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Abstract

One of the main learning tasks in machine learning is the one of classifying data items. The basis for such a task is
usually a training set consisting of labeled patterns. In real-world settings, however, such labeled data are usually scarce,
and the corresponding models might yield unsatisfying results. Unlabeled data, on the other hand, can often be obtained
in huge quantities without much additional effort. A prominent research direction in the field of machine learning are
semi-supervised support vector machines. This type of binary classification approach aims at taking the additional
information provided by the unlabeled patterns into account to reveal more information about the structure of the data
at hand. In some cases, this can yield significantly better classification results compared to a straightforward application
of supervised models. One drawback, however, is the fact that generating such models requires solving difficult non-
convex optimization tasks. In this work, we present a simple but effective gradient-based optimization framework to
address the induced problems. The resulting method can be implemented easily using black-box optimization engines
and yields excellent classification and runtime results on both sparse and non-sparse data sets.
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1. INTRODUCTION

One of the most important machine learning tasks is
classification. If sufficient labeled training data are given,
there exists a variety of techniques like the k-nearest neigh-
bor -classifier or support vector machines (SVMs) [2, 3] to
address such a task. However, labeled data are often rare
in real-world applications. One active research field in
machine learning is semi-supervised learning [4, 5]. In
contrast to supervised methods, the latter class of tech-
niques takes both labeled and unlabeled data into ac-
count to construct appropriate models. A well-known con-
cept in this field are semi-supervised support vector ma-
chines (S3VMs) [6, 7, 8], which depict the direct exten-
sion of support vector machines to semi-supervised learn-
ing scenarios. The key idea is depicted in Figure 1: The

IThis work depicts an extended version of the associated confer-
ence paper that has been presented at the 1st International Confer-
ence on Pattern Recognition Applications and Methods [1]. It con-
tains additional theoretical derivations related to incorporating an
offset term and a balancing constraint. Moreover, the experimental
evaluation has been extended by adding two more semi-supervised
competitors as well as a variety of high-dimensional sparse data sets.
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aim of a standard support vector machine consists in find-
ing a hyperplane which separates both classes well such
that the margin is maximized. It is obvious that, in case
of lack of labeled data, suboptimal models might be ob-
tained, see Figure 1 (a). Its semi-supervised variant aims
at taking the unlabeled patterns into account by search-
ing for a partition (into two classes) such that a subsequent
application of a modified support vector machine leads to
the best result. Under certain conditions, unlabeled data
can provide valuable information, see Figure 1 (b). While
being very appealing from a practical point of view, semi-
supervised support vector machines lead to a combinato-
rial optimization task that is difficult to approach.

The original problem formulation of semi-supervised
support vector machines was given by Vapnik and
Sterin [8] under the name of transductive support vector
machines. From an optimization point of view, the first
approaches have been proposed in the late nineties by
Joachims [7] and Bennet and Demiriz [6]. In general, there
are two lines of research, namely (a) combinatorial and
(b) continuous optimization schemes. The brute-force ap-
proach (which tests every possible partition), for instance,
is among the combinatorial schemes since it aims at di-
rectly finding a good assignment for the unknown labels.

1.1. Related Work

For both the combinatorial and the continuous research
direction, a variety of different techniques has been pro-
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(a) SVM (b) S3VM

Figure 1: The concepts of support vector machines and their ex-
tension to semi-supervised learning settings. Labeled patterns
are depicted as red squares and blue triangles and unlabeled
patterns as black points, respectively.

posed in recent years. The former one is usually addressed
by label-switching strategies [7, 9, 10] or by reformulat-
ing the original task as semi-definite programming prob-
lem [11, 12]. Further, since both real and integer variables
are present in the optimization task (see below), mixed-
integer programming solvers can be applied to compute
optimal solutions up to machine precision [6]. Another
way to obtain optimal solutions are branch and bound
frameworks, see Chapelle et al. [13] for an appropriate al-
gorithm.

The continuous optimization perspective leads to a real-
valued but non-convex task (see below). Among the first
schemes that considered this perspective was the gradient
descent framework of Chapelle and Zien [14], which was
based on the replacement of the original loss functions by
appropriate surrogates. Similar ideas led to the contin-
uation framework [15], to deterministic annealing meth-
ods [16, 10], and to the use of the (constrained) concave-
convex procedure [17, 18, 19]. An approach closely re-
lated to the one proposed in this work is the quasi-Newton
framework proposed by Reddy et al. [20]; however, they do
not consider differentiable surrogates and therefore apply
more complicated sub-gradient methods.

Despite the methods mentioned above, a variety of
other semi-supervised support vector machine variants
have been proposed in the literature including, e.g., graph-
based methods [21]. Due to lack of space, we refer to
Chapelle et al. [4, 22] and Zhu and Goldberg [5] for compre-
hensive surveys. It is worth pointing out that support vec-
tor machines can also be extended to unsupervised learn-
ing settings (without any labeled patterns at all) in a very
similar kind of way. This variant is known as maximum
margin clustering and has received a considerable interest
in recent years [23, 24, 25, 26, 27, 28].

1.2. Contribution

In this work, we will show that quasi-Newton
schemes [29] along with direct computational shortcuts for
sparse and non-sparse data depict simple but very effective
approaches for the task at hand. In particular, we make
use of an appropriate differentiable surrogate of the origi-
nal objective and show that one can directly obtain com-
putational shortcuts for non-sparse data (and arbitrary

kernels) via the subset of regressors [30] scheme, and for
sparse data (and the linear kernel) by taking advantage
of the explicit structure of the objective function and its
gradient. The induced optimization approaches are con-
ceptually very simple and can be implemented easily via
standard black-box optimization tools.1

As part of the contribution, we provide a detailed exper-
imental evaluation and compare both the classification and
runtime performance of our implementation with state-of-
the-art semi-supervised support vector machine implemen-
tations on a variety of sparse and non-sparse data sets.
The results clearly indicate the usability and effectiveness
of our implementation.

1.3. Notations

We use [m] to denote the set {1, . . . ,m}. Given a vector
y ∈ Rn, we use yi to denote its i-th coordinate. Further,
the set of all m×n matrices with real coefficients is denoted
by Rm×n. Given a matrix M ∈ Rm×n, we denote the
element in the i-th row and j-th column by [M]i,j . For
two sets R = {i1, . . . , ir} ⊆ [m] and S = {k1, . . . , ks} ⊆
[n] of indices, we use MR,S to denote the matrix that
contains only the rows and columns of M that are indexed
by R and S, respectively. Moreover, we set MR,[n] =
MR. All vectors are assumed to be column vectors and the
superscript T is used to denote the transpose of a matrix
or a vector, i. e., yT is a row vector and MT ∈ Rn×m is
the transpose of the matrix M ∈ Rm×n.

2. CLASSIFICATION TASK

In the following, we will consider a set Tl =
{(x1, y

′
1), . . . , (xl, y

′
l)} of labeled patterns and a set Tu =

{xl+1, . . . ,xl+u} ⊂ X of unlabeled training patterns that
belong to an arbitrary set X.

2.1. Support Vector Machines

The concept of support vector machines can be seen as
instance of regularization problems of the form

inf
f∈H

{
1

l

l∑
i=1

L
(
y′i, f(xi)

)
+ λ||f ||2H

}
, (1)

where λ > 0 is a fixed real number, L : Y ×R→ [0,∞) is a

loss function and ||f ||2H is the squared norm in a so-called
reproducing kernel Hilbert space H ⊆ RX = {f : X → R}
induced by a kernel function k : X×X → R [3]. Here, the
first term measures the loss caused by the prediction func-
tion on the labeled training set and the second one penal-
izes complex functions. Plugging in different loss functions
leads to various models; one of the most popular choices
is the hinge loss L(y, t) = max(0, 1− yt), which yields the
original definition of support vector machines [3, 31], see
Figure 2 (a).2

1The code can be obtained from the authors upon request.
2The latter formulation does not include a bias term b ∈ R, which

addresses translated data. For complex kernel functions like the RBF
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2.2. Semi-Supervised SVMs

Given the additional set Tu = {xl+1, . . . ,xl+u} ⊂ X
of unlabeled training patterns, semi-supervised support
vector machines [6, 7, 8] aim at finding an optimal pre-
diction function for unseen data based on both the la-
beled and the unlabeled part of the data. More precisely,
we search for a function f∗ ∈ H and a labeling vector
y∗ = (y∗l+1, . . . , y

∗
l+u)

T ∈ {−1,+1}u that are optimal with
respect to minf∈H,y∈{−1,+1}u J(f,y) where J(f,y) =

1

l

l∑
i=1

L1
(
y′i, f(xi)

)
+
λ′

u

l+u∑
i=l+1

L1
(
yi, f(xl+i)

)
+ λ||f ||2H.

(2)
Here, λ′, λ > 0 are user-defined parameters and L1 : R ×
R→ [0,∞) a loss function. Thus, the main task consists in
finding the optimal assignment vector y for the unlabeled
part; the combinatorial nature of this task renders the
optimization problem difficult to solve.

When using the hinge loss L1(y, f(x)) = max(0, 1 −
yf(x)) for the above setting, the optimal assignments
for the vector y and a fixed f ∈ H are given by yi =
sgn(f(xi)) [14]. Thus, the induced loss L2(f(x)) :=
max(0, 1 − |f(x)|) on the unlabeled patterns (called the
effective loss) penalizes predictions around the origin, i. e.,
the overall loss increases if the decision function f passes
through these patterns, see Figure 2 (b). By applying the
representer theorem [31] for latter task, it follows that an
optimal solution f ∈ H is of the form

f(·) =

n∑
i=1

cik(xi, ·) (3)

with coefficients c = (c1, . . . , cn)
T ∈ Rn and n = l + u.

Hence, one obtains a continuous optimization task that
consists in finding the optimal coefficient vector c ∈ Rn.

3. GRADIENT-BASED OPTIMIZATION

One of the main drawbacks of the hinge loss is that
the induced objective function is not differentiable, which
rules out the use of some of the most mature off-the-shelf
optimization tools. In this section, we will propose dif-
ferentiable surrogates for the objective and will show how
to efficiently apply a special gradient-based optimization
framework [29] that is well-suited for the task at hand.

3.1. Differentiable Surrogates

Since the original objective function is not differentiable,
we follow Chapelle and Zien [14] and propose the following

kernel, adding this bias term does not yield any known advantages,
both from a theoretical as well as practical point of view [3]. In the
remainder of this work, we will mostly omit the bias term for the
sake of exposition; however, such a bias term can be explicitly incor-
porated into the optimization frameworks presented in this work, as
we will show below.
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Figure 2: The hinge loss L(y, t) = max(0, 1 − yt) and its dif-
ferentiable surrogate L(y, t) = 1

γ
log(1 + exp(γ(1 − yt))) with

y = +1 and γ = 20 are shown in Figure (a). The effective hinge
loss function L(t) = max(0, 1− |t|) along with its differentiable
surrogate L(t) = exp(−st2) with s = 3 are shown in Figure (b).

(similar but slightly different) surrogate for it, see Figure 2.
Here, the differentiable replacement for the hinge loss is
the modified logistic loss [32]

L1(y, f(x)) =
1

γ
log (1 + exp(γ(1− y′if(xi)))) ,

and the replacement for the unlabeled part is [14]

L2(f(x)) = exp(−3(f(xl+i))
2
).

Substituting these loss functions and (3) into (2), the ob-
jective to be minimized becomes

Fλ′(c) =
1

l

l∑
i=1

1

γ
log

(
1 + exp

(
γ(1− y′i

n∑
i=1

cik (xi, ·))

))
(4)

+
λ′

u

n∑
i=l+1

exp

−3

(
n∑
i=1

cik (xi, ·)

)2


+ λ

n∑
i=1

n∑
j=1

cicjk(xi,xj)

using ||f ||2H =
∑n
i=1

∑n
j=1 cicjk(xi,xj) [31]. The next the-

orem shows that both a function and a gradient call can
be performed efficiently:

Theorem 1. For a given c ∈ Rn, one can compute the
objective Fλ′(c) and the gradient ∇Fλ′(c) in O(n2) time.
The overall space consumption is O(n2).

Proof. The gradient is given by

∇Fλ′(c) = Ka + 2λKc (5)

with a ∈ Rn and

ai =


−1

l
· exp(γ(1− f(xi)y

′
i))

1 + exp(γ(1− f(xi)y′i))
· y′i for i ≤ l

−6λ′

u
· exp

(
−3(f(xi))

2
)
· f(xi) for i > l

.

Since all predictions f(x1), . . . , f(xn) can be computed in
O(n2) total time, one can compute the vector a ∈ Rn
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Algorithm 1 QN-S3VM

Require: A labeled training set Tl = {(x1, y
′
1), . . . , (xl, y

′
l)}, an unla-

beled training set Tu = {xl+1, . . . ,xn}, model parameters λ′, λ, an
initial (positive definite) inverse Hessian approximation H0, and a
sequence 0 < α1 < . . . < ατ .

1: Initialize c0 via supervised model.
2: for i = 1 to τ do
3: k = 0
4: while termination criteria not fulfilled do
5: Compute search direction pk via (6)
6: Update ck+1 = ck + βkpk
7: Update Hk+1 via (7)
8: k = k + 1
9: end while

10: c0 = ck
11: end for

and therefore the objective and the gradient in O(n2) time
too. The space requirements are dominated by the kernel
matrix K ∈ Rn×n in the above setting.3

Note that numerical instabilities can occur when evalu-
ating exp(γ(1− f(xi)y

′
i)) for a function or a gradient call.

However, one can deal with these degeneracies in a safe

way since log(1 + exp(t)) − t → 0 and exp(t)
1+exp(t) − 1 → 0

converge rapidly for t→∞. Thus, each function and gra-
dient evaluation can be performed spending O(n2) time in
a numerically stable manner. Throughout the work, the
parameter γ is fixed to 20.

3.2. Quasi-Newton Framework

One of the most popular quasi-Newton schemes is the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) [29] method,
which we will now sketch in the context of the given
task. The overall algorithmic framework is given in Al-
gorithm 1: The initial candidate solution is obtained via
Equation (4) while ignoring the (non-convex) unlabeled
part (i. e., λ′ = 0). The influence of the unlabeled part is
then increased gradually via the sequence α1, . . . , ατ .4 For
each parameter αi, a standard BFGS optimization phase is
performed, i.e., a sequence ck+1 = ck + βkpk of candidate
solutions is generated, where pk is computed via

pk = −Hk∇Fαi·λ′(ck) (6)

and where the step length βk is computed via line search.
The approximation Hk of the inverse Hessian is then up-
dated via

Hk+1 = (I − ρkskzT
k )Hk(I − ρkzksT

k ) + ρksks
T
k (7)

with zk = ∇Fαi·λ′(ck+1) − ∇Fαi·λ′(ck), sk = ck+1 − ck,

and ρk = (zT
k sk)

−1
. New candidate solutions are gener-

ated as long as a convergence criterion is fulfilled (e.g., as

3The space consumption can be reduced to O(1). The provided
bounds, however, depict the needed space consumptions needed if
one resorts to matrix-based implementations.

4This sequence can be seen as annealing sequence, which is a
common strategy [7, 16] to create easier problem instances at early
stages of the optimization process and to deform these instances to
the final task throughout the overall execution.

long as ||∇Fαi·λ′(ck)|| > ε is fulfilled for a small ε > 0
or as long as the number of iterations is smaller than a
used-defined number). As initial approximation, one can
resort to H0 = γI for γ > 0. An important property of the
update scheme is that it preserves the positive definiteness
of the inverse Hessian approximations [29].

3.3. Computational Speed-Ups

Computational bottlenecks arise when applying the op-
timization engines described above: Firstly, the recurrent
computation of the objective and gradient is cumbersome.
Secondly, the approximation of the Hessian’s inverse is, in
general, not sparse. We will now show how to alleviate
these two problems.

3.3.1. Linear Kernel and Sparse Data

For the special case of a linear kernel, one can obtain
computational savings in the following way: Assume that
we are given patterns in X = Rd and let X ∈ Rn×d denote
the data matrix containing the training patterns as rows.
Since one can write the kernel matrix as K = XXT ∈
Rn×n, one can achieve substantial computational savings
for the recurrent computation of both the objective and
the gradient by avoiding its explicit construction:

Theorem 2. For a linear kernel with patterns in X = Rd,
one can compute the objective Fλ′(c) and the gradient
∇Fλ′(c) in O(nd) time using O(nd) space for a given can-
didate solution c ∈ Rn.

Proof. Due to the linear kernel, one can compute

Kc = X(XTc) (8)

and thus all predictions f(x1), . . . , f(xn) in O(nd) time.
In the same manner, one can obtain cTKc and Ka in
O(nd) time (where the vector a ∈ Rn can be computed in
O(n) time given the predictions). Thus, both the objective
Fλ′(c) and the gradient ∇Fλ′(c) can be obtained in O(nd)
time. The space requirements are bounded by the space
needed to store the data matrix X ∈ Rn×d, which isO(nd).

Thus, if the data resides in a low-dimensional fea-
ture space (i. e., d � n), one can reduce the runtime
significantly for function and gradient calls. For high-
dimensional but sparse data (i. e., if the matrix X ∈ Rn×d
contains only s � nd nonzero entries), one can further
reduce the computational cost in the following way:

Theorem 3. For a linear kernel with patterns in X = Rd
and data matrix X ∈ Rn×d with s � nd nonzero en-
tries, one can compute the objective Fλ′(c) and the gra-
dient ∇Fλ′(c) in O(s) time using O(s) space for a given
candidate solution c ∈ Rn.

Proof. Without loss of generality, we assume that s ≥
n − 1 holds. Similar to the derivations above, one can
compute Kc = X(XTc) and therefore the predictions
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f(x1), . . . , f(xn) as well as a ∈ Rn in O(s) time using
standard sparse matrix multiplication techniques. In the
same way, one can compute cTKc and Ka in O(s) time.
Hence, both the objective Fλ′(c) and the gradient ∇Fλ′(c)
can be obtained in O(s) time spending O(s) space.

3.3.2. Low-Dimensional Search Space

For the case of a non-linear kernel, one can resort to
the subset of regressors method [33] to reduce these com-
putational costs, i. e., one can approximate the original
hypothesis (3) via

f̂(·) =

r∑
k=1

ĉjkk(xjk , ·), (9)

where R = {j1, . . . , jr} ⊆ {1, . . . , n} is a subset of indices.
Using this approximation scheme leads to a slightly mod-
ified objective F̂λ′(ĉ) for ĉ ∈ Rr, where the predictions
f(x1), . . . , f(xn) are replaced by their corresponding ap-

proximations f̂(x1), . . . , f̂(xn) in the objective (4). Sim-
ilar derivations as for the non-approximation case show
that the gradient ∇F̂λ′(ĉ) is then given as

∇F̂λ′(ĉ) = KR a + 2λKR,R ĉ, (10)

where f has to be replaced by f̂ in the former definition of
the vector a ∈ Rn. It is easy to see that one can compute
both the new objective as well as its gradient in an efficient
kind of way:

Theorem 4. For ĉ ∈ Rr, the approximated objective
F̂λ′(ĉ) and the gradient ∇F̂λ′(ĉ) can be computed in O(nr)
time spending O(nr) space.

Proof. All predictions f̂(x1), . . . , f̂(xn) can be computed
in O(nr) time for a ĉ ∈ Rr. Given these predictions, one
can compute the modified vector a ∈ Rn in O(n) time.
The remaining operations for obtaining the new objec-
tive F̂λ′(ĉ) and its gradient ∇F̂λ′(ĉ) can be performed in
O(nr + r2) = O(nr) time. The space consumption, domi-
nated by KR, is O(nr).

Note that the subset of regressors method can also be
implemented via the kernel PCA map [34] by considering
only the first r eigenvalues and by applying the computa-
tional shortcut for the linear kernel given the associated
(precomputed) kernel matrix.

3.3.3. Limited Memory Quasi-Newton

The non-sparse approximation of the Hessian’s inverse
for the quasi-Newton scheme leads to a O(n2) time and
to a O(n2) space consumption. To reduce these com-
putational costs, one can resort to the so-called L-BFGS
method [29], which depicts a memory and time saving vari-
ant of the original BFGS scheme. In a nutshell, the idea
consists in generating the approximations H0,H1, . . . only
based on the last m � n iterations and to perform low-
rank updates on the fly without storing the involved ma-
trices explicitly. This leads to an update time of O(mn)

for all operations related to the intermediate optimization
phases (not counting the time for function and gradient
calls). As pointed out by Nocedal and Wright [29], small
values for m are usually sufficient in practice (ranging
from, e.g., m = 3 to m = 50). Thus, assuming m to
be a relatively small constant, the operations needed by
the optimization engine essentially scale linearly with the
number n of optimization variables (per iteration).

3.4. Offset Term and Balancing Constraint

For the above derivations, the offset term b was omitted.
It is worth pointing out that one can easily integrate such
a term into the optimization scheme by considering an
additional dimension via cT → (cT, b). In this case, the
hypothesis (3) becomes

f(·) =

n∑
i=1

cik(xi, ·) + b (11)

and one has to adapt both the objective and the gradient
appropriately. It can also be useful to incorporate addi-
tional knowledge via a balancing constraint of the form∣∣∣∣∣ 1u

u∑
i=1

max(0, yi)− p

∣∣∣∣∣ < ε (12)

with user-defined ε > 0 and p ∈ [0, 1], where the latter pa-
rameter is an estimate for the ratio of positive assignments
for the unlabeled patterns (appropriate estimates can be
obtained via the labeled part of the data).

In the remainder of this work, we consider a modified
version of the above constraint having the form [14]

1

u

u∑
i=1

〈w,xi〉+ b =

l∑
i=1

y′i. (13)

For the linear kernel, one can simplify this constraint by
enforcing

∑u
i=1 xi = 0, which leads to b =

∑l
i=1 y

′
i [15].5

The easiest way to incorporate such a constraint for non-
linear kernels is to center the data in the feature space
via Φi → Φi − m̂ using the (approximated) mean m =
1
M

∑
k Φk of the mapped patterns.

4. EXPERIMENTS

In the remainder of this work, we will present a detailed
comparison of several competing semi-supervised support
vector machine implementations on a variety of data sets.

4.1. Experimental Setup

All runtime analyses have been performed on a standard
desktop computer with a Intel(R) Core(TM) i5 CPU at
2.80GHz running Ubuntu 12.04.

5Note that for sparse data, centering the data usually yields a
dense data matrix. However, one can perform the desired centering
steps “on the fly” when computing both the function and gradient
calls without affecting the computational efforts.
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(a) G2C (b) G4C (c) Moons

Figure 3: Distribution of the artificial data sets (d = 2). The
red squares and blue triangles depict the labeled patterns; the
remaining black points correspond to the unlabeled ones.

4.1.1. Implementation Details

Our implementation is based on Python, the Scipy

package, and the Numpy package. The function and gradi-
ent evaluations are implemented via efficient matrix oper-
ations provided by the Numpy package. To avoid numerical
instabilities (see above), we make use of log(1+exp(t)) ≈ t
and exp(t)

1+exp(t) ≈ 1 for t ≥ 500 for the computation of the ob-

jective and its gradient. The quasi-Newton framework is
implemented via the optimize module of the Scipy pack-
age (using fmin l bfgs b with m = 50). We denote the
resulting implementation by QN-S3VM.

4.1.2. Data Sets

We consider several artificial and real-world data sets,
see Table 1 for an overview. For each scenario described
below, we use the first half of a data set as training and
the second half as test set. To induce semi-supervised
scenarios, we will split each training set instance into a
labeled and an unlabeled part and use different ratios for
the particular setting (where l, u, t denotes the number of
labeled, unlabeled, and test patterns, respectively).

Artificial Data Sets. The first artificial data set is com-
posed of two Gaussian clusters; to generate it, we draw
n/2 points from each of two multivariate Gaussian distri-
butions Xi ∼ N (mi, I), where m1 = (−2.5, 0.0, . . . , 0.0) ∈
Rd and m2 = (+2.5, 0.0, . . . , 0.0) ∈ Rd. The class label
of a point corresponds to the distribution it was drawn
from, see Figure 3 (a). If not noted otherwise, we use
n = 500 and d = 500 and denote the induced data set by
G2C. The second artificial data set aims at generating a
possibly misleading structure: Here, we draw n/4 points
from each of four multivariate Gaussian distributions Xi ∼
N (mi, I), where m1 = (−2.5,−5.0, 0.0, . . . , 0.0), m2 =
(−2.5,+5.0, 0.0, . . . , 0.0), m3 = (+2.5,−5.0, 0.0, . . . , 0.0),
and m4 = (+2.5,+5.0, 0.0, . . . , 0.0), see Figure 3 (b). The
points drawn from the first two distributions belong to
the first class and the remaining one to the second class.
Again, we fix n = 500 and d = 500 and denote the cor-
responding data set by G4C. Finally, we consider the well-
known two-dimensional Moons data set with n = 1, 000
points, see Figure 3 (c).

Real-World Data Sets. In addition to these artificial data
sets, we consider several real-world data sets including the

Data Set n d Data Set n d

G2C 500 500 G4C 500 500
Moons 200 2 COIL(i,j) 144 400
USPS(8,0) 2,261 256 USPS(2,5) 1,645 256
USPS(2,7) 1,721 256 USPS(3,8) 1,532 256
MNIST(i,j) 10,000 784 pcmac 1,946 7,511
real-sim 72,309 20,958 gcat 23,119 47,236
ccat 23,119 47,236 aut-avn 71,175 20,707

Table 1: Data sets considered in the experimental evaluation,
each consisting of n patterns having d features.

COIL [35], the USPS [2], and the MNIST6 data sets. For the
COIL data set, we reduce the input dimensions of each im-
age from 128×128 to 20×20 and use COIL(i,j) to denote
the binary classification task induced by the objects i and
j out of the available 20 objects. A similar notation is
used for the binary classification tasks induced the USPS

and MNIST data set. For all these data sets, we rescaled
the pixels such that the resulting values are in [0, 1]. Fi-
nally, following Sindhwani and Keerthi [10], we consider
several large-scale sparse data sets (real-sim, gcat, ccat,
aut-avn, and pcmac) in our experimental evaluation. Due
to lack of space, we refer to Sindhwani and Keerthi [10]
for a detailed description of these data set instances.

4.1.3. Competing Approaches

We consider the LIBSVM [36] implementation as baseline.
As semi-supervised competitors, we make use of the con-
strained concave-convex procedure (UniverSVM) of Col-
lobert et al. [17], the fast multi-switch transductive sup-
port vector machine (TSVMlin) [10], and the deterministic
annealing approach (DA) [10]. Except for the model param-
eters (see below), we resort to the default values provided
by the corresponding implementations.

4.1.4. Model Selection

For the experimental evaluation, we will tune the non-
fixed parameters via 5-fold cross-validation on the labeled
part of the training set (if not stated otherwise). The final
classification performances are measured on the test sets.

As similarity measures we consider a linear kernel
k(xi,xj) = 〈xi,xj〉 and a radial basis function (RBF) ker-

nel k(xi,xj) = exp(−(2σ2)
−1||xi − xj ||2) with kernel

width σ.7 The cost parameters λ and λ′ for TSVMlin,
DA, and QN-S3VM are tuned on a small grid (λ, λ′) ∈
{2−10, . . . , 210} × {0.01, 1, 100} of possible parameters.
For the UniverSVM and the LIBSVM scheme, we con-
sider (C,C∗) ∈ {2−10, . . . , 210} × { 0.01

u , 1.0
u ,

100.0
u } and

C ∈ {2−10, . . . , 210} as parameter grids, respectively. Fi-
nally, we resort to a short sequence of annealing steps for

6http://yann.lecun.com/exdb/mnist/
7To select the kernel width σ for the RBF kernel, we consider

the set {0.01s, 0.1s, 1s, 10s, 100s} of possible assignments with s =√∑d
k=1 ( max([x1]k, . . . , [xn]k)−min([x1]k, . . . , [xn]k))2.
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(a) 14.7± 5.9 (b) 15.4± 5.9 (c) 16.2± 5.9

(d) 2.0± 6.9 (e) 4.1± 3.7 (f) 6.0± 3.4

(g) 0.0± 0.0 (h) 0.8± 0.5 (i) 3.6± 2.5

Figure 4: The large red squares and blue triangles depict
the labeled data; the small black dots the unlabeled data.
The smaller red squares and blue triangles depict the com-
puted partitions of the unlabeled patterns. The average
classification errors are reported (first row=LIBSVM, second
row=UniverSVM method, and third row=QN-S3VM).

QN-S3VM (α1 = 0.000001, α2 = 0.0001, α3 = 0.01, α4 =
0.1, α5 = 0.5, α6 = 1.0).

All considered semi-supervised methods make use a bal-
ance constraint with an appropriate estimate for the de-
sired ratio of positive and negative assignments for the
unlabeled patterns. We provide appropriate estimates to
all methods via the labeled part of the training set.

4.2. Experimental Results

We now depict the results of our experiments.

4.2.1. Model Flexibility

For the sake of exposition, we start by considering the
well-known Moons data set that is said to be a difficult
training instance for semi-supervised support vector ma-
chines due to its non-linear structure. In Figure 4, the
results for LIBSVM, UniverSVM, and QN-S3VM are shown for
slightly varying distributions (using the RBF kernel). For
all figures, the average test error (with one standard devi-
ation) over 10 random partitions into labeled, unlabeled,
and test patterns, is given (grid-search is performed on the
test set). It can be clearly seen that the supervised ap-
proach is not able to generate reasonable models. The two
considered semi-supervised approaches, however, can suc-
cessfully incorporate the additional information provided
by the unlabeled data in a stable manner.

4.2.2. Amount of Data

As shown above, sufficient labeled data is essential for
supervised learning approaches to yield reasonable models.
For semi-supervised approaches, the amount of unlabeled
data used for training is an important issue as well. To
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Figure 5: The QN-S3VM approach can successfully incorporate
unlabeled data, see Figure (a). However, sufficient unlabeled
data is needed as well to reveal sufficient information about the
structure of the data, see Figure (b).

illustrate this matter, we consider the G4C data set and
vary both the amount of labeled and unlabeled data. For
this experiment, we consider the QN-S3VM implementation
and resort to the LIBSVM scheme as baseline (using a lin-
ear kernel). First, we vary the amount of labeled data
from 5% to 80% with respect to (the size of) the training
set; the remaining part the training set is used as unla-
beled data. In Figure 5 (a), the result of this experiment
is shown: Given more than 20% labeled data, the semi-
supervised approach performs clearly better. Now, we fix
the amount of labeled data to 20% and vary the amount of
unlabeled data from 5% to 80% with respect to (the size
of) the training set, see Figure 5 (b). Clearly, the semi- su-
pervised approach needs sufficient unlabeled data to yield
appropriate models in a reliable manner.

4.2.3. Classification Performance

Motivated by the two initial experiments depicted
above, we consider up to five different amounts of la-
beled, unlabeled, and test patterns per data set instance
to analyze the classification performance of all competing
approaches. For all data sets and for all competing ap-
proaches, a linear kernel is used. In Table 2, the test errors
(and one standard deviations) averaged over 10 random
partitions are given. As mentioned above, the parame-
ters are tuned via 5 fold cross-validation on the labeled
part; thus, a realistic setting for tuning the parameters is
considered.

It can be seen that the classification performances for
the semi-supervised methods are, in general, superior or
at least competitive to those of the supervised LIBSVM-
baseline. The QN-S3VM approach yields a surprisingly good
performance on the non-sparse data sets, which is superior
to all other semi-supervised competitors. For the sparse
data sets, TSVMlin, DA, and QN-S3VM perform similarly,
and none of these three methods can outcompete the other
two ones. Note that the semi-supervised methods yield a
significantly better performance on the sparse data sets
compared to the LIBSVM-baseline.

4.2.4. Computational Considerations

We will finally analyze the practical runtimes. For this
sake, we fix the model parameters (λ = 1, λ′ = 1, C = 1,
C∗ = 1) and make again use of the linear kernel.
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Data Set l u t LIBSVM UniverSVM TSVMlin DA QN-S3VM

G2C 25 225 250 13.2± 2.8 1.8± 0.9 5.6± 2.4 2.2± 0.7 1.9± 0.9
G2C 50 200 250 6.3± 2.4 1.8± 0.8 2.8± 1.5 2.5± 1.7 2.1± 0.9
G4C 25 225 250 20.6± 11.5 13.3± 15.2 14.7± 12.0 14.2± 12.4 11.4± 11.7
G4C 50 200 250 6.9± 1.6 3.0± 1.8 3.4± 0.7 2.5± 1.4 2.2± 1.0
C(3,6) 14 101 29 16.2± 7.2 16.9± 13.9 12.4± 7.4 20.7± 17.8 8.3± 7.9
C(3,6) 28 87 29 3.8± 4.2 5.2± 5.8 4.1± 5.5 4.1± 6.5 4.5± 4.1
C(5,9) 14 101 29 13.4± 7.8 19.3± 10.9 17.6± 10.6 14.1± 7.6 12.1± 8.9
C(5,9) 28 87 29 4.5± 5.6 7.2± 9.1 6.6± 9.9 6.2± 7.5 6.9± 10.1
C(6,19) 14 101 29 15.5± 13.1 21.0± 12.0 12.8± 11.9 15.5± 13.2 10.7± 10.8
C(6,19) 28 87 29 3.4± 3.4 4.5± 5.1 4.8± 6.6 3.8± 5.7 3.1± 4.2
C(18,19) 14 101 29 6.9± 8.0 7.6± 8.8 12.4± 9.0 10.7± 9.6 3.4± 8.3
C(18,19) 28 87 29 1.4± 4.1 5.2± 9.7 3.1± 7.3 2.4± 6.2 1.0± 3.1
M(1,7) 20 480 500 4.2± 1.6 4.3± 2.8 8.2± 5.2 9.9± 5.7 2.8± 1.2
M(1,7) 50 450 500 2.6± 1.0 3.7± 2.5 2.8± 1.5 2.7± 1.5 2.7± 1.1
M(2,5) 20 480 500 10.2± 3.1 6.3± 3.9 8.6± 4.5 10.3± 4.6 6.3± 2.2
M(2,5) 50 450 500 5.8± 1.7 4.2± 1.6 5.5± 2.1 5.7± 2.2 4.3± 1.2
M(2,7) 20 480 500 7.9± 4.4 8.0± 4.7 10.7± 5.1 11.5± 5.9 5.3± 2.3
M(2,7) 50 450 500 5.0± 1.5 5.1± 1.6 4.7± 1.9 4.4± 1.8 4.0± 0.9
M(3,8) 20 480 500 18.8± 11.5 16.2± 4.0 15.8± 4.5 16.1± 5.3 12.9± 5.2
M(3,8) 50 450 500 9.0± 2.4 9.5± 4.1 9.4± 3.4 9.4± 3.0 8.3± 2.9
U(2,5) 16 806 823 10.5± 4.7 9.0± 5.6 12.2± 7.6 14.3± 9.7 4.6± 1.7
U(2,5) 32 790 823 5.4± 0.8 5.6± 1.8 5.8± 3.5 5.8± 3.7 4.5± 1.4
U(2,7) 17 843 861 4.9± 2.9 6.1± 5.3 9.2± 7.4 10.5± 12.7 2.3± 1.0
U(2,7) 34 826 861 2.8± 1.1 3.4± 2.4 5.6± 4.6 5.8± 4.9 2.0± 1.1
U(3,8) 15 751 766 12.9± 8.3 8.7± 3.9 9.8± 5.7 9.3± 4.8 5.4± 1.9
U(3,8) 30 736 766 7.3± 2.1 6.4± 1.6 7.8± 3.5 8.3± 3.3 5.7± 1.8
U(8,0) 22 1108 1131 5.0± 2.0 3.2± 2.2 6.4± 5.5 8.2± 6.0 2.2± 1.2
U(8,0) 45 1085 1131 3.0± 0.9 3.3± 1.8 3.5± 2.1 3.6± 2.2 8.1± 11.4
real-sim 90 36064 36155 28.7± 1.6 − 11.7± 2.5 11.7± 2.7 14.1± 1.5
real-sim 180 35974 36155 23.9± 5.9 − 9.7± 1.4 12.0± 3.1 13.0± 1.4
real-sim 361 35793 36155 17.3± 5.5 − 8.1± 0.7 10.2± 1.7 11.6± 1.7
real-sim 1446 34708 36155 8.3± 1.7 − 6.0± 0.2 7.1± 0.5 9.0± 0.8
real-sim 2892 33262 36155 6.8± 1.1 − 5.5± 0.2 6.6± 0.3 8.8± 0.5
gcat 57 11517 11575 24.5± 2.9 − 7.7± 0.9 7.6± 1.7 8.4± 2.3
gcat 231 11343 11575 10.6± 1.5 − 6.7± 0.7 6.7± 0.8 6.3± 0.5
gcat 462 11112 11575 7.6± 0.8 − 6.0± 0.6 6.2± 0.9 5.7± 0.3
gcat 925 10649 11575 6.2± 0.5 − 5.6± 0.3 5.6± 0.4 5.5± 0.3
gcat 1851 9723 11575 5.4± 0.2 − 5.2± 0.2 5.3± 0.3 5.3± 0.2
ccat 57 11517 11575 25.1± 7.7 − 17.1± 2.0 17.6± 3.3 20.1± 6.0
ccat 115 11459 11575 18.0± 2.4 − 14.2± 1.3 13.6± 1.8 14.4± 1.7
ccat 231 11343 11575 14.0± 1.4 − 11.8± 1.2 11.8± 1.4 11.5± 1.2
ccat 462 11112 11575 11.3± 0.4 − 10.2± 0.8 10.1± 0.7 10.5± 0.5
ccat 925 10649 11575 9.5± 0.3 − 9.0± 0.5 9.2± 0.6 10.0± 0.5
aut-avn 177 35410 35588 20.7± 6.5 − 5.7± 0.7 4.4± 0.8 5.7± 0.6
aut-avn 355 35232 35588 10.8± 1.3 − 5.8± 0.9 3.8± 0.7 5.2± 0.4
aut-avn 1423 34164 35588 6.0± 0.3 − 4.5± 0.7 3.4± 0.2 5.1± 0.2
aut-avn 2847 32740 35588 4.7± 0.2 − 4.0± 0.4 3.4± 0.2 5.0± 0.2
aut-avn 5694 29893 35588 3.8± 0.1 − 3.6± 0.2 3.4± 0.1 5.1± 0.2
pcmac 48 924 974 24.8± 9.6 10.4± 2.6 9.6± 2.3 8.5± 2.1 7.3± 1.4
pcmac 97 876 973 11.6± 4.1 8.5± 4.2 8.1± 3.5 7.6± 3.5 7.1± 2.7
pcmac 145 828 973 8.5± 1.6 6.9± 2.2 7.3± 1.4 7.0± 1.4 6.6± 1.1
pcmac 243 730 973 6.7± 1.0 5.6± 1.2 6.0± 1.0 6.0± 1.1 5.5± 0.8
pcmac 291 681 974 6.2± 1.0 5.4± 1.2 6.1± 1.1 5.7± 0.9 5.1± 1.0

Table 2: Classification performances of all competing approaches. For all methods and for all data sets, the average error on the
test set along with the one standard deviation is provided. The best results with respect to the average test errors are highlighted.

Practical Runtimes. The practical runtimes of all semi-
supervised methods for six data set instances are depicted
in Figure 6. The plots indicate a similar runtime behavior
on the non-sparse data sets. Since the UniverSVM imple-

mentation does not directly take advantage of sparse data
set properties, it is significantly slower than the other three
methods (see, e.g., pcmac). For the remaining three ones,
TSVMlin and QN-S3VM slightly outperform DA.
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(b) USPS(2,5)
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(f) pcmac

Figure 6: The practical runtimes for all semi-supervised implementations are given for six data set instances. These results indicate
that our gradient-based implementation can effectively handle all considered data set instances.

These runtime results shall, however, only indicate the
practical runtimes needed to generate the classification re-
sults shown in Table 2. It is worth pointing out that
they naturally depend on various issues like the partic-
ular parameter assignments, the stopping criteria, and
the programming languages used for implementing the ap-
proaches. The proposed QN-S3VM implementation is based
on (slow) Python; however, since the main computational
bottlenecks can be implemented using only matrix-based
operations, it is surprisingly efficient.

Large-Scale Dense Data. The MNIST data set instances
have been restricted in their size up to now to render a
detailed comparison of all methods possible. To sketch
the applicability of QN-S3VM for large-scale settings given
dense data sets, we consider the complete MNIST(1,7) and
the MNIST(3,8) instances and vary the size of the training
set from 2, 000 to 10, 000 patterns. Further, we make use of
the kernel matrix approximation scheme for QN-S3VM with
r = 2, 000 (and randomly selected basis vectors). The
practical runtimes of all semi-supervised methods are given
in Figure 7. It can be seen that all methods can handle
such settings efficiently.
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Figure 7: Runtime results for the large-scale dense MNIST(1,7)

(left) and MNIST(3,8) (right) data set instances.
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