± 9.5

COIL(3,6)[l=28,u=87,t=29] 4.1± 4.8 3.1± 3.3 0.3± 1.0 0.0± 0.0

COIL(5,9)[l=14,u=101,t=29] 13.1± 8.0 13.4± 7.8 6.9± 7.2 1.7± 3.5

COIL(5,9)[l=28,u=87,t=29] 3.1± 4.2 3.4± 4.1 1.4± 3.2 0.0± 0.0

COIL(6,19)[l=14,u=101,t=29] 10.0± 6.8 12.1± 9.8 4.5± 8.2 0.3± 1.0

COIL(6,19)[l=28,u=87,t=29] 2.4± 3.1 3.1± 3.3 0.7± 2.1 1.0± 3.1

COIL(18,19)[l=14,u=101,t=29] 10.0± 8.6 6.9± 8.0 1.0± 3.1 2.1± 6.2

COIL(18,19)[l=28,u=87,t=29] 3.4± 5.8 1.4± 4.1 0.0± 0.0 0.0± 0.0

USPS(2,5)[l=16,u=806,t=823] 7.9± 2.9 9.4± 5.1 3.2± 0.5 4.6± 2.8

USPS(2,5)[l=32,u=790,t=823] 4.4± 0.5 4.7± 0.7 3.2± 0.5 3.7± 0.7

USPS(2,7)[l=17,u=843,t=861] 3.6± 2.5 4.6± 3.0 1.5± 0.3 1.0± 0.2

USPS(2,7)[l=34,u=826,t=861] 2.2± 0.7 2.5± 1.0 1.4± 0.2 1.0± 0.2

USPS(3,8)[l=15,u=751,t=766] 9.8± 6.6 12.0± 8.2 4.8± 1.1 4.5± 1.8

USPS(3,8)[l=30,u=736,t=766] 6.3± 2.0 6.6± 2.1 4.0± 0.1 4.3± 1.5

USPS(8,0)[l=22,u=1108,t=1131] 4.8± 1.9 4.8± 1.7 1.7± 0.7 1.2± 0.2

USPS(8,0)[l=45,u=1085,t=1131] 2.6± 0.8 2.7± 0.8 1.3± 0.4 1.2± 0.2

MNIST(1,7)[l=10,u=490,t=500] 4.5± 3.6 7.3± 4.6 2.9± 0.9 2.0± 0.6

MNIST(1,7)[l=20,u=480,t=500] 2.7± 1.1 3.5± 1.3 2.6± 1.0 1.9± 0.5

MNIST(1,7)[l=50,u=400,t=500] 2.1± 1.1 2.3± 1.0 2.2± 0.9 1.7± 0.8

MNIST(2,5)[l=10,u=490,t=500] 14.9± 8.9 15.9± 8.4 3.7± 1.1 4.7± 3.2

MNIST(2,5)[l=20,u=480,t=500] 7.7± 3.3 9.3± 3.2 3.4± 0.7 3.4± 2.1

MNIST(2,5)[l=50,u=400,t=500] 4.0± 0.9 4.7± 1.2 3.4± 0.7 2.6± 0.6

MNIST(2,7)[l=10,u=490,t=500] 8.7± 5.5 12.0± 8.0 3.0± 0.7 3.1± 0.9

MNIST(2,7)[l=20,u=480,t=500] 5.6± 2.7 6.7± 3.7 2.9± 0.6 3.0± 1.4

MNIST(2,7)[l=50,u=400,t=500] 3.5± 0.9 4.2± 1.2 2.5± 0.5 2.6± 0.9

MNIST(3,8)[l=10,u=490,t=500] 19.4± 5.6 20.7± 5.9 12.3± 3.8 8.3± 1.6

MNIST(3,8)[l=20,u=480,t=500] 13.7± 4.1 15.2± 4.1 8.6± 3.3 7.7± 1.8

MNIST(3,8)[l=50,u=400,t=500] 8.2± 2.2 8.6± 2.5 6.3± 2.0 7.4± 3.0

Table 2 The table shows the classification performance of all competing approaches for the non-realistic scenario, i.e., the test set was used to
tune the non-fixed parameters. The results clearly show that the semi-supervised approaches are able to incorporate the unlabeled data successfully.
While these results are not indicative for real-world scenarios, they demonstrate the potential of both semi-supervised approaches. They also show
that both approaches can find good local optima for their corresponding optimization tasks.

4.3.2 Realistic Scenario

The results for the realistic scenario are given in Table 3.
Compared to the results for the non-realistic scenario, the
performances of the semi-supervised approaches are clearly
worse. Hence, the lack of labeled data for model evaluation
as well as a (possibly) bad estimate for the balance parame-
ter bc seem to have a significant influence on the final classi-
fication performance. As mentioned above, this is a common
problem in semi-supervised learning. Naturally, this point
depends heavily on the amount of labeled data. The results
indicate that once a reasonable amount of data is used for
training in this scenario, the negative influence of the latter
disturbing factors is reduced. We would like to point out that

a bad estimate for the balance parameter bc can jeopardize
the overall outcome; this issue, however, is not severe since
good estimates for this (one-dimensional) parameter should
be obtainable given a reasonable amount of labeled patterns.

4.4 Computational Considerations

The computational shortcut reduces the runtime for a sin-
gle fitness evaluation from O(n2) to O(n). In addition, the
approximation scheme shortens both drawbacks, the cubic
preprocessing time and the quadratic storage requirements.
In this subsection, we will investigate the efficiency of the
shortcut and the influence of the approximation scheme on
the classification performance. Further, we will apply the ap-



Efficient Recurrent Local Search Strategies for Semi- and Unsupervised Regularized Least-Squares Classification 13

Data Set RLSC LIBSVM UniverSVM S2RLSC

Gaussian2C[l=25,u=225,t=250] 11.4± 2.4 13.2± 2.8 1.8± 0.9 3.3± 1.8

Gaussian2C[l=50,u=200,t=250] 5.3± 2.1 6.3± 2.4 1.8± 0.8 2.4± 1.5

Gaussian4C[l=25,u=225,t=250] 16.5± 6.8 20.6± 11.5 13.3± 15.2 22.4± 19.1

Gaussian4C[l=50,u=200,t=250] 6.5± 1.9 6.9± 1.6 2.5± 1.5 3.2± 2.2

COIL(3,6)[l=14,u=101,t=29] 15.5± 8.3 16.2± 7.2 16.9± 13.9 10.7± 11.9

COIL(3,6)[l=28,u=87,t=29] 6.2± 5.7 3.8± 4.2 5.2± 5.8 1.7± 3.5

COIL(5,9)[l=14,u=101,t=29] 16.2± 9.5 13.4± 7.8 19.3± 10.9 15.5± 12.0

COIL(5,9)[l=28,u=87,t=29] 4.5± 7.4 4.5± 5.6 7.2± 9.1 2.8± 4.6

COIL(6,19)[l=14,u=101,t=29] 13.4± 11.1 15.5± 13.1 21.0± 12.0 4.8± 13.4

COIL(6,19)[l=28,u=87,t=29] 3.8± 3.3 3.4± 3.4 4.5± 5.1 1.7± 3.2

COIL(18,19)[l=14,u=101,t=29] 10.7± 8.1 6.9± 8.0 7.6± 8.8 13.1± 11.8

COIL(18,19)[l=28,u=87,t=29] 3.8± 6.1 1.4± 4.2 5.2± 9.7 1.4± 4.1

USPS(2,5)[l=16,u=806,t=823] 9.3± 2.3 10.5± 4.7 9.0± 5.6 13.7± 12.2

USPS(2,5)[l=32,u=790,t=823] 5.8± 1.6 5.4± 0.8 5.7± 1.8 5.0± 1.3

USPS(2,7)[l=17,u=843,t=861] 4.0± 2.4 4.9± 2.9 6.1± 5.3 4.0± 6.7

USPS(2,7)[l=34,u=826,t=861] 3.1± 1.7 2.8± 1.1 3.4± 2.4 1.3± 0.3

USPS(3,8)[l=15,u=751,t=766] 11.0± 6.4 12.9± 8.3 8.7± 3.9 13.4± 15.0

USPS(3,8)[l=30,u=736,t=766] 7.7± 1.4 7.3± 2.1 7.1± 1.8 7.2± 4.4

USPS(8,0)[l=22,u=1108,t=1131] 6.6± 3.3 5.0± 2.0 3.2± 2.2 2.7± 1.8

USPS(8,0)[l=45,u=1085,t=1131] 3.3± 0.9 3.0± 0.9 3.3± 1.8 2.0± 0.8

MNIST(1,7)[l=10,u=490,t=500] 5.4± 3.6 7.8± 5.2 9.5± 7.5 9.2± 12.0

MNIST(1,7)[l=20,u=480,t=500] 3.9± 1.3 4.2± 1.6 4.3± 2.8 2.7± 1.1

MNIST(1,7)[l=50,u=400,t=500] 2.8± 1.7 2.6± 1.0 3.7± 2.5 2.2± 1.0

MNIST(2,5)[l=10,u=490,t=500] 17.4± 11.5 17.9± 12.3 15.7± 12.5 26.0± 17.9

MNIST(2,5)[l=20,u=480,t=500] 9.2± 2.6 10.2± 3.1 6.3± 3.9 10.1± 9.3

MNIST(2,5)[l=50,u=400,t=500] 5.4± 2.1 5.8± 1.7 4.2± 1.6 4.5± 1.8

MNIST(2,7)[l=10,u=490,t=500] 10.2± 5.9 12.1± 7.9 13.3± 14.5 17.8± 16.6

MNIST(2,7)[l=20,u=480,t=500] 6.6± 2.7 7.9± 4.4 8.0± 4.7 6.8± 3.4

MNIST(2,7)[l=50,u=400,t=500] 4.0± 0.8 5.0± 1.5 5.1± 1.6 4.7± 2.6

MNIST(3,8)[l=10,u=490,t=500] 21.3± 5.7 26.1± 11.1 19.9± 6.5 28.6± 15.1

MNIST(3,8)[l=20,u=480,t=500] 18.4± 11.7 18.8± 11.5 16.1± 3.9 11.7± 8.2

MNIST(3,8)[l=50,u=400,t=500] 9.0± 2.2 9.0± 2.4 9.5± 4.1 9.0± 2.9

Table 3 The table shows the classification performance for the realistic scenario, i.e., only the labels in the training set are used for model selection
and for estimating the balance parameter bc. Compared to the results for the non-realistic scenario, the results are clearly worse. Hence, both the
model selection problem as well as a (possibly) bad estimate for bc seem to affect the classification performance. However, once sufficient labeled
data is given, our semi-supervised approach yields better classification models in most cases.

proach to a large-scale scenario induced by the MNIST data
set. For the remainder of this section, we set µ = 1 and
ν = 1, thus considering the special case of the (1+1)-EA.11

4.4.1 Efficiency of Shortcut

To investigate the practical benefits of the proposed com-
putational shortcut, we compare the naive way for obtain-
ing the fitness values (taking O(n2) time per fitness evalua-
tion) with its accelerated variant (taking O(n) time per fit-

11 As a side note, we would like to point out that this special type
shows a very similar behavior with respect to the classification perfor-
mance compared to the more general setup with µ = 5 and ν = 25 (if
sufficient restarts are performed).
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Fig. 8 Efficiency of the computational shortcut compared to the direct
way for obtaining the fitness values.

ness evaluation). For this purpose, we consider the follow-
ing experiment on the Gaussian2C data set (of varying
size). For reasons of simplification, we fix the cost parame-
ters λ = 1 and λ′ = 1 and use a linear kernel. To aim at prac-
tical settings, we take the best out of 50 runs and measure the
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overall runtime (including the preprocessing time) of both
induced implementations. In Figure 8 the runtime behavior
of both implementations is given. Clearly, the computational
shortcut reduces the practical runtime dramatically.

4.4.2 Sparse Approximation

To evaluate the influence of the approximation scheme, we
consider the four USPS data set instances (i.e., USPS(2,5),
USPS(2,7), USPS(3,8), and USPS(8,0)) and vary the
assignment for the approximation parameter r from 0.01n to
0.1n; all patterns are used as possible basis vectors. Again,
we fix the cost parameters λ = 1 and λ′ = 1, and use a
linear kernel as similarity measure. The results is shown in
Figure 9. The plots indicate that the classification perfor-
mance is not affected by the approximation scheme as long
as a reasonable amount of data is used for the approximation
scheme (in these cases roughly 5% of all patterns).

4.4.3 Large-Scale Scenario

To test the scalability of our approach on real-world data, we
consider the MNIST(1,7) data set and vary the size of the
training set (from 500 to 5, 000 patterns in each the training
and test set). In the training set, the amount of labeled pat-
terns is set to 1.0%; the remaining data is used as unlabeled
data. Further, we use a linear kernel as similarity measure,
fix the parameters λ = 1 and λ′ = 1, and apply the approx-
imation scheme with r = 100. The estimate for the balance
parameter bc is obtained via the labeled patterns given in
the training set and the parameter ε is set to 0.2. The results
are shown in Figure 10. They indicate that our approach can
deal efficiently with large amounts of data. Note that the re-
sults depict the runtime needed for the (1+1)-EA to build the
final model (where the best result with respect to the fitness
value is taken out of 50 runs).

5 Conclusions

We proposed a general optimization framework for semi-
and unsupervised regularized least-squares classification. The
key idea consists in using simple local search strategies which
can be accelerated based on efficient matrix update schemes
for the intermediate candidate solutions. Our experimental

evaluation demonstrates the performance of our approach,
both with respect to the runtime as well as with respect to
the classification performance. The results indicate that the
optimization task(s) can successfully be addressed via the
simple local search strategy once sufficient labeled data is
given for model evaluation and for obtaining good estimates
for the balance constraint.
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A Sparse Approximation

We will now depict the approximation scheme for the kernel matrix K,
which is based on the so-called Nyström approximation

K̃ = (KR)T(KR,R)−1KR, (20)

see, e.g., Rifkin et al. (2003). Plugging in this approximation into (10),
we get

(Dȳ −DK̃c∗)
T
(Dȳ −DK̃c∗) + λ(c∗)TK̃c∗ (21)

as new objective value. The matrix K = DK̃D has (at most) r non-
zero eigenvalues. To compute them efficiently, we make use of the fol-
lowing derivations: Let BBT be the Cholesky decomposition of the
matrix (KR,R)−1 and UΣVT be the thin singular value decomposi-
tion of BTKRD. The r nonzero eigenvalues of

K = DK̃D = D(KR)TBBTKRD = VΣUTUΣVT

can then be obtained from Σ2 ∈ Rr×r and the matrix V ∈ Rn×r
consists of the corresponding eigenvectors (we have UTU = I, see
below). By assuming that these non-zero eigenvalues are the first r
elements in the matrix Λ ∈ Rn×n of eigenvalues (of K̃), we have
[ΛΛ̃]i,i = 0 for i = r + 1, . . . , n; hence, the remaining eigenvectors
(with eigenvalue 0) do not have to be computed for the evaluation of
(13). To sum up, yTDV can be updated inO(r) time per single coordi-
nate flip. Further, all preprocessing matrices can be obtained inO(nr2)
runtime (in practice and up to machine precision) using O(nr) space.
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B Matrix Calculus

For completeness, we summarize some basic definitions and theorems
of the field of matrix calculus that may be helpful when reading the
paper. The following definitions and facts are taken from Horn and
Johnson (1985) and Golub and Van Loan (1989).

Definition 1 (Positive (Semi-)Definite Matrices): A symmetric ma-
trix M ∈ Rm×m is said to be positive definite if

vTMv > 0 holds for all v ∈ Rm with v 6= 0 (22)

and positive semidefinite if

vTMv ≥ 0 holds for all v ∈ Rm with v 6= 0. (23)

We use the notations M � 0 and M � 0 if M is positive defi-
nite or positive semidefinite, respectively. It is straightforward to de-
rive that if M1, . . . ,Mp ∈ Rm×m are positive definite matrices and
α1, . . . , αp ∈ R are positive coefficients, then

a1M1 + . . .+ apMp (24)

is positive definite as well, i.e., any positive linear combination of pos-
itive definite matrices is positive definite (Horn and Johnson 1985, pp.
396-398). A lower triangular matrix is a matrix, where the entries
above its diagonal are zero.

Fact 1 (Cholesky Decomposition): Any symmetric positive definite
matrix M ∈ Rm×m can be factorized as

M = NNT, (25)

where N ∈ Rm×m is a lower triangular matrix whose diagonal en-
tries are strictly positive. This factorization is known as the Cholesky
decomposition.

The Cholesky decomposition for a m ×m-matrix can be obtained in
O(m3) time (in practice and up to machine precision, see Golub and
Van Loan (1989) pp. 141-145).

Definition 2 (Orthogonal Matrix): A matrix M ∈ Rm×m is called
orthogonal if

MTM = MMT = I,

i.e., if the inverse M−1 of a M equals its transpose MT.

Fact 2 (Singular Value Decomposition): A matrix M ∈ Rm×n can
be written in the form

M = UΣVT, (26)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal, and where Σ ∈
Rm×n is a diagonal matrix with non-negative entries. The decomposi-
tion is called the singular value decomposition (SVD) of M.

The values on the diagonal matrix are called the singular values of M;
they are usually arranged in descending order, i.e., [Σ]1,1 ≥ . . . ≥
[Σ]p,p with p = min(n,m).

Fact 3 (Thin Singular Value Decomposition): The thin or economy-
size singular value decomposition of M ∈ Rm×n with m ≥ n is of
the form

M = UΣVT, (27)

where U ∈ Rm×n, Σ ∈ Rn×n, and V ∈ Rn×n. Further, we have
UTU = VTV = VVT = I (but not UUT = I).

Note that the thin singular value decomposition for a matrix M ∈
Rn×m can be computed in O(nm2) time (in practice and up to ma-
chine precision, see Golub and Van Loan (1989) p. 239).

Fact 4 (Eigendecomposition): If M ∈ Rm×m is symmetric, then it
can be factorized as

M = VΛVT, (28)

where V ∈ Rm×m is an orthogonal matrix containing the eigenvec-
tors of M and Λ is a diagonal matrix containing the corresponding
eigenvalues (Horn and Johnson 1985, p. 107).

Note that if the nonzero eigenvalues are stored in the first r diagonal
entries of Λ, then (analogously to the economy-sized singular value
decomposition) the matrix M can be written as in (28) but with V ∈
Rm×r and Λ ∈ Rr×r .

Fact 5 (SVD and Eigendecomposition): We have the following rela-
tionship between the SVD and the eigendecomposition. If (26) or (27)
is the SVD of M ∈ Rm×m, then

MTM = VΣTUTUΣVT = VΣTΣVT (29)

is the eigendecomposition of MTM. Here, the eigenvalues of the ma-
trix MTM are the squares of the singular values of M. Note that an
analogous relationship also holds between the economy-sized decom-
positions.

Fact 6 (Further Matrix Properties): If M ∈ Rm×m is a (symmet-
ric) positive definite matrix and M = VΛVT is its eigendecomposi-
tion, then

[Λ]i,i > 0 holds for all i ∈ {1, . . . ,m}, (30)

that is, the eigenvalues of positive definite matrices are strictly positive
real numbers (Horn and Johnson 1985, p. 398). From this, it follows
that all positive definite matrices are invertible and their inverse matri-
ces are also positive definite. Moreover, we have

ML,L � 0 for all L ⊆ {1, . . . ,m}, (31)

that is, all principal submatrices of M are positive definite (Horn and
Johnson 1985, pp. 397). Further, if M ∈ Rm×m is symmetric positive
definite, then we have

NTMN ≥ 0,∀N ∈ Rm×n, n ∈ N. (32)

This is a special case of the Observation 7.7.2 given by Horn and John-
son (1985).


