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Abstract

In different fields like decision making, psychology, game theory and biology, it has been
observed that paired-comparison data like preference relations defined by humans and an-
imals can be intransitive. Intransitive relations cannot be modeled with existing machine
learning methods like ranking models, because these models exhibit strong transitivity
properties. More specifically, in a stochastic context, where often the reciprocity property
characterizes probabilistic relations such as choice probabilities, it has been formally shown
that ranking models always satisfy the well-known strong stochastic transitivity property.
Given this limitation of ranking models, we present a new kernel function that together
with the regularized least-squares algorithm is capable of inferring intransitive recipro-
cal relations in problems where transitivity violations cannot be considered as noise. In
this approach it is the kernel function that defines the transition from learning transitive to
learning intransitive relations, and the Kronecker-product is introduced for representing the
latter type of relations. In addition, we empirically demonstrate on two benchmark prob-
lems, one in game theory and one in theoretical biology, that our algorithm outperforms
methods not capable of learning intransitive reciprocal relations.
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1 Introduction

We start with an introductory example in the field of sports games in order to de-
scribe the purpose of this paper. Let us assume that an online betting company for
tennis games wants to build statistical models to predict the probability that a given
tennis player will defeat his/her opponent in the next Grand Slam competition. The
company could be interested in building such models to maximize its profit when
defining the amount of money that a client gets if he/she is able to predict the out-
come of the game correctly. To this end, different types of data could be collected
in order to construct the model, such as previous game outcomes, strong and weak
points of players, current physical and mental conditions of players, etc. Yet, which
type of machinery is required to obtain accurate predictions in this type of data
mining problems? Firstly, as we will discuss in more detail below, we are for this
example looking for an algorithm capable of predicting reciprocal relations from
data, i.e., a relation between couples of players leading to a probability estimate of
the outcome of a game. Secondly, we are also looking for a model that can pre-
dict intransitive relations, since commonly in sports games it turns out that game
outcomes manifest cycles such as player A defeating player B, B defeating a third
player C, and simultaneously C winning from A.

So, this paper in general considers learning problems where intransitive reciprocal
relations need to be learned. As mathematical and statistical properties of human
preference judgments, reciprocity and transitivity have been a subject of study for
researchers in different fields like mathematical psychology, decision theory, so-
cial choice theory, and fuzzy modeling. Historically, this kind of research has been
motivated by the quest for a rational characterization of human judgments, and to
this end, transitivity is often assumed as a crucial property [Diaz et al., 2008]. This
property basically says that a preference of an object x; over another object x; and a
similar preference of x; over a third object x;, should always result in a preference
of x; over xi, if preference judgments are made in a rational way. Nevertheless,
it has been observed in several psychological experiments that human preference
judgments often violate this transitivity property (see e.g. [Azand, 1993, Tversky,
1998]), especially in a context where preference judgments are considered as un-
certain, resulting in non-crisp * preference relations between objects.

Contrary to some approaches taken in fuzzy set theory and decision theory, we
adopt a probabilistic view of expressing uncertainty in decision behavior, as it is
for example the case in social choice theory and mathematical psychology, where
preference relations are often called binary choice probabilities. In this probabilis-
tic framework, it can be assumed that a preference relation defined on a space X
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1 In this work a relation is called crisp, when it can take only three values, e.g. 0 if A wins
from B, 1 if B wins from A and 0.5 in case of a tie.



satisfies the reciprocity property.

Definition 1.1 A function Q : X* — [0,1] is called a reciprocal relation if for any
(x,x') € X? it holds that

Q(X’ Xl) + Q(X/’X) =1.

The reciprocity property was already taken into consideration in the early work
of Luce and Suppes [1965] in mathematical psychology. In addition, the same au-
thors also introduced several stochastic transitivity properties like weak, moderate
and strong stochastic transitivity to characterize rational preference judgments in a
probabilistic sense. Let us recall the definition of weak stochastic transitivity.

Definition 1.2 A reciprocal relation Q : X* — [0, 1] is called weakly stochasti-
cally transitive if for any (x;,x;,x;) € X3 it holds that

(Qxi,x;) > 1/2A Q(xj,x4) > 1/2) = Q(xi,%4) > 1/2. (1)

This definition of transitivity for reciprocal relations naturally extends the basic
definition of transitivity for crisp relations. Below, when we speak about intransitive
reciprocal relations, we specifically allude to reciprocal relations violating weak
stochastic transitivity. In addition, we will also utilize strong stochastic transitivity
a few times in this paper. This stronger condition is defined as follows.

Definition 1.3 A reciprocal relation QQ : X* — [0, 1] is called strongly stochasti-
cally transitive if for any (x;,x;,x;) € X it holds that

(Qxi, %)) > 1/2 A Q(x5,x1) > 1/2) = Q(xi,%1) > max(Q(x:, X;), Q(x,Xx))

Many other transitivity properties for reciprocal relations have been put forward in
recent years, but these properties will not be discussed here. Moreover, many of
these properties can be elegantly expressed in the cycle-transitivity framework. We
refer to De Baets et al. [2006] for an overview of this framework and the various
transitivity properties it covers.

As for crisp relations, several authors observed that stochastic transitivity proper-
ties are often violated. This is definitely the case for strong stochastic transitivity
[Garcia-Lapresta and Mesenes, 2005], but sometimes even weak stochastic transi-
tivity can be violated [Switalski, 2000]. As a consequence, there has been a long
debate on interpreting this absence of transitivity. If preference judgments are con-
sidered as rational human decisions, then one should neglect the transitivity viola-
tions and apply traditional transitive models to represent this type of data. Although



such a simplification makes sense in certain situations, different authors argued that
often these transitivity violations describe potential truths of reasoned comparisons
(see [Fishburn, 1991] for a review). As a result, several authors have constructed
models for paired-comparison data that are able to represent intransitive judgments
explicitly (e.g. [Carroll et al., 1990, Tsai and Béckenholt, 2006]).

The motivation for building intransitive reciprocal preference relations might be
debatable in a traditional (decision-theoretic) context, but the existence of ratio-
nal transitivity violations becomes more appealing when the notion of a reciprocal
preference relation is defined in a broader sense, like in the introductory example,
or generally as any binary relation satisfying the reciprocity property. For example,
reciprocal relations in game theory violate weak stochastic transitivity, in situations
where the best strategy of a player depends on the strategy of his/her opponent —
see e.g. the well-known rock-scissors-paper game [Fisher, 2008], dice games [De
Schuymer et al., 2003, 2006, 2009]) and quantum games in physics [Makowski and
Piotrowski, 2006]. Furthermore, in biology many examples of intransitive recipro-
cal relations have been encountered, like in competition between bacteria [Kerr
et al., 2002, Czaran et al., 2002, Nowak, 2002, Kirkup and Riley, 2004, Karolyi
et al., 2005, Reichenbach et al., 2007] and fungi [Boddy, 2000], mating choice of
lizards [Sinervo and Lively, 1996] and food choice of birds [Waite, 2001]. Other
examples of intransitive reciprocal relations can be found in order theory, when
considering mutual ranking probabilities of the elements of a partially ordered set
[De Baets et al., De Loof et al., 2010].

Generally speaking, we believe that enough examples exist to justify the need for
models that can represent intransitive reciprocal relations. In this article we will ad-
dress the topic of constructing such models based on any type of paired-comparison
data. Basically, one can interpret these models as a mathematical representation of
a reciprocal preference relation, having parameters that need to be statistically in-
ferred. The approach we take finds its origin in machine learning, as a generaliza-
tion of existing utility or ranking models. These models have been popular in areas
like information retrieval and marketing for predicting decisions of web users and
clients of e-commerce applications (see e.g. [Kalish and Nelson, 1991, Joachims,
2002]). Utility or ranking models by construction possess weak (and often even
strong) stochastic transitivity properties, rendering them unsuitable for represent-
ing intransitive preference judgments in an accurate way. As a solution, we will
extend an existing kernel-based ranking algorithm that has been proposed recently
by some of the present authors [Pahikkala et al., 2007, 2009b]. This algorithm has
been called RankRLS, as it optimizes a regularized least-squares (RLS) objective
function on paired-comparison data that is represented as a graph.

This article is organized as follows. In Section 2 we give a short review on the role
of transitivity in decision making and its connection to ranking models. Using the
notions weak and strong stochastic transitivity, we in particular claim that rank-
ing methods always exhibit certain transitivity properties that makes them useless



for representing intransitive reciprocal relations. Then, in Section 3 we start with a
brief introduction to kernel methods, followed by a discussion of a general kernel-
based framework for learning reciprocal relations. We show that existing ranking
models are included in this framework via a particular choice of kernel function.
We prove that these models cannot learn intransitive reciprocal relations. Subse-
quently, we formally claim and prove how in our framework another kernel, based
on the Kronecker-product, is able to represent intransitive reciprocal relations in
a much more adequate way. Finally, we present in Section 4 experimental results
for two benchmark problems, demonstrating the advantages of our approach over
traditional (transitive) ranking algorithms.

2 From transitive to intransitive preference models

In order to model preference judgments one can distinguish two main types of
models in decision making [Oxztiirk et al., 2005, Waegeman et al., 2009]:

(1) Scoring methods: these methods typically construct a continuous function of
the form f : X — R such that:

xzx & f(x) 2 f(X),

which means that alternative x is preferred to alternative X’ if the highest value
was assigned to x. In decision making, f is usually referred to as a utility
function, while it is called a ranking function in machine learning 2 .

(2) Pairwise preference models: here the preference judgments are modeled by
one (or more) valued relations Q : X2 — [0, 1] that express whether x should
be preferred over x’. One can distinguish different kinds of relations such as
crisp relations, fuzzy relations or reciprocal relations.

The former approach has been especially popular in machine learning for scala-
bility reasons. The latter approach allows a flexible and interpretable description
of preference judgments and has therefore been popular in decision theory and the
fuzzy set community, see e.g. [Mousseau et al., 2001, Doumpos and Zopounidis,
2004, De Baets and De Meyer, 2005, Dias and Mousseau, 2006].

The semantics underlying reciprocal preference relations is often probabilistic:
Q(x,x’) expresses the probability that object x is preferred to x’. One can in gen-
eral construct such a reciprocal or probabilistic preference relation from a utility
model in the following way:

2 1t should be emphasized that the notion of a utility function is often ambiguously defined
in the literature. We adopt in this paper the rather mild definition of Luce and Suppes
[1965], while more recent papers in economics and decision theory sometimes require more
restrictive properties for a utility function, such as monotonicity, concavity and continuity.



Qx,x) =g(f(x), f(x)), 2)

with ¢ : R? — [0, 1] usually increasing in its first argument and decreasing in
its second argument [Switalski, 2003]. Examples of models based on reciprocal
preference relations are Bradley-Terry models [Bradley and Terry, 1952, Agresti,
2002] and Thurstone-Case5 models [Thurstone, 1927]. They have been applied in a
machine learning learning context by Chu and Ghahramani [2005], Herbrich et al.
[2007], Radlinski and Joachims [2007] and Hiillermeier et al. [2008].

The representability of reciprocal and fuzzy preference relations in terms of a sin-
gle ranking or utility function has been extensively studied in domains like utility
theory [Fishburn, 1970], preference modeling [Oztiirk et al., 2005], social choice
theory [Dasgupta and Deb, 1996, Fono and Andjiga, 2007], fuzzy set theory [Bil-
lot, 1995] and mathematical psychology [Luce and Suppes, 1965, Doignon et al.,
1986]. It has been shown that the notions of transitivity and ranking representability
play a crucial role in this context.

Definition 2.1 A reciprocal relation Q : X? — [0,1] is called weakly ranking
representable if there exists a ranking function f : X — R such that for any
(x,x') € X? it holds that

Reciprocal preference relations for which this condition is satisfied have also been
called weak utility models. Luce and Suppes [1965] proved that a reciprocal pref-
erence relation is a weak utility model if and only if it satisfies weak stochastic
transitivity, as defined by (1). As pointed out by Switalski [2003], a weakly ranking
representable reciprocal relation can be characterized in terms of (2) such that the
function g : R? — R satisfies

1 1
g(a,b)>§<:>a>b, g(a,b)zﬁﬁa:b.

Analogous to weak ranking representability or weak utility models, one can define
other conditions on the relationship between () and f, leading to (stronger) transi-
tivity conditions like moderate and strong stochastic transitivity. These properties
are satisfied respectively by moderately and strongly ranking representable recipro-
cal preference relations. For such reciprocal relations one imposes additional con-
ditions on g, for example the following type of reciprocal relation satisfies strong
stochastic transitivity [Luce and Suppes, 1965].

Definition 2.2 A reciprocal relation Q) : X* — |[0,1] is called strongly ranking
representable if it can be written as in (2) with g given by



9(f(x), f(x) = G(f(x) = f(X)), 3)

where G : R — [0,1] is a cumulative distribution function satisfying G(0) = .

In addition, other transitivity conditions and corresponding conditions on GG have
been defined, such as strict ranking representability. This last property of reciprocal
preference relations is satisfied by the Bradley-Terry model, a classical model for
paired-comparison data [Bradley and Terry, 1952]. A further discussion on ranking
representability is however beyond the scope of this paper. More details and proofs
can be found in Luce and Suppes [1965], Carroll et al. [1990], Ballinger and Wilcox
[1997], Tversky [1998], Switalski [2003], Dhzafarov [2003], Zhang [2004] and
Waegeman and De Baets, submitted.

3 Learning intransitive reciprocal relations

In this section we will show how intransitive reciprocal relations can be learned
from data with kernel methods. During the last decade, a lot of interesting papers
on preference learning have appeared in the machine learning community (see e.g.
Herbrich et al. [2000], Freund et al. [2003], Crammer and Singer [2001], Chu and
Keerthi [2007]). Many of these authors use kernel methods to design learning al-
gorithms. The majority of them also considers utility approaches to represent the
preferences. Only a few authors such as Hiillermeier and Fiirnkranz [2003], Chu
and Ghahramani [2005] talk about pairwise preference relations, assuming weak
stochastic transitivity so that an underlying ranking function exists.

We first explain the basic ideas behind kernel methods, followed by a discussion of
a general framework for learning intransitive reciprocal relations. In this framework
ranking can be seen as a special case, with a particular choice of the kernel function.
To learn intransitive reciprocal relations, we then define a new type of kernel over
pairs of data objects. We will formally prove that using this kernel we always learn
relations that are reciprocal, but do not necessarily fulfill weak stochastic transi-
tivity. This new kernel can be seen as a general concept that can be plugged into
other kernel-based ranking methods as well, but in this paper we will illustrate its
usefulness with the RLS algorithm. As this method optimizes a least-squares loss
function, it is very suitable for learning reciprocal relations if the mean squared
error measures the performance of the algorithm.

3.1 A brief introduction to kernels

This section is primarily based on Scholkopf and Smola [2002], Shawe-Taylor and
Cristianini [2004]. A better and much more detailed introduction to kernel methods



can be found in these works. Given a not further specified input space £ that shows
at this moment no correspondence with the space X" defined in the previous section,
let us consider mappings of the following form:

b & - F
e— O(e).

The function ® represents a so-called feature mapping from & to F and F is called
the associated feature space. Initially, kernels were introduced to compute the dot-
product (-, -) in this feature space efficiently. Such a compact representation of the
dot-products in a certain feature space H will in general be called a kernel with the
notation

(®(e1), P(eg)) = K (e, e).

For a given sequence eq,...,ey of objects, let us define the Gram matrix K of
a given kernel as K, ; = K(e;, e;). Kernel functions resulting in positive semi-
definite Gram matrices always yield a dot-product. As a consequence, data analysis
methods based on dot-products can always be rewritten in terms of kernels. Ker-
nel versions have been proposed for classification, regression, clustering, princi-
pal component analysis, independent component analysis and many other methods
[Shawe-Taylor and Cristianini, 2004]. These algorithms are quite general, because
the class of models considered is simply changed by replacing the kernel function.

Kernels can be interpreted as similarity measures, allowing to model similarity of
complex data objects. The specific form of the kernel function is domain-dependent
and usually constructed by the data analyst [Scholkopf and Smola, 2002]. Since
the introduction of kernels, similarity measures have been proposed for a large
number of complex data types, like trees, graphs, strings, text, sets, images, DNA-
sequences, etc. In this paper we will restrict our discussion to kernels for vectorial
data. The most basic kernel for vectors one can think of is the one for which ¢
defines the identity mapping, i.e.

K(ej,e) = (e1,e3) .

This similarity measure is called a linear kernel, since it defines linear models.
Alternatively, if interactions up to d features are allowed, one can use a polynomial
kernel of degree d, i.e.

K(er,e) = <elan>d-

Another popular kernel function for non-linear modeling is the Gaussian RBF ker-
nel
K(e1,ez) = e lerell®

where v is a parameter determining the width of the kernel, resulting in an infinite-
dimensional feature map ®. Many other kernels, like spline kernels and ANOVA
kernels, exist, but are rarely employed in practice.



In the context of kernel methods, we also have the concept of so-called regularized
bias (see e.g. Rifkin [2002]). With this, we refer to the approach in which an ex-
tra constant valued dimension is added to the feature mapping. Consequently, the
kernel value then changes into K (e, e;)+ /3%, where 3 is the extra constant feature.

Following the standard notations for kernel methods, we formulate our learning
problem as the selection of a suitable function i € H, with H a certain hypothesis
space, in particular a kernel reproducing Hilbert space (RKHS). Hypotheses A :
€ — R are usually denoted as h(e) = (w,e) with w a vector of parameters that
needs to be estimated based on training data. Let us denote a training dataset as a
sequence

E= (ei7 yl)iil ) (4)

of input-label pairs, then we formally consider the following variational problem in
which we select an appropriate hypothesis h from H for training data £. Namely,
we consider an algorithm

A(E) = argmin — » L(h(e;),y:) + Allh 5
(B) = sngain 3 L(h(e) ) + M g

with L a given loss function and A > 0 a regularization parameter. The first term
measures the performance of a candidate hypothesis on the training data and the
second term, called the regularizer, measures the complexity of the hypothesis with
the RKHS norm. In our framework below, a squared loss is optimized in (5):

L(h(e),y) = (h(e) —y)*. (6)

Optimizing this loss function instead of the more conventional hinge loss has the
advantage that the solution can be found by simply solving a system of linear equa-
tions. We do not describe in detail the mathematical properties and advantages of
this approach compared to more traditional algorithms, since that is not in the scope
of this paper. More details can be found for example in Rifkin [2002], Suykens et al.
[2002].

According to the representer theorem [Scholkopf and Smola, 2002], any minimizer
h € 'H of (5) admits a dual representation of the following form:

ZO[Z e, el - <(I)(e)7w>v

where «; € R, K is the kernel function associated with the RKHS mentioned
above, @ is the feature mapping corresponding to K, and



We will alternate several times between the primal and dual representation for h in
the remainder of this article.

3.2 Learning reciprocal relations

We will use the above framework in order to learn intransitive reciprocal relations.
To this end, we associate in a preference learning setting with each input a cou-
ple of data objects, i.e. e; = (x;,x}), where x;,x;, € X and X’ can be any set.
Consequently, we have an i.i.d. dataset

E= (X’ivxgv yz)i\il )

so that for each couple in the training dataset a label is known. These labels will
represent reciprocal relations observed on training data, but rescaled to the interval
[—1, 1]. This means that the following correspondence holds

y=20Q(x,x)—1, V(xx)eca&?.

Such a conversion is primarily made for ease of implementation. This implies that
we will minimize the regularized squared error so that a model of type i : X? — R
is obtained. An additional mapping G : R — [0, 1] is required to ensure that [0, 1]-
valued relations are predicted:

Q(x,x") = G(h(x,x')). (7

In our framework, we will aim to find such a () that minimizes the mean squared er-
ror between the true and predicted reciprocal relations. When using a least-squares
loss function, we can equivalently search for a model / that minimizes the same
mean squared error and choose G as follows:

0, ifa < —1,
G(a) =3 (a+1)/2, if —1<a<1, (8)
1, ifa>1,

Furthermore, to guarantee that reciprocal relations are learned, let us suggest the
following type of feature mapping:

10



D(e;) = P(xi,x;) = U(xi,x;) — W(x;, %)),
where @ is just the same feature mapping as before but now written in terms of
couples and ¥ is a new (not further specified) feature mapping from X2 to a feature
space. As shown below, this construction will result in a reciprocal representation
of the corresponding [0, 1]-valued relation. By means of the representer theorem,
the above model can be rewritten in terms of kernels, such that two different kernels
pop up, one for ® and one for V. Both kernels express a similarity measure between
two couples of objects and the following relationship holds:

K@(ei,ej):Kq)(xi,x;,xj,x;)
= (W(xs,x7) — V(x5 %), U(x5, %) — W(x), %))
= (W(xi, x;), U(x5,x7)) + (P(x}, %), U(x), x5))

—(W(xi,x7), U(x},%5)) — (P(x5, %), U(x5,%)))

:K‘I’(xi,xg,xj,xg) - K\P(X;,Xi,X},X]’)

—KY (%), x;, X, x;) — KY(x;,%}, x;., X;) .

Using this notation, the prediction function given by the representer theorem can
be expressed as:

N
h(x,x') = (w, ¥(x,x) — U(x,x)) = > o, K®(x;,x},x,%).

=1

For this prediction function, we can easily show that it forms the basis of a recipro-
cal relation.

Proposition 3.1 Let G : R — [0, 1] be a cumulative distribution function satisfying

G(0) = 0.5 and G(—a) = 1 — G(a), then the function Q : X* — [0, 1] defined by
(7) with h - X% — R given by (9), is a reciprocal relation.

PROOF. One can easily see that h(x,x") = —h(x/, x) for all x, x" € X. The proof
then immediately follows from:

11



3.3 Ranking: learning transitive reciprocal relations

Using the above notation, utility or ranking functions are usually written as

f(x) = (W, ¢(x)) . 9)

They can be elegantly expressed in our framework by defining a specific feature
mapping and corresponding kernel function.

Proposition 3.2 If KY corresponds to the transitive kernel K7 defined by

K7 (x4, %}, %5, X5) = K2(x5,%5) = (d(x5), 0(%;)) ,

with K any two-dimensional kernel function on X?, whose value depends only on
the arguments x; and x; and their feature representations ¢(x;) and ¢(x;), then
the reciprocal relation Q : X* — [0,1] given by (7) is strongly stochastically
transitive.

PROOF. With the above representation for K'Y and K (x,x’) = (¢(x), ¢(x')), the
feature mapping W, further denoted as W, is for this model defined by

\IIT<X7 Xl) = (b(X) :

So, only the first element of the couple is taken and the second element is simply
ignored. Because of that, the model can be written as

h(x, x') = (w, ¢(x)) — (w, 6(x))
=f(x) - f(x),

with f defined by (9) such that () takes the form of (3) without any further specified
G. So, @) is strongly ranking representable. As a consequence, () is also strongly
stochastically transitive. We refer to [Luce and Suppes, 1965] for this proof. O

For this choice of K'Y, our framework is reduced to a popular type of kernel func-
tion that has been introduced by Herbrich et al. [2000]. The insight of the propo-
sition is that the use of this kernel is equivalent to constructing a ranking for the
individual inputs. This ranking function is in the dual representation given by:

N

F(x) = (w,6(x)) = > a; (K?(xi, %) = K°(x},x))

=1

12



As explained in Section 2, ranking results in a reciprocal relations that satisfies
the weak stochastic transitivity property. Due to the above proposition, we can
even claim that the resulting reciprocal relation satisfies strong stochastic transi-
tivity. Different ranking methods are obtained with different loss functions, such
as RankSVM [Joachims, 2002] for the hinge loss and RankRLS [Pahikkala et al.,
2007, 2009b] for the least-squares loss.

3.4 Learning intransitive reciprocal relations

Since the above choice for W forms the core of all kernel-based ranking meth-
ods, these methods cannot generate intransitive relations, i.e. relations violating
weak stochastic transitivity. In order to derive a model capable of violating weak
stochastic transitivity, we introduce the following feature mapping W; for couples
of objects:

Ui (x,x") = ¢(x) ® (X)) ,

where ¢(x) is again the feature representation of the individual object x and ®
denotes the Kronecker-product, which is defined as follows:

AI,IB s Al’nB
ApB - ApnB

where A and B are matrices and A, ; is the 4, jth element of A. Kernel functions
induced by this type of feature maps have also been considered under the name
tensor product kernels (see e.g.Weston et al. [2005]) or Kronecker kernels (see e.g.
Kashima et al. [2009]) and the Kronecker product has also been used to construct
kernels based of linear feature transformation (see e.g. Pahikkala et al. [2009a]).

We use the following property of the Kronecker product:

(A® B)(C ® D) = (AC) ® (BD),

where A € R™b, B € R4, ' € R**¢ and D € R**/. The Kronecker-product
establishes joint feature representations ®; and W; that depend on both arguments
of ® and V. Instead of ignoring the second argument of ¢ and ¥, we now repre-
sent all pairwise interactions between individual features of the two data objects in
the joint feature representation. Using the notation K/, this leads to the following
expression:

13



K}P<Xi7 X;7 Xj7 X;) = <¢(X2) ® ¢(X;)v ¢<Xj> ® ¢(X3)>

= (8(x1), (%)) ® {d(x), p(x))

= K¢(Xi7 Xj)Kd)(X;a X;‘)7
with again K¢ any kernel function defined over X2. As a result, using the
Kronecker-product as feature mapping basically leads to a very simple kernel in
the dual representation, consisting of just a regular product between two traditional
kernels K¢. Remark that K¢ can be any existing kernel, such as the linear kernel,
the RBF-kernel, etc. As a result of the above construction, the kernel function K ®
becomes:

K7 (xi, X0, x5, %) = 2K (%, x;) K (x, X)) — 2K (x}, x;) K (x;, %}).

We further refer to K¢ as the intransitive kernel.

Indeed, in the above extension of the ranking framework, two different kernels
KY and K¢ must be specified by the data analyst, while the third kernel K?® is
defined by the choice for K¥. On the one hand, the choice for K'¥ (and hence K®)
determines whether the model is allowed to violate weak stochastic transitivity. On
the other hand, the kernel function K ® acts as the traditional similarity measure on
X, resulting in a linear, polynomial, radial basis function or any other representation
of the data.

We now present a result indicating that the intransitive kernel K can be used to
learn arbitrary reciprocal preference relations, provided that the feature represen-
tation ¢ of the individual objects is powerful enough. It is important to emphasize
that the proposition does not impose any assumption on the loss function.

Proposition 3.3 Let E be a training dataset of type (4), let L : R> — R* be a
loss function, and let Hr : X X X — R be the set of all hypotheses inducing a
reciprocal relation on X. Moreover, let

N
h*(x,x') = argmin Y _ L(y;, h(x;, X)) (10)

heHr i=1

be the set of hypotheses inducing a reciprocal relation on X that have a minimal
empirical loss on E. Further, let

N
h(x,x') =Y ;K7 (x;, %}, x,X)

i=1
N

=Y a2 (Kd)(xi,x)Kd’(xg,X’) — K‘f’(x;,x)Kd’(Xi,x’)) : (11)
=1
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where a; € R, be the set of hypotheses we can construct using the intransitive
kernel K¥ and a given feature representation ¢ of a base kernel K?.

There exists a feature representation ¢ and coefficients «; for which the correspond-
ing hypothesis (11) is one of the minimizers of (10).

PROOF. First of all, remark that the above proposition does not make any as-
sumption on the loss function. As mentioned in Section 3.1, in experiments we
will consider the squared loss (6), but the proof we give here holds for other loss
functions too. We start by defining the reciprocal relation which is the solution to
(10).

The training set £/ may contain several couples that have the same two data objects
either in the same or in the opposite order, while their labels may be noisy in such
a way that there would be no reciprocal relation that would have a zero loss on the
whole training set. Therefore, we define

ZF={jlje{l,....N}x; =x,x, =x/},

Zr={jlje{l,..., N}, x;, =x,,x; = x;},

1777

that is, Z;" is the set of indices of the couples in the training set having x; as the
first and x as the second data object and Z; is the corresponding index set of the
couples having x; and x; in the opposite order. Moreover, for all (x;,x},y;) € E,
let

g, = argmin [ > L(y;9) + > Ly, —y) |,
veR  \jezf jez;
that is, 7, minimizes the sum of losses for the couples in £ having the same two
data objects as the i-th couple. Now, the function

h(x;,x}) =7, Vie{l,..,N},

obviously determines a solution to (10).

Next, let us define K¢ as follows:

1, ifx=x,

0, ifx#x.

Kg(x,x') =

This kernel can be interpreted as a limit case of the Gaussian RBF kernel with
v — +00. So, we define ¢ so that (¢(x), p(x’)) = 1if x = x" and (¢(x), p(x')) =
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0 otherwise. Then, (®(x,x'), P(x,x’)) = 1, (®(x,x), P(x',x)) = —1, and the
value of the inner product is zero in all other cases. K is in this case given by

1 _ !/ /
1, ifx; = x; AX; =X,
P / AN . ’ ’
KI7S<Xi7Xi7Xj7Xj)— —1, IfXZ‘:Xj/\XZ-:Xj7
0, otherwise .

In this construction, choosing

_ Yi
ZF )+ 27|

Q;

satisfies h(x;,x;) = 7, for all couples in the training set. O

The above result indicates that this type of model is flexible enough to obtain an
as low as possible empirical error on training data, while maintaining the reci-
procity property. Hence, the algorithm can learn intransitive reciprocal relations,
because intransitive reciprocal relations will minimize the empirical loss in intran-
sitive problem settings.

4 Experiments
4.1 Rock-paper-scissors

In order to test our approach, we consider a semi-synthetic benchmark problem in
game theory, a domain in which intransitive reciprocal relations between players is
often observed. In such a context, a pure strategy provides a complete description
of how a player will play a game. In particular, it determines the move a player will
make for any situation (s)he could face. A player’s strategy set is the set of pure
strategies available to that player. A mixed strategy is an assignment of a probability
to each pure strategy. This allows for a player to randomly select a pure strategy.
Since probabilities are continuous, there are infinite mixed strategies available to a
player, even if the strategy set is finite.

We consider learning the reciprocal relation of the probability that one player wins
from another in the well-known rock-paper-scissors game. To test the performance
of the learning algorithm in such a non-linear task, we generated the following
synthetic data. First, we generate 100 individual objects for training and 100 for
testing. The data objects are three-dimensional vectors representing players of the
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rock-paper-scissors game. The three attributes of the players are the probabilities
that the player will choose ‘rock’, ‘paper’, or ‘scissors’, respectively. The probabil-
ity P(r | x) of player x choosing rock is determined by P(r | x) = exp(wu)/z,
where u is a random number between 0 and 1, w is a steepness parameter, and 2
is a normalization constant ensuring that the three probabilities sum up to one. By
varying the width w of the exponential function, we can generate players tending to
favor one of the three choices over the others or to play each choice almost equally
likely.

We generate 1000 player couples for training by randomly selecting the first and the
second player from the set of training players. Each couple represents a game of
rock-paper-scissors and the outcome of this game can be considered as stochastic in
nature, because the strategy of a player is chosen in accordance with the probabili-
ties of picking a particular fixed strategy from that player’s set of mixed strategies.
For example, when a fixed rock player plays against a mixed strategy player that
plays scissors with probability 0.8 and paper with probability 0.2, then we have a
higher chance of observing a game outcome for which the fixed rock player wins
from the second player. Yet, the same couple of players with different outcomes can
simultaneously occur in the training data. During training and testing, the outcome
of a game is —1, 0, or 1 depending on whether the first player loses the game, the
game ends in a tie, or the first player wins the game, respectively. We use the game
outcomes as the labels of the training couples.

For testing purposes, we use each possible couple of test players once, that is, we
have a test set of 10000 games. However, instead of using the outcome of a single
simulated game as label, we assign for each test couple the element of the reciprocal
relation that corresponds to the probability that the first player wins:

1
QG x)=P(p [ x)P(r|x)+ 5P x)P(p|x) + Pr|x)P(s | x)
1 1
P [ x)P(r | xX) + P(s [ x)P(p | x) + 5P(s | x)P(s | x).
The task is to learn to predict this reciprocal relation. The algorithm estimates the
relation by rescaling the predicted outputs that lie in the interval [—1, 1], as dis-
cussed above.

As mentioned above, we optimize a squared loss function on training data®. The
values of the regularization and bias parameters are selected with a grid search and
cross-validation performed on the training set. We conduct experiments with three
data sets generated using the values 1, 10, and 100 for the parameter w. These pa-
rameterizations are illustrated in Figure 1. The value w = 1 corresponds to the sit-
uation where each player tends to play ‘rock’, ‘paper’, or ‘scissors’ almost equally

3" For running the experiments, we use our RLScore software package, available at ht tp:
//www.tucs.fi/rlscore.
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Rock Scissors Rock Scissors Rock Scissors

Fig. 1. Illustration of the players in the three data sets generated using the values 1 (left),
10 (middle), and 100 (right) for the parameter w.

w=1 w=10  w =100

I | 0.000209 0.000445 0.000076
IT | 0.000162 0.006804 0.131972
III | 0.000001 0.006454 0.125460

Table 1

Mean-squared error obtained with three different approaches: regularized least-squares
with the kernel K}D (D), regularized least-squares with the kernel K% (II) and a naive ap-
proach consisting of always predicting 1,/2 (III).

w=1 w =10 w = 100

I | 0.538200 0.957800 0.995000
Ir|os 0.5 0.592950
I | 0.5 0.5 0.5

Table 2

Classification accuracy obtained with three different approaches: regularized least-squares
with the kernel K}I’ (D), regularized least-squares with the kernel K%’ (II) and a naive ap-
proach consisting of always predicting a tie (ILI).

likely, that is, the players are concentrated in the center of the triangle in the figure.
For w = 100 the players always tend to play only their favorite item, that is, the
players’ strategies are concentrated near the three corners of the triangle. Finally,
w = 10 corresponds to a setting between these two extremes.

The regression results are presented in Table 1. We report the mean squared-error
obtained by regularized least-squares in a transitive and intransitive setting, re-
spectively by specifying the kernels Kt and K. For K¢ a simple linear kernel
is chosen in both cases. In addition, in Table 2 we present the results of binary
classification experiments, in which the aim is to correctly predict the direction of
preference, that is, whether the first player is more likely to win the second player
or vice versa. In both regression and classification experiments, we also compare
these two approaches with a naive heuristic consisting of always predicting 1/2 (a
tie).

In the regression experiments, the heuristic of always predicting a tie can be inter-
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preted as quite optimal for w = 1, because in that case all players are located in
the center of the triangle. This explains why neither the transitive nor the intransi-
tive regularized least-squares algorithm can outperform this naive approach when
w = 1. We conclude that there is not much to learn in this case. For the other two
values of w, the situation is different, with the regularized least-squares algorithm
with the intransitive kernel performing substantially better than the naive approach,
while the performance with the transitive kernel being close to that of the naive
one. Unsurprisingly, learning the intransitive reciprocal relations is more difficult
when the probabilities of the players are close to the uniform distribution (w = 10)
than in case the players tend to always play their favorite strategy (w = 100). Espe-
cially in this last case, regularized least-squares with an intransitive kernel performs
substantially better than its transitive counterpart. This supports the claim that our
approach works well in practice, when the reciprocal relation to be learned indeed
violates weak stochastic transitivity. The stronger this violation, the more the ad-
vantage of an intransitive kernel will become visible.

In the binary classification experiments, the heuristic of always predicting a tie or
the same class has the classification accuracy equal to 0.5 in all cases, because each
pair of players is twice in the test data. For the trained predictors, the most difficult
case is now with the parameter w = 1, because the game outcomes are almost
random when both players are in the center of the triangle. For the values w = 10
and w = 100, RLS with the kernel K is able to perform the classification almost
perfectly, while the classification accuracy with the kernel K% is of random level.

4.2  Theoretical biology

Non-transitive competition between species has recently received attention in theo-
retical biology. This phenomenon has been observed in many natural systems (see
e.g. Sinervo and Lively [1996], Boddy [2000], Kerr et al. [2002], Czaran et al.
[2002], Nowak [2002], Kirkup and Riley [2004], Kérolyi et al. [2005], Reichen-
bach et al. [2007]) and it has been studied and analyzed with computer simulations
(see e.g. Frean and Abraham [2001], Frean [2006]). The simulations usually consist
of an initial population of individuals or species and some limited resource, such
as space, for which they compete. Most of the studies of non-transitive systems
have considered rock-paper-scissors type of relationships between the competing
species. Some of the studies and simulations also address competition of mutated
individuals of a single species having a similar type of non-transitive fashion as that
of interspecific competition. Below, we use the term species when referring to the
individuals in a cyclic competitive structure.

Inspired by the simulations made by Frean [2006], we consider the following set-

ting. Suppose we have a number of competing species, each of them having two
features. Namely, a species x has a strong point denoted by s(x) and a weak point
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denoted by w(x), and the values of both features are between 0 and 1. Then, for
a couple of individuals, say (x,x’), we define a label y, whose value equals 1 if
x dominates x’ and —1 in the opposite case. The dominance is determined by the
following formula:

y = sign(u(s(x"), w(x)) — u(s(x),w(x"))) (12)
where sign is the signum function and
u(a,b) =min(ja — b|,1 —|a —b|). (13)

We observe that the species x dominates x’ if and only if the strong point s(x) of
x is closer to the weak point w(x’) of x’ than s(x’) is to w(x), the closeness being
defined by (13), expressing distance considering the unit interval [0, 1] as a circular
domain.

We elucidate the strong and weak points of a species with the following toy example
about animals. The strong point of an animal can be considered, for example, as the
colour that the animal is best able to see and the weak point the colour of the animal.
Further, the colour can be considered as a continuous variable so that the smaller
the distance between the colours s(x) and w(x’) is, the better x is able to see x’.
Then, an animal x can dominate animal X’ if the distance is small enough.

We set up an experiment in which we randomly generate an initial population of
2,500 species so that their strong and weak points have been drawn from a uniform
distribution between 0 and 1. Then, we select randomly two species x and x’ from
the population for which we compute a label y with (12). In the confrontation of
these two species, we say that x is the winner and x’ is the loser if y = 1 and vice
versa if y = —1. After the confrontation, the loser is replaced with a mutation x of
the winner. The strong and weak points of the mutant are obtained from the strong
and weak points of the winner by shifting them by small amounts whose sizes are
drawn from a normal distribution having zero mean and standard deviation 0.005.

Unlike in the experiments done by Frean [2006], we adopt an approach in which we
do not consider any local neighborhood of the species, that is, the two confronting
species are randomly selected from the current population of 2, 500 species. This is
done in order to simplify the experimental setting. In addition, for each confronta-
tion of two species, there is always a winner and a loser, while this was the case in
the experiments of Frean [2006] only if the value of (13) for s(x) and w(x’) was
smaller than a certain threshold. A next couple was randomly selected in case of
the value being larger than the threshold. Finally, our closeness function (13) dif-
fers from the one used by Frean [2006] so that the strong and the weak points are
cyclic in the sense that values 0 and 1 can be considered to be equal. We adopted
the cyclic property of the weak and strong points in order to eliminate the special
case of the values being close to 0 and 1.
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Fig. 2. The set of 2, 500 species after 900, 000 (left) and 1, 000, 000 (right) confrontations.

Method Accuracy MSE

I 0.960600 0.000146
I 0.680000 0.007835
1 0.500000 0.007757

Table 3

Classification accuracy (left) and mean squared regression error (right) obtained with three
different approaches: regularized least-squares with the kernel K }b (D), regularized least-
squares with the kernel K%’ (II) and a naive approach consisting of always predicting a tie
in classification and 0.5 in regression.

We perform altogether 1, 000, 000 subsequent confrontations of two species. In the
beginning, there are no clusters, since the strong and weak points of the species
are uniformly distributed. However, the species start to form small clusters after a
couple of tens of thousands of confrontations and large clusters when a couple of
hundreds of thousands of confrontations has passed. We sample our training and
test sets from the 100,000 last confrontations, since at this point the simulation
has already formed quite stable clusters. Namely, we randomly sample without
replacement 1,000 couples for a training set and 10, 000 for a test set. The clus-
ters formed after 900, 000 and 1,000, 000 confrontations are depicted in Figure 2.
The figures are two consecutive snapshots of a movie which is available online at
http://staff.cs.utu.fi/~aatapa/tbmovie.avi.

We train two RLS classifiers with the training set of 1000 confrontations and use
them for predicting the outcomes of the unseen 10000 confrontations in the test set.
The first classifier uses a transitive kernel K% and the second one an intransitive
kernel K?. The base kernel K¢ is chosen to be the Gaussian radial basis function
kernel for both the cases, that is,

K?(x,x') = e~ ((5(x)=5(x")? +(w(x)—w(x")?)

Y

(14)

The value of the regularization and bias parameters, and the width «y of the Gaussian
kernel are selected with a grid search and cross-validation performed on the training
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Fig. 3. Illustration of 100 randomly selected test couples. Left: the dotted lines denote the
69 couples classified correctly and the dashed lines denote the 31 incorrectly classified ones
using RLS with the transitive kernel. Right: the dotted lines denote the 89 couples classified
correctly and the dashed lines denote the 11 incorrectly classified ones using RLS with the
intransitive kernel.

set.

The experimental results are listed in Table 3. Moreover, a random sample of 100
test couples and their classifications by the transitive and intransitive RLS classifier
are illustrated in Figure 3. From the results, we observe that the classifier using the
transitive kernel can learn the relation to some extent, but the intransitive kernel
is clearly better for this purpose. In addition to the classification experiments, we
also conduct experiments in which we aim to correctly regress the value of the
reciprocal relation between two species. The value of the relation for two species is
obtained via using the scaling function (8) in place of the signum function in (12).
One can clearly observe that here as well the intransitive kernel performs clearly
better than its transitive counterpart.

5 Conclusion

In this paper the problem of learning intransitive reciprocal relations was tackled.
To this end, we showed that existing approaches for preference learning typically
exhibit strong stochastic transitivity as property, and we introduced an extension
of the existing RankRLS framework to predict reciprocal relations that can violate
weak stochastic transitivity. In this framework, the choice of kernel function defines
the transition from transitive to intransitive models. By choosing a feature mapping
based on the Kronecker-product, we are able to predict intransitive reciprocal rela-
tions. Experiments on benchmark problems in game theory and theoretical biology
confirmed that our approach substantially outperforms the ranking approach when
intransitive reciprocal relations are present in the data. Given the absence of pub-
licly available datasets on learning intransitive reciprocal relations, we are willing
to share our data with other researchers, and in the future we hope to apply our
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algorithm in other domains as well.

From a decision making point of view, one might argue that the models proposed in
this paper suffer from some lack of interpretability. However, for most real-world
data modeling problems, a clear trade-off between interpretability and performance
can be expected. Our methods rather incline to the latter side of the balance: state-
of-the-art predictive performance but a limited interpretability. Nevertheless, inter-
pretability can simply be preserved by choosing a linear kernel for K¢, while still
not necessarily imposing transitivity by using the Kronecker product kernel on top
of this linear kernel. Furthermore, as another important property of commonly used
decision models, monotonicity can also be guaranteed in the same way, since a lin-
ear model always satisfies monotonicity, but unfortunately not vice versa, because
monotone models do not necessarily have to be linear models. For kernel methods
in particular, it is widely accepted that monotonicity cannot be easily guaranteed in
the dual formulation. As a specific form of incorporating domain knowledge into
kernel methods, Le et al. [2006] recently proposed an algorithm capable of enforc-
ing monotonicity in regression problems, but the topic definitely remains an open
challenge that deserves further attention in future work.
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