
Foreword to the third International
Symposium for Semantic Mining in

Biomedicine (SMBM 2008)
Today, the importance of semantic mining in support of biomedical domain research is increasingly
recognized. The scientific community strives to improve access to the large and rapidly growing domain
literature and support database curation efforts. An emerging trend is to build toward text mining
systems capable of assisting in hypothesis generation that could be integrated in genome analysis
pipelines. This work is further motivated by the success of the BioCreative I and II evaluation challenges
as well as the increasing availability of resources and use of standard public corpora such as AIMed,
BioInfer, GENIA, PennBioIE and the resources created for BioCreative.

Considerable progress has been made in foundational tasks such as named entity recognition, where
the BioCreative II task organizers demonstrated the feasibility of recognition with mean precision and
recall in excess of 90%. However, as the BioCreative evaluation also demonstrated, even after ten years
of study, significant challenges still remain in the key task of protein-protein interaction extraction, a
problem that maintains its relevance to the community and toward which these proceedings also hold a
number of contributions

SMBM 2008, hosted by Turku Centre for Computer Science (TUCS) in Turku, Finland is the
third in the series of International Symposia on Semantic Mining in Biomedicine, following SMBM
2005 at EMBL-EBI in the U.K. and SMBM 2006 at Friedrich-Schiller University in Jena, Germany.
The event aims to bring together different communities: researchers from text and data mining in
biomedicine, medical-, bio- and cheminformaticians, and researchers from biomedical ontology design
and engineering. Further, we strongly encourage constructive dialogue between academia and industry,
and gratefully acknowledge the support of our academic and industry sponsors.

This year, we received 38 submissions in three categories: full papers, short papers, and Work in
Progress Proposals. The overall quality of the submissions was very good and, consequently, the
selection process became competitive: we accepted about one half of the manuscripts in each of these
categories. Additionally, a number of authors of full papers were invited to resubmit a short version of
their manuscript. In total, 15 full papers, 10 short and two Work in Progress Proposals are included in
the proceedings at hand. We additionally include abstracts of two invited talks.

Dear reader, we hope that you will enjoy reading these proceedings and find them interesting and
inspiring to your work.
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Text Mining Methods as Computational Biology Tools

Alfonso Valencia
Structural Biology and BioComputing Programme
Spanish National Cancer Research Centre (CNIO)

valencia@cnio.es

During the last few years many new Informa-
tion Extraction and Text Mining methods have
been developed and many of them are accessible
on the web. Still, we do not have many examples
of their integration with those commonly applied
to biological problems in Genomics and Systems
Biology, despite the current general recognition
of the need to use extensively and systematically
the information directly extracted from textual
sources.

My group has been working in integrating
Text Mining approaches in large-scale projects,
together with other complementary experimen-
tal and bioinformatics methods. In particular in
the ENFIN project we have developed new ap-
proaches to collect information on proteins inter-
acting with proteins known to form part of the hu-
man spindle body complex and to systematically
score them by the likelihood of their implication
in the formation of the spindle. The predictions
of this Text Mining method, combined with those
of a collection of other methods based on se-
quence and structure analysis, have been followed
up by detailed experimental verification including
in situ localization assays and iRNA screenings.
Furthermore, we have developed a Text Mining
system to assist human experts in the annotation
of spindle related proteins that have allowed us to
generate a large collection of validated proteins
and text pieces. This new system is now being
use to train and test the sequence / structure based
prediction methods.

For these, and other, applications of Text
Mining it is crucial to have an accurate es-
timation of the capacity of the current sys-
tems. The BioCreative II challenge orga-
nized by CNIO, MITRE and NCBI in collab-
oration with the MINT and INTACT databases

(http://biocreative.sourceforge.net, Genome Biol-
ogy, August 2008 Special Issue) provides such an
overview. BioCreative II was organized in two
tasks:

1. gene name identification and normalization,
where many systems were able to achieve a
consistent 80% balanced precision / recall.

2. protein interaction detection, which was di-
vided into four sub-tasks:

(a) ranking of publications by their rele-
vance on experimental determination of
protein interactions

(b) detection of protein interaction partners
in text

(c) detection of key sentences describing
protein interactions and

(d) detection of the experimental technique
used to determine the interactions.

The results were good in the categories of publi-
cation raking, detection of experimental methods,
and highlighting of relevant sentences, while they
pointed to persistent problems in the correct nor-
malization of gene/protein names. It is interesting
to notice that the typical performance of the best
Text Mining methods is not very different from
that of many standard bioinformatics methods, for
example structure prediction and protein dock-
ing methods. Furthermore, BioCreative has chan-
neled the collaboration of several teams for the
creation of the first Text Mining meta-server (The
BioCreative Meta-server, Leitner et al., Genome
Biology 2008 BioCreative special issue). We are
now working in the preparation of BioCreative
III, with particular focus in fostering the creation
of Text Mining systems that can be integrated in
Genome analysis pipelines.
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Natural Language Processing in the Medical and Biological Domains:
a Parallel Perspective

Pierre Zweigenbaum
LIMSI - CNRS

BP 133, F-91403 Orsay Cedex, France
http://www.limsi.fr/˜pz/

pz@limsi.fr

Abstract

Natural Language Processing (NLP) has
been active in the medical domain for more
than thirty years, with pioneering projects
such as the Linguistic String Project.
‘BioNLP’, the application of Natural Lan-
guage Processing methods to the analysis
of the biological literature in the genomics
era, has undergone a fast development in
little over ten years.1 It rapidly attracted
Medical NLP and Computational Linguis-
tics researchers, especially through chal-
lenges and evaluation initiatives. We exam-
ine here to which extent medical NLP pre-
pared the ground for BioNLP. Conversely,
we study the ways BioNLP influenced the
practice of medical NLP.

1 Medical NLP: Specificities and
Contributions to BioNLP

A growing community of researchers applies
NLP to the medical domain and develops new
methods for that purpose. Medical NLP has seen
important breakthroughs, such as routine, ma-
chine analysis of clinical reports (MedLEE), but
it is probably fair to say that it has had until now
only a moderate direct impact on clinical applica-
tions. It has been mostly concerned with the clin-
ical domain (clinical notes, etc.), but also with the
analysis of the scientific literature (MEDLINE ti-
tles and abstracts).

1.1 Contributions
We wish to stress nevertheless that medical NLP
prepared the ground for BioNLP by providing re-
sources and tools which could be reused in that

1For an introduction, see e.g. (Ananiadou and McNaught,
2006).

domain. A large effort was spent on the cre-
ation of lexical (e.g. the UMLS Specialist Lexi-
con) and unified terminological resources (e.g. the
terminologies which can be found in the UMLS
Metathesaurus). These resources are used for
instance in automatic term recognition, e.g. in
MetaMap, a widely used component in BioNLP
systems. Medical ontologies have also seen a
continuous stream of work since GALEN (e.g.
Foundational Model of Anatomy, SNOMED CT),
whose methods could help the design of the Gene
Ontology. Indexing and Information Retrieval
from the medical literature (e.g. SAPHIRE, MTI)
and from health records (e.g. ICD and SNOMED
coding) are long-standing research topics. They
aim at concept-based indexing (e.g. MetaMap), a
task similar to the gene normalization task of the
BioCreAtIvE challenges. Text analysis was an
early target of Medical NLP. It led to successful
systems which were then applied to the biomed-
ical domain (e.g. GENIES2, SEMREP3), porting
from one sublanguage to the other (Friedman et
al., 2002). Finally, literature-based discovery as
started by Swanson (inasmuch as it uses NLP)
was applied to medical problems long before it
was geared towards biomedical knowledge.

1.2 Specificities

The medical domain has specific features which
bear consequences on medical NLP research.
First, the requirement for privacy of clinical
records has had a strong impact on clinical NLP.
It prevents researchers from sharing text corpora
(NLP based on the medical literature does not
have this limitation). Deidentification methods

2http://www.cat.columbia.edu/genies.
htm

3http://skr.nlm.nih.gov/papers/
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have been investigated to overcome this barrier,
but human review is generally still needed. Sec-
ond, localisation of clinical records and associ-
ated functionality is necessary. Clinical records
must use the language of the user, which entails
a need to develop resources for each natural lan-
guage (terminologies and ontologies, being de-
signed as concept representations abstracted from
natural languages, are an exception: they can be
shared across languages). This has created strong
constraints on the sharing of resources and tools,
which led to the dispersion of concrete efforts in
medical NLP. Besides, medical NLP has tackled
several specific sublanguages beyond that of the
biomedical literature: that of clinical reports, of-
ten with short phrases and terse style, and more
recently those of practice guidelines and patient-
oriented documents, with constraints of readabil-
ity and understandability. Finally, it has addressed
diverse user needs, mainly those of a variety of
health care professionals and administrative staff
in hospitals (clinical documents) and those of re-
searchers (articles). This dispersed market seg-
mentation also tends to disperse research.

2 BioNLP: Specificities and
Contributions to Medical NLP

2.1 Contributions

BioNLP promotes a dynamic, shared way of con-
ducting research within a community. This can
be seen in the organization of challenges (e.g.
TREC Genomics or BioCreAtIvE). These depend
on shared annotated corpora (e.g. GENIA4), a key
component in such initiatives. In contrast, med-
ical NLP researchers have had to overcome the
above-mentioned strong limitations on the devel-
opment of clinical corpora to launch such chal-
lenges. This has recently started with the i2b2 de-
identification challenge (2006)5 and the Cincin-
nati Medical Center ICD-9-CM coding challenge
(2007)6, and the AMIA NLP working group is
striving to foster this process. Sharing in BioNLP
also applies to information extraction pipelines,
e.g. LingPipe or the JULIE tools.

BioNLP has had a faster and wider attrac-
tion of ‘mainstream’ Computational Linguistics

4http://www-tsujii.is.s.u-tokyo.ac.
jp/GENIA/

5https://www.i2b2.org/NLP/Workshop.php
6http://www.computationalmedicine.org/

challenge/

researchers. More attractive funding of the ge-
nomics domain probably played a role here, but
the availability of corpora and resources and the
organisation of challenges were certainly very
important factors too. Directly usable training
and testing corpora have also allowed many re-
searchers to test Machine Learning methods (e.g.
to recognize gene mentions) with only minimal
investment in the specificities of the domain.

2.2 Specificities
BioNLP has the great advantage of working
mostly on common input documents: the biomed-
ical literature. There is no need for privacy here
(but access rights are enforced on the majority
of full-text articles), and documents are written
in one language: ‘bio English’. The biomedical
sublanguage inherits that of scientific, experimen-
tal literature; it also has specific components, e.g.
for gene and protein names and interactions. The
development of lexical, terminological and onto-
logical resources for these components has there-
fore been the subject of much work in BioNLP.
The emphasis of BioNLP is on text mining, and it
has more focused targets, namely, researchers and
database curators. This may form a more homo-
geneous user base than that of medical NLP.

3 Conclusion

Based on the above comparison, hypotheses can
be formulated to explain differences between the
attractivity and development speed of medical-
and BioNLP. Not yet mentioned is the intrinsic
scientific attractivity of the biomedical domain,
with a promise of more fundamental outcomes.
Funding is indeed an important factor too. Nev-
ertheless, we believe the importance of enabling
factors must be stressed: a shared input language
facilitates shared resources and tools, no require-
ment for privacy enables shared corpora and the
organisation of challenges, which have been a
driving force in BioNLP.
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Abstract 

Most bio text-mining efforts so far have fo-
cused on identification of biological, mo-
lecular and chemical entities from the 
literature to support knowledge acquisition 
and discovery in the life sciences. There are 
also a growing number of bioinformatics 
services and tools available. This raises the 
challenging problem of semi-automated an-
notation, documentation and discovery of 
services suitable for a specific data analysis 
and/or integration into workflows. The first 
step in this process would be to build a con-
trolled vocabulary to describe bioinformat-
ics services, which can then be used for 
service retrieval and discovery. In this paper 
we present a methodology that combines 
lexical and contextual profiles of candidate 
terms to suggest terms for the bioinformat-
ics vocabulary. The method achieved an es-
timated precision in the range 70-90% with 
recall between 20 and 90%. After process-
ing the whole of BMC Bioinformatics, al-
most 80% of the top 300 terms were deemed 
as conceptual terms relevant for describing 
the major concepts in bioinformatics. In ad-
dition to this, the method has also extracted 
a number of service and tool names. The 
controlled vocabulary is freely available at: 
http://gnode1.mib.man.ac.uk/bioinf/CV.  

1 Introduction 

Along with the huge amount of experimental 
data, both raw and curated, and together with the 
literature being published in the biomedical do-
main, various bioinformatics data sources and 
tools have exposed programmatic interfaces as 
services. Resource sharing has already been es-
tablished as a common policy within the commu-
nity, and many groups have dedicated significant 
efforts to organise both internal and public re-
positories of bioinformatics tools, typically clas-
sifying them in broad categories (e.g. EBI Web 
services1 are organised into data retrieval, ana-

                                                           
1 http://www.ebi.ac.uk/Tools/webservices/ 

lytics, similarity searches, multiple alignment, 
literature processing, etc.). Several projects and 
initiatives (e.g. myGrid2 and myExperiment3) are 
annotating functional capabilities and semanti-
cally describing resources in a way which would 
make them discoverable and usable both by bio-
informaticians and machines. Service descrip-
tions typically include both textual explanations 
and ontological annotations. For example, EBI’s 
emma service4 is represented by the following 
(textual) description in the myGrid repository:5 
 

Performs a multiple alignment of nucleic  
acid or protein sequences using ClustalW  
program 

 
along with a set of myGrid ontology6 tags de-
scribing its operation (multiple local aligning), 
type (Soaplab service), parameters (including 
name, semantic type (e.g. biological sequence) 
and format (e.g. single sequence format), etc.). 

Currently, most of the frameworks cataloguing 
bioinformatics services and workflows (e.g. my-
Grid/Taverna (Oinn et al, 2007)) describe re-
sources manually, which – like any curation task 
– requires a lot of time and effort. As the number 
of services is increasing, manual annotation is 
becoming a bottleneck for discovering and using 
relevant services and tools (Cannata et al, 2005). 
Therefore, (semi)automatic methodologies to 
describe services are becoming inevitable, in-
cluding automatic extraction of functional de-
scriptions of services from available documents 
(articles, blogs, documentation, user manuals, 
etc.). Furthermore, since the domain is extremely 
dynamic, controlled vocabularies and/or ontolo-
gies that are (or can be) used for annotations need 
to be regularly updated and adjusted to include 
emerging methods, functionalities, data formats, 
etc. For example, the myGrid ontology 

                                                           
2 http://www.mygrid.org.uk/ 
3 http://www.myexperiment.org/ 
4 http://www.ebi.ac.uk/soaplab/emboss4/services/ 
alignment_multiple.emma 
5http://www.mygrid.org.uk/feta/mygrid/descriptions/ 
Soaplab_EBI/alignment_multiple/emma.xml 
6 http://www.mygrid.ac.uk/ontology 
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(Wolstencroft et al, 2007) contains around 440 
bioinformatics terms that are currently used to 
describe services; still, for many potentially use-
ful services, there may not be a set of adequate 
ontological terms or keywords for their descrip-
tion. For example, it would be difficult to pre-
cisely describe GeneSom service (Yan, 2002) for 
clustering-based microarray data analysis, as 
term clustering is not included in the current set 
of the ontology terms (the closest related term 
would be grouping). 
 In this paper we present a methodology and 
results in building a controlled vocabulary (CV) 
of bioinformatics terms that can be used for se-
mantic annotation and description of services. By 
CV, we mean a set of key terms that are used to 
convey relevant information in a given domain or 
task (Kageura and Umino, 1996). Our main hy-
pothesis is that new potential descriptors are 
likely to appear in documents that report on ser-
vice design or utilisation. Therefore, our method 
for identification of terms related to bioinformat-
ics services is based on processing full text arti-
cles from relevant journals. We have combined 
an automatic term recognition technique with a 
term classification approach based on lexical and 
contextual properties of candidate terms. Since 
not all terms that appear in a given corpus are of 
interest for a given task (e.g. specific pro-
tein/gene names, drugs, etc. may not be of inter-
est to service descriptions), the method aims to 
filter out candidate terms that are not relevant for 
the task. The results obtained are very encourag-
ing, showing that 70-90% of terms obtained are 
relevant for service descriptions, making the CV 
generation a first step towards facilitating auto-
mated annotation of services. 

The paper is organised as follows. In Section 2 
we present the overall methodology. The results 
and discussions are presented in sections 3 and 4 
respectively, while related work is examined in 
Section 5. Finally, Section 6 concludes the paper 
and gives an outline of topics for future work. 

2 Methodology 

We have designed the following general method-
ology (see Figure 1): we start with the candidate 
term recognition process from a corpus and apply 
a classification method that rearranges the candi-
date terms according to their relevance to the task 
and/or domain of interest (in our case bioinfor-
matics tools/services). Term classification is 
based on a hybrid approach combining terms’ 
lexical and contextual properties, represented as 
term profiles. Task/domain relevance is then as-

sessed by comparing profiles of candidate terms 
with profiles of seed terms and ontological con-
cepts that portray the task/domain. These steps 
are described below in detail. 

 
Figure 1: System architecture 

2.1 Collecting candidate terms 

To support the task, we have collected a corpus 
of full text articles from a bioinformatics journal. 
The corpus was processed by an Automatic Term 
Recognition (ATR) service (TerMine7, based on 
the C-value method (Frantzi et al, 2000)), in or-
der to obtain the candidate terms to be considered 
for the CV. The C-value method is, however, a 
generic ATR approach that considers only statis-
tical information (frequency of occurrence, string 
nestedness, etc) and recognises terms that are 
relevant for the whole collection, irrespective of 
sub-domains/tasks of interest. Therefore, the 
candidate terms would typically include gene and 
protein names, drugs, organisms, chemical terms, 
various procedures, tools, etc. Our aim is to iden-
tify only terms related to bioinformatics by as-
sessing correlation between the candidate terms 
and a set of pre-prepared concepts representing 
the task/domain of interest. 

2.2 Knowledge resources 

To represent the domain, we have created a 
knowledge base that comprises two resources: a 
list of seed terms and a list of ontological terms. 
Both resources are used to provide the lexical 
profile of the domain, with the seed terms also 
used to “illustrate” textual behaviour in docu-

                                                           
7 http://www.nactem.ac.uk/software/termine/ 

6



ments (i.e. pragmatics) of the domain terms, pro-
viding positive “use cases”. Obviously, ontologi-
cal terms may not appear in the literature since 
they describe concepts and are used for domain 
modelling. For the bioinformatics CV task, the 
seed terms (ST) have been collected from exist-
ing Web service descriptions provided by various 
sources (e.g. EBI Web services) and from the 
relevant literature cited at the myGrid website8. 
These terms have been collected automatically 
using TerMine and then manually pruned on the 
basis of their relevance to our domain. A total of 
250 terms have been identified: these are “real” 
terms used for service descriptions in the litera-
ture. Ontological terms (OT) are extracted from 
440 concepts of the bioinformatics ontology pre-
pared by the myGrid team. The ontology in-
cludes informatics concepts (the key concepts of 
data, data structures, databases and metadata); 
bioinformatics concepts (domain-specific data 
sources e.g. model organism sequencing data-
bases, and domain-specific algorithms for search-
ing and analysing data e.g. the sequence 
alignment algorithm); molecular biology con-
cepts (higher level concepts used to describe bio-
informatics data types, used as inputs and outputs 
in services e.g. protein sequence, nucleic acid 
sequence); task concepts (generic tasks a service 
operation can perform e.g. retrieving, displaying 
and aligning).  
 For each of the seed and ontological terms, we 
have generated (as explained below) lexical pro-
files that will be used to identify potential bioin-
formatics terms. For the seed terms only, we 
have also generated contextual profiles to pro-
vide a case-base with typical contexts in which 
the seed terms have appeared. 

2.3 Term profiles 

The main idea behind our term classification 
process is to measure the degree of similarity 
between candidate terms and the known bioin-
formatics terms by comparing their lexical (con-
stituents) and contextual (pragmatics) profiles.  
 
Lexical profiles. Each candidate term is assigned 
a lexical profile, represented by all possible left-
linear combinations of the word-level substrings 
present in a term (Nenadic and Ananiadou, 
2006). For example, the lexical profile of the 
term protein sequence alignment is the following 
set: {protein, sequence, alignment, protein se-
quence, sequence alignment, protein sequence 

                                                           
8 http://www.mygrid.org.uk/wiki/Mygrid/ 
BiologicalWebServices 

alignment}. These profiles are then compared (as 
sets) to the profiles of the seed and ontological 
terms. The hypothesis here is that – since scien-
tific sublanguages are characterised by words and 
their collocations which appear more frequently 
in a given domain (Kittredge, 1982) – we can use 
lexical correlations to suggest potential candi-
dates. 

We have employed two different approaches: 
comparing a candidate term profile using an “av-
erage” bioinformatics seed/ontology term (LR_1, 
formula (1) below) and finding the best match 
(LR_2, formula (2)). In both cases we use a Dice-
like coefficient to measure the lexical relevance. 
If LP(t) represents the lexical profile of a term t, 
and LP( is ) and LP( io ) lexical profiles of a seed 

and ontological term respectively, then lexical 
relevance of term t is calculated as follows: 
 

(1) 
 
 

(2) 
 
 
Here, n and m represent the total number of seed 
terms and ontological terms respectively. In case 
of LR_1, we estimate lexical relevance on the 
basis of its relative similarity to the whole do-
main, whereas, in case of LR_2, we focus on 
maximal similarity to a seed or ontological term. 
 
Contextual profiles. Target terms may have no 
lexical resemblance to the seed/ontological 
terms.  For example, fisheye is a name of a tool 
that cannot be identified as a relevant 
bioinformatics term based only on its lexical 
properties. We therefore consider contexts 
(namely sentences) in which candidate terms oc-
cur in order to profile their behaviour using co-
occurring nouns and verbs, as well as lexico-
syntactic patterns in which candidate terms oc-
cur. A contextual profile of each term comprises 
its noun sub-profile, verb sub-profile and context 
pattern sub-profile. Similarly, contextual profiles 
of the seed terms are built using the literature 
from which they have been extracted. 
 Contextual elements are identified using a 
POS tagger and lemmatiser (the Genia tagger9 
was used), parser (Stanford parser10) and the Ter-
Mine service. As a result of pre-processing and 
filtering non-content bearing units (including 
modals and adverbs), each sentence is repre-

                                                           
9 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/ 
10 http://nlp.stanford.edu/software/lex-parser.shtml 
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sented as a stream of lexico-syntactic (noun 
phrases, verb phrases, prepositions) and termino-
logical units, with their relative positional infor-
mation with respect to the candidate term. In our 
experiments, we have used two types of unit rep-
resentation (see Table 1 for an example). In the 
first type, noun phrases and terms are represented 
by their class only (as NP and Term respec-
tively), whereas verb phrases and prepositions 
are represented by their lemmas. We have not 
generalised verbs and prepositions since they are 
expected to carry useful information for classifi-
cation of candidate terms (Spasic and Ananiadou 
2004). The second type of pattern contains lem-
mas for all units, including NPs and terms. A 
pattern profile is then represented by left (LP) 
and right (RP) patterns, which represent units 
appearing on the left and right side of the candi-
date term in a sentence respectively.  
  
Verb  
profile  

produce  

Noun  
profile  

Genscan, program, list, transcript  

LPs 
Term,                         produce,  NP,     of  
Genscan  program,  produce,  a list,   of  

RPs  
of,  NP  
of,  predicted transcripts 

 
Table 1: An example of contextual profiles of the 
term nucleotide FASTA, originated from the following 
sentence: The Genscan program can produce a list of 
nucleotide FASTAs of predicted transcripts. The first 
line in LPs and RPs rows represents the first pattern 
type (lemmas for verbs and prepositions only), while 
the other represents the second type (lemmas for all 
constituents). 
 
Contextual profiles are used to measure contex-
tual relevance (CR) of each candidate term by 
comparing them to the contextual profiles of the 
seed terms. Similarly to lexical relevance, we 
have used two formulae comparing a candidate 
term profile to the average seed term, and to the 
most similar one:  

 
(3) 

 
 

(4) 
 
Here, CPN(x) represents a contextual noun pro-
file of (a candidate or seed) term x. Relevance 
measures using verbs (CRV) and patterns (CRP) 
are calculated similarly. In addition to these 
term-term comparisons, we also consider aggre-
gate contextual seed profiles comprising features 

(i.e. nouns, verbs, LPs, RPs) appearing in context 
of any seed term. Using these values, the aggre-
gate contextual (noun) relevance is calculated as 
 

(5) 
 
where CPN_A(ST) is the aggregate noun profile 
of the seed terms. Similar approaches are fol-
lowed for verb and pattern profiles. 

2.4 Building the controlled vocabulary 

As described before, our main aim is to provide a 
methodology to automatically build a termino-
logical resource containing terms that are similar 
lexically and pragmatically to a given set of 
terms from the knowledge resources. Our ap-
proach is based on combining the four types of 
profile similarities to estimate the overall rele-
vance (OR) of a candidate term: 
 

(6) 
 
where LR(t), CRN(t), CRV(t) and CRP(t) repre-
sent relevance of term t based on lexical, contex-
tual nouns, contextual verbs and contextual 
pattern profiles respectively. The parameters  
α, β, γ and θ  can be used to assign different 
weights to the profiles’ contributions. By apply-
ing term weighting, we can obtain a list of candi-
date terms with high OR, and extract/classify 
terms with OR above a certain threshold as rele-
vant and consider them for the CV building. The 
threshold value and term post-filtering can be 
varied according to the user’s requirement for 
precision and recall.  

3 Experiments and Results  

To assess the suggested method, we have per-
formed three experiments. First, we have evalu-
ated the performance (precision/recall) of term 
classification on a subset of documents. Then, we 
have evaluated the top 300 terms extracted by the 
system with regard to precision, and finally esti-
mated the recall as compared to the myGrid bio-
informatics ontology. 

The knowledge resources used in the experi-
ments are as follows. We used 250 seed terms 
and 440 ontological terms, for which lexical and 
contextual (ST only) profiles have been gener-
ated. The corpus from which we collected candi-
date terms consisted of 2120 full text open-access 
articles from BMC Bioinformatics11 (published 
before March 2008). Full text is essential for this 

                                                           
11 http://www.biomedcentral.com/bmcbioinformatics/ 
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task, firstly because we expect to find many of 
the candidate terms in the methods section, and, 
secondly, as it is more likely to find detailed con-
texts for term classification in full text documents 
rather than in abstracts only. After applying the 
C-value method on the corpus, we have collected 
almost 100,000 candidate terms (see later Table 4 
for detailed statistics) and generated their lexical 
and contextual profiles.  

We used 135 additional bioinformatics terms 
manually extracted from the service describing 
literature cited on the myGrid website for tuning 
the system parameters (cf. formula (6)). A ge-
netic algorithm iterative procedure given in 
(Spasic et al, 2004) has been performed to learn 
the parameters to optimise the results on the tun-
ing terms so that the maximal number of the tun-
ing terms ends up in the top 10% of the 
suggested candidate terms. We randomly varied 
the values of parameters through 1000 iterations, 
providing that 1=+++ θγβα . In each optimi-
sation cycle we have considered all individual 
profiles (e.g. LR_1, CRN_2, etc.) or their combi-
nations (e.g. LR_1 & CRN_3 & CRV_2 & 
CRP_3) so to find the best performing values of 
the parameters. While the max-based lexical 
similarity (LR_2) was better than the average-
based LR_1, there were no significant differences 
between various contextual formulae. Still, the 
best overall performance on the tuning terms was 
when we combined CRN_1, CRV_3, CRP_2 and 
LR_2 with the following parameter values: α = 
0.355, β= 0.158, γ = 0.02 and θ = 0.462 (used as 
the default parameters further on).  
 
Experiment 1: term classification perform-
ance. In order to estimate the precision and recall 
of the term classification part, we have randomly 
selected a subset of five documents, in which 375 
terms appear (automatically recognised by Ter-
Mine). These have been manually classified by a 
domain expert as relevant/irrelevant. We have 
then evaluated the system performance (using the 
usual metrics for precision, recall and F-measure) 
on this set. The best performing individual met-
rics (LR_2, CRN_1, CRV_3 and CRP_2) are 
summarised in Table 2. Table 3 summarises the 
performance of three combined profiles with the 
best performance. The best results were obtained 
when CRN_1, CRV_3, CRP_2 and LR_2 were 
combined, with precision in the 70% range and 
recall in the 90% range (F-measure in the 80% 
range). Figure 2 summarises the results for the 
best performing metrics. 
 

  LR_2 CRN_1 CRV_3 CRP_2 

Precision  69.1 63.4 71.2 80.6 

Recall  83.3 77.0 62.7 19.8 

F-measure  75.5 69.5 66.7 31.8 

 
Table 2: The performance of the best individual met-
rics on the test set (375 terms). 

 
 

  Comb1 Comb2 Comb3 

Precision  68.2 67.9 67.1 

Recall  92.1 84.1 92.1 

F-Measure  78.4 75.2 77.2 

 
Table 3: The performance of combined metrics on 
the test set (375 terms). [Comb1 = CRN_1, CRV_3, 
CRP_2 and LR_2, with the default parameters; 
Comb2 using only CRN-1 and LR2 with α = 0.298 
and θ = 0.702; Comb3 using CRN_1 and CRV-3 
with β= 0.258 and θ = 0.742]. 

 
 

 
 

Figure 2: The performance of individual metrics  
 
Experiment 2: the controlled vocabulary pre-
cision. Two domain experts evaluated the top 
300 terms as suggested by the system. The results 
(see Fig. 3) have showed that the top 100 terms 
were highly relevant, with 93% of terms deemed 
suitable to make a direct entry into the bioinfor-
matics CV. The precision for the top 200 terms 
fell to 83% and to 79% for the top 300 terms.  
 

 
 

Figure 3: Precision of the top 300 CV terms 
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Experiment 3: “reconstructing” the myGrid 
bioinformatics ontology. In addition to estimat-
ing recall for the term classification task, we in-
vestigated to what extent the system could 
reconstruct the myGrid bioinformatics ontology. 
The experiments have shown that even 45 terms 
(10% of the myGrid ontology) appeared in the 
first 100 terms, totalling to 59 (13.4%) for the 
first 300 terms (see Figure 4). We have also 
found that the total of 20% of the suggested top 
300 terms fully matched the corresponding my-
Grid concepts. 

Figure 4: The number of myGrid terms recovered 

4 Discussion 

We have presented a generic methodology to 
automatically build and expand a controlled vo-
cabulary in a domain of interest using literature 
mining. For this purpose, we employed a term 
classification approach that combines lexical and 
contextual properties of candidate terms and 
compares them to seed entities.  

In the experiment 1 of the bioinformatics CV 
building task, the best individual performance 
(the best F-measure) was observed in the case of 
lexical relevance (see Figure 2 and Table 2). In 
addition to lexical properties of candidate terms 
(that typically give precise results but fail to 
identify some relevant terms), we also consider 
contextual profiles. Table 4 shows the number of 
terms being recognised using various metrics. 
Most of the top suggested terms made into the 
CV based on their lexical profiles, but there were 
still terms that were only contextually similar to 
the seed terms (e.g. terms such as statistical 
approach or SVM classifier; or biological text 
(e.g. as an input concept)).  

Overall, in the case of lexico-syntactic 
patterns, the results show very good precision 
(see Table 2, last column). The reason is that the 
patterns originated from the seed terms were able 
to model the pragmatics of bioinformatics terms. 
Since the number of seed terms and their 
contexts were limitted (250 terms and 1034 
contexts), this has resulted in an accetably low 
recall. In the experiments we have varied the 

representation of patterns (considering the 
generic classes of neighbouring units and varying 
the length of the window of neighbouring 
words), and the best balance between precision 
and recall was obtained using three neighbouring 
units.  

When lexical and contextual profiles were 
combined, a significant increase in recall was 
observed as compared to individual metrics (see 
Table 3 – recall of 92.1% as compared to 83.3% 
for lexical and 19.8% for contextual), with no 
significant drop in precision (if at all), resulting 
in the overall improved F-measure.  

We have also varied the seed terms used by 
swapping 100 out of 250 terms with new terms 
collected using the same methodology from the 
service description literature. However, the 
results were similar, showing small variations of 
1-2% in precision and recall. 
 

Total number of candidate terms  
collected using ATR 

98,986 

Number of terms classified  
using lexical similarity 61,977 

Number of terms classified  
using contextual  nouns 84,412 

Number of terms classified using 
contextual verbs 64,477 

Number of terms classified  
using contextual patterns 17,638 

 
Table 4: The number of terms suggested from the 
BMC corpus using different similarity metrics 
 

The evaluation of the top 300 candidate terms 
revealed that there were three term types sug-
gested. The first type relates to terms that refer to 
a generic concept related to bioinformatics ser-
vices and can make a direct entry into the CV 
(direct true positives). More than half of all terms 
are in this category. The second category con-
tains terms that would need slight modification 
before becoming part of the CV. For example, 
this type includes units that begin with a generic 
or non-specific modifier (e.g. user friendly in 
user friendly Gpcr oligomerization knowledge 
base), or wrongly identified terminological head 
(e.g. compromise in tab delimited text file com-
promise). We have applied simple rules to fix 
these issues, improving the number of (direct) 
entries by more than 11%. The third type con-
tains names that refer to toolkits, workbench plat-
forms, databases etc. (e.g. protein visualization 
tool RASMOL, myGrid Taverna workbench, etc.) 
They do not refer to generic concepts and thus 
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are not direct entries to the CV, but are of interest 
for the service discovery process. Note that such 
terms were also included in the seed term set, so 
their contextual profiles were used as positive use 
cases. Overall, adding these terms improved the 
total precision to 79.3%.  

The experiments with the myGrid ontology 
(experiment 3) were interesting in the sense that 
the suggested method was promising in both re-
constructing the terms from an ontology (reason-
able recall), but also in identifying new potential 
entries or synonyms that could be used (e.g. 
terms such as life science identifier (LSI), systems 
biology mark up language (SMBL), etc. have 
been suggested). 

5 Related work 

There have been several approaches to semi-
automated building of controlled vocabularies 
and ontologies from literature (Grefenstette 
1994). For example, Spasic et al. (2008) present a 
methodology for development of CVs for me-
tabolomics. They employed an automatic term 
recognition method to identify candidate terms 
from a corpus and then filtered relevant terms on 
the basis of their semantic association to a set of 
manually chosen relevant concepts. In this case, 
the UMLS12 was used as a (static) semantic 
model to identify properties to which target terms 
should conform.  

Sabou et al. (2005) present an automatic 
method that learns domain ontologies for Web 
service descriptions from textual information 
attached to Web services. They annotated a cor-
pus with linguistic information and then per-
formed syntactic parsing and employed a set of 
syntactic patterns to identify and extract informa-
tion from the corpus. The patterns are focused on 
domain concepts, their functionalities (verbs as-
sociated with concepts) and inter-relationships 
between concepts (via prepositions). This ex-
tracted information is then transformed into a 
structured ontology.  

Automatic term classification is also related to 
our work, in particular for different biological 
entities (e.g. gene and protein mentions (Yeh et 
al, 2005)). The reported methodologies include 
keyword-driven approaches, where biomedical 
terms containing functional words such as recep-
tor, factor or radical are used to assign term 
categories. These functional words may not al-
ways be discriminative, and determination of 
term class is not possible merely by comparing 

                                                           
12 http://www.nlm.nih.gov/research/umls/ 

the functional words, which may lead to the am-
biguity in term classification (Krauthammer and 
Nenadic, 2004). Statistical and machine learning 
approaches are also used (Collier et al, 2000; Lui 
and Friedman 2003). For example, an approach 
for disambiguation between proteins, genes, and 
mRNAs using different machine learning tech-
niques (naïve Bayesian classification, decision 
trees and inductive learning) was reported by 
Hatzivassiloglou et al. (2001). They used differ-
ent features for classification including words 
that appeared near a term, positional, morpho-
logical, distributional and shallow syntactic in-
formation about terms and reported an overall 
accuracy between 69.4% and 85% for a two-way 
classification task (gene/protein) and between 
65.9% and 78.1% for a three-way classification 
task (gene/protein/ mRNA).  

Apart from using morphological, lexical and 
syntactical properties of a term, key features 
from the context of a term occurrence can also be 
employed to determine the class of that term. For 
example, Al-Mubaid (2006) used mutual infor-
mation and χ2 as feature selection techniques to 
identify the best features from term contexts to 
build a term classifier. Similarly, Spasic et al. 
(2005) combined machine learning and domain 
knowledge (the UMLS thesaurus) to design a 
case-based reasoning system for term classifica-
tion based on context alignment (using the edit 
distance similarity between syntactic and seman-
tic constituents). In their previous work, Spasic 
and Ananiadou (2004) also used automatically 
learnt verbal preferences to support classification 
of biomedical terms. 

6 Conclusions  

Most bio text-mining approaches so far have fo-
cused on identification of biological and molecu-
lar entities from the literature to support 
knowledge acquisition and discovery in the life 
sciences (Jensen et al, 2006), with very few at-
tempts to characterise the bioinformatics sublan-
guage and the terminology used to present 
technologies, experimental procedures and meth-
odologies. In this paper we have focused on a 
controlled vocabulary that can be used to seman-
tically annotate bioinformatics services and tools.  

We have presented a term classification driven 
methodology to automatically build a CV for a 
domain represented with a set of seed terms and 
(optionally) a set of ontological descriptions. The 
methodology integrates lexical and contextual 
profiles of candidate terms, and compares them 
to the available resources. In the lexical ap-
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proach, we quantify the degree of sharing of con-
stituents between candidate terms and the seed 
and ontology units. In the context-based profil-
ing, we model textual behaviour of terms, using 
co-occurring nouns and verbs, or describing con-
texts using contextual patterns. While the onto-
logical concepts are used only to capture the 
lexical dimension of the domain conceptual 
space, the seed terms are also used to describe 
pragmatics of the given domain through a set of 
“known” use cases. 
 The results of the methodology applied to the 
bioinformatics domain revealed that the approach 
is useful for a rapid creation of a CV. We have 
processed all of the BMC Bioinformatics articles, 
with the estimated best precision of around 70% 
and recall of 90%. The precision for the top 100 
suggested terms was 93%.  

The CV generation can be viewed as a first step 
towards facilitating the automation of the service 
description process by not only aiding in the pro-
vision of baseline terminologies, but also by pro-
viding a useful lexical resource that can then be 
utilised for other NLP tasks like information re-
trieval, named entity recognition and information 
extraction in the bioinformatics domain. Future 
work will include incremental learning of terms 
and identification of patterns that are relevant for 
service descriptions, as well as more detailed 
identification of roles that bioinformatics terms 
may have in a given context (e.g. service input, 
task/operation term, availability, etc.). 
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Abstract

While the Open Biomedical Ontologies
(OBO) are successfully used for manual
database annotation purposes, their useful-
ness for automatic text mining remains to
be shown. Crucial for OBO’s suitability for
natural language processing applications is
the nature of the class names and synonyms
provided and the way they are referred to
or literally appear in the literature. Ac-
cordingly, our study investigates the lex-
ical properties and the semantic ambigu-
ity of these terms. In particular, we iden-
tify the number of OBO classes that can
be recognized in two corpora by means of
these terms, considering one corpus of full
texts documents taken from PUBMED Cen-
tral and one of MEDLINE abstracts. We
found that 15% of all OBO classes could be
identified in the MEDLINE corpus and 9%
in the PUBMED Central corpus by case-
insensitive string matching, including term
variants and stemmed forms of terms. In-
terestingly enough, only nine out of 80
OBO ontologies account for 80% of the
OBO classes that we were able to find.

1 Introduction

The Open Biomedical Ontologies (OBO) library1

is a collection of publicly available biomedical
ontologies hosted by the U.S. National Center
for Biomedical Ontologies (NCBO). OBO ontolo-
gies cover different subdomains of biology and
biomedicine, amongst others the anatomy of dif-
ferent model organisms, biomedical processes,
molecular functions of gene products, sequence
features, chemicals and experimental methods.
The ontologies have been developed as controlled

1http://obofoundry.org/

vocabularies for various data management tasks.
For example, the Gene Ontology (GO),2 the most
prominent one of the OBO ontologies, was cre-
ated for the functional annotation of genes and
gene products. The aim of using shared controlled
vocabularies such as the GO is to facilitate the in-
teroperability of different but related biomedical
databases across species.

OBO ontologies hold domain-specific knowl-
edge in a structured way by using hierarchically
organized classes and additional semantic rela-
tions. Classes come with a class name and are
often supplemented with synonyms and textual
definitions. While typically the class name is un-
ambiguous and self-explaining, the synonyms are
supplied to reflect the natural language use in doc-
uments and thus tend to be ambiguous. Besides
the hierarchy definingis-a relation, many OBO

ontologies provide complementary semantic rela-
tions (such aspart-of anddevelops-from) to ex-
press complex domain-specific interdependencies
(e.g., “cellular membrane”part-of “cell”, “ma-
ture T cell” develops-from“immature T cell”).

The OBO ontologies provide a huge amount
of domain-specific vocabulary in terms of class
names and their synonyms, which in their entirety
we refer to as OBO terms. Although it is well
known that natural language processing (NLP)
may heavily benefit from access to biomedical
domain knowledge (Spasic et al., 2005), re-use
of OBO for NLP is rare. This might be due to
the fact that the OBO terms are suspected to be
rather artificial, utterly long and complex – taking
the lexical properties of GO class names (McCray
et al., 2002; Ogren et al., 2004)pars pro totofor
OBO terms.

2http://www.geneontology.org/
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In order to find out whether this assumption
is justified or not we here scrutinize on natu-
ral language properties of OBO terms. We do
so by looking for matches of OBO terms in two
natural language corpora, subsets of MEDLINE

and PUBMED Central. We also incorporate an-
other terminological umbrella system, the Unified
Medical Language System (UMLS), that enjoys
much greater acceptance in the biomedical NLP
community than the OBO ontologies.

2 Related Work

Several studies focusing on the lexical nature of
terms in domain-specific terminologies and on-
tologies have already been carried out. One of
their main intentions is to find ways how these
terms can be arranged in domain-specific lexicons
that are easy to use by NLP engines.

Verspoor (2005) constructed a semantic lexi-
con based on terms that occur in both, the UMLS

Metathesaurus3 and the UMLS Specialist Lexi-
con.4 Several matching strategies were applied to
detect the UMLS terms in a domain-specific text
corpus. Verspoor found a lexical overlap for 77%
of the tokens in the corpus, though regarding the
set of all different tokens (i.e., types) in the corpus
only 3% were matched. The study did not explore
whether the meaning of the terms found in a text
really corresponded to the meaning of the targeted
terms in the merged lexicon, i.e., the resolution of
semantic ambiguity is left as an open issue.

McCray et al. (2001) also evaluated UMLS

Metathesaurus terms regarding their usefulness
for NLP. They identified different string prop-
erties that allow to predict how likely it is that
a given term can be found in a domain-specific
text corpus. In a follow-up study they explored
the lexical properties of GO terms. In particular,
they determined the number of GO terms that ap-
pear in the UMLS Metathesaurus as well, checked
whether the terms fulfilled certain lexical proper-
ties that indicate their ‘wellformedness’ for NLP
and looked for GO terms in a domain-specific text
corpus (McCray et al., 2002). Another stream of
work on GO terms investigates their composition-
ality (see, e.g., Ogren et al. (2004)) rather than
their lexical features in relation to NLP tasks.

3http://www.nlm.nih.gov/pubs/
factsheets/umlsmeta.html

4http://www.nlm.nih.gov/pubs/
factsheets/umlslex.html

Our study resembles the one by McCray et al.
(2002) but extends its scope of analysis from the
GO to the whole of OBO. In addition, we go be-
yond the work of McCray et al. and Verspoor by
investigating the semantic ambiguity of OBO on-
tology terms and collecting preliminary evidence
for the usefulness of the OBO ontologies for a typ-
ical NLP task, namely coreference resolution.

3 Methods

We analyzed the OBO terms in several ways.
First, we searched for OBO terms in a corpus of
MEDLINE abstracts and PUBMED Central full-
text documents using different string matching
strategies. Second, we investigated the overlap of
OBO terms with terms from the UMLS Metathe-
saurus and the UMLS Specialist Lexicon. Third,
we checked the OBO terms for various lexical
properties and compared the distribution of these
properties over the terms to that over the terms
found in the two corpora and the UMLS resources.
Fourth, we investigated the potential for seman-
tic ambiguity of OBO terms. Finally, we matched
the OBO terms to the coreference annotations in a
pre-release of the GENIA corpus kindly provided
by the Tsujii Laboratory (U Tokyo).5

3.1 Corpus Construction

We downloaded the OBO ontologies in May 2008
from the OBO ftp site,6 in OBO flat file format.
80 OBO resources were selected for investigation,
excluding pure mapping or bridge files linking
classes from one ontology to classes from another
and files linking database entries to GO. In to-
tal, the OBO ontologies comprise 827,843 classes
with different IDs. All class names and their syn-
onyms were extracted from the 80 resources re-
sulting in a set of 1,383,430 different OBO terms
from which 791,699 are distinct class names. We
included all kinds of synonyms in our study (ex-
act, related, broad, and narrow ones) since we
were interested in the complete inventory of terms
provided by the OBO ontologies, rather than in
exact denotations of ontology classes only.

We also downloaded the UMLS 2008AA re-
lease and used the UMLS METAMORPHOSYS

tool7 to create a customized Metathesaurus subset

5http://www-tsujii.is.s.u-tokyo.ac.jp/
6ftp://ftp.fruitfly.org/pub/obo
7http://www.nlm.nih.gov/pubs/

factsheets/umlsmetamorph.html

14



OBO Ontologies

number of ontologies 80
distinct classes 827,843
distinct class names 791,699
distinct class names
and synonyms

1,383,430

UMLS Resources

UMLS Metathesaurus
terms

3,810,230

UMLS Specialist
terms

624,955

Table 1: Term statistics for the OBO Ontologies and
for the UMLS Metathesaurus and the UMLS Specialist
Lexicon

which contained all UMLS source terminologies
(in English). The UMLS Metathesaurus terms (a
set of 3,810,230 concept names) were extracted
from the ‘Concept Names File’ (MRCON). Fur-
thermore, terms from the UMLS Specialist Lex-
icon were extracted from the ‘Agreement and
Inflection’ file (LRAGR) resulting in a set of
624,955 different terms. Table 1 summarizes this
data for the OBO ontologies and the UMLS re-
sources.

The MEDLINE8 download took place in Febru-
ary 2008 and included all records which con-
tained an abstract and were entered between the
years 2000 and 2008. 10% of these abstracts
were randomly selected resulting in a corpus of
316,520 documents. In the following, we refer to
this collection as the MEDLINE corpus.

PUBMED Central,9 a full-text site for bio-
medicine and the life sciences, was downloaded
in February 2008 and, again, 10% of the docu-
ments were randomly selected. This resulted in a
corpus of 6,342 documents, henceforth the PMC
corpus.

The (pre-release of the) GENIA coreference
corpus is composed of 1,999 documents contain-
ing in total 46,067 annotations of coreferences.
Table 2 presents an overview on the number of
documents and tokens contained in the three cor-
pora we used for our study. The token counts are
provided for ease of comparison only and simply
rely on counting whitespace-separated strings.

8http://www.ncbi.nlm.nih.gov/sites/
entrez?db=pubmed

9http://www.pubmedcentral.nih.gov/

Corpus Documents Tokens, in total
(different tokens)

MEDLINE 316,520 65,544,220
(1,656,388)

PMC 6,342 19,876,372
(631,601)

GENIA 1,999 460,334 (30,004)

Table 2: Number of documents and tokens in MED-
LINE, PUBMED Central (PMC) and GENIA

3.2 Matching OBO with MEDLINE and PMC

In the first part of our study, we searched for
OBO terms in the MEDLINE and the PMC cor-
pus. All OBO terms were matched against the
corpora using four different strategies,viz. ex-
act match, case insensitive match, case insensitive
match after adding simple term variants, and case
insensitive match after adding term variants and
stemmed terms.

The stemmed version of a term was created us-
ing the UEA stemmer10 (for multi-token terms
we only stemmed the last token of the term).
The variants were generated using a combina-
tion of replacing multiple whitespaces, under-
scores and hyphens by blanks, and removing
brackets and single quotes. In addition, we
added variants for terms containing a comma
followed by a space, such as“liver arginase”
generated from“arginase, liver” , and created
some ontology-specific variants (for GO molecu-
lar function terms, e.g., which contained the suffix
“activity” a variant without that suffix was added
to the set of OBO terms). The matching was car-
ried out using the LINGPIPE EXACTDICTION-
ARYCHUNKER11 and an integrated tokenizer.

We were interested in both, the number and na-
ture of OBO terms that appear in the two text cor-
pora, because these could shed light on the usage
of domain-specific terms in natural language doc-
uments, and the number of OBO classes that could
be identified based on these (slightly enriched)
terms. Another interesting issue is whether the
usage of domain-specific terminology differs in
scientific abstracts (MEDLINE) from that in full-
text documents (PMC). Therefore, we conducted
the same matching study twice, on a corpus of ab-
stracts and on a corpus of full-text documents.

10http://fizz.cmp.uea.ac.uk/Research/
stemmer/

11http://alias-i.com/lingpipe/index.html
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3.3 Matching OBO with UMLS

In the next part of the study we investigated the
overlap between the OBO terms and the terms
provided by the UMLS Metathesaurus and the
UMLS Specialist Lexicon. All OBO terms were
matched against the terms from the UMLS re-
sources ignoring case sensitivity.

The OBO ontologies hold a huge amount of
domain-specific vocabulary, but hardly contain
any lexical information (syntactic, morphologi-
cal, and orthographic information as contained in
the UMLS Specialist Lexicon) or semantic typing
(contained in the UMLS Metathesaurus in terms
of UMLS Semantic Network type assignments).
Therefore, the overlap of OBO and UMLS termi-
nology gives evidence of how useful the UMLS

could be as a source for lexical and semantic typ-
ing information to enrich the OBO ontologies.
A substantial overlap of the OBO ontologies and
the UMLS Metathesaurus could reasonably be ex-
pected since five important OBO ontologies are
fully or at least partially covered in the UMLS

Metathesaurus as well, namely the GO, the Foun-
dational Model of Anatomy (FMA ), the NCBI tax-
onomy, the NCI Thesaurus, and the Medical Sub-
ject Headings (MESH).

3.4 Analysis of Lexical Properties

Inspired by the study of McCray et al. (2001),
we defined a set of lexical features to analyze
the properties of the OBO terms. We chose
the features‘holds at least one number’(num-
ber), ‘holds at least one parenthesis’(parenthe-
sis), ‘holds at least one special character’(spe-
cial character) and‘average proportion of special
characters’(special characters (in %)) to estimate
the character complexity of the terms. The fea-
tures ‘average number of characters’(# charac-
ters) and‘average number of tokens’(# tokens)
were selected to quantify the length of terms. We
also considered the features‘holds at least one
underscore’(underscore) and‘contains a comma
followed by a blank’(comma space). We identi-
fied the number of OBO terms revealing these fea-
tures and compared it with the number of terms
in the UMLS Metathesaurus, the UMLS Special-
ist Lexicon, and the number of OBO terms found
in the MEDLINE and PMC corpus that exhibited
these features (see Table 5).

The aim of this investigation was to gather ev-
idence, first, which types of terms appear fre-

quently in natural language documents, second,
whether the nature of terms occurring in abstracts
and in full-text documents differs markedly, and,
third, whether the OBO terms reveal similar fea-
tures as terms from the UMLS resources, or not.

3.5 Evaluating Semantic Ambiguity

Next, we analyzed the semantic ambiguity of
OBO terms. We replaced all underscores in the
OBO terms and turned them into lower case (case
sensitivity and the use of underscores in class des-
ignators heavily depends on naming conventions)
and selected exactly those terms that appeared in
at least two different ontology classes and classi-
fied them as potentially ambiguous. Note that the
existence of different identifiers for some ontol-
ogy classes does not necessarily imply a seman-
tic distinction (i.e., ambiguity) as well. Thus, the
number of potentially ambiguous terms only con-
stitutes an upper bound for the true number of am-
biguous terms in the OBO ontologies.

The resulting list of terms was taken to deter-
mine the percentage of intra-ontology and cross-
ontology ambiguity among all encountered ambi-
guities. We also identified the number of ambigu-
ous terms that belonged to classes in a parent-
child relationship. Our intention was to get fur-
ther evidence whether the terms were really pol-
ysemous, or whether they belonged to two differ-
ent ontology classes that, in fact, share the same
meaning and should be merged, or whether they
belonged to parent-child-related ontology classes
due to a sloppy synonym assignment policy.

Semantic ambiguity in terms of polysemy (or
homonymy) is a major problem when domain-
specific terminology is taken into account by NLP
applications (e.g., Liu et al. (2002) or Humphrey
et al. (2006)). In particular, ambiguous terms de-
crease the performance of Named Entity Recog-
nition (NER) tools which, in turn, affect the per-
formance of all other NLP components relying on
the output of the NER component. Thus, in order
to assess the suitability of OBO terms for NLP, we
consider the analysis of semantic ambiguity of the
terms as an important problem.

3.6 Matching OBO with GENIA

In the last part of the study, we matched the OBO

terms against the GENIA corpus, enriched with
coreference annotations, and identified the num-
ber of exact and embedded matches of OBO terms
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with coreference annotations (in case of an em-
bedded match a term matches parts of a corefer-
ence annotation).

Coreferences are natural language expressions
which share the same referent, i.e. refer to the
same entity in the world, within or across sen-
tences, though the denotations at the text surface
are different (e.g., in“IL-7 ... . This protein ...”
“This protein” corefers to“IL-7” ). The process
of determining proper coreference pairs is called
coreference resolution and constitutes an impor-
tant subtask in many NLP applications. Expres-
sions that are potentially coreferent can be de-
tected by syntactic analysis (within sentences) or
by some sort of discourse memory (across sen-
tences). Domain ontologies help restrict the num-
ber of candidates for resolution by providing both,
categories for semantic typing of the expressions
and semantic relations between these categories
that can be exploited to infer the coreference of
two expressions (Vlachos et al., 2006). The aim
of our study was to get preliminary evidence for
the usefulness of OBO classes for semantic typing
of coreferent expressions.

4 Results

4.1 Results of the Corpus Matching Study

Applying case-insensitive term matching and in-
corporating term variants as well as stemming
(henceforth,IVS-matching) we found a total num-
ber of 46.7M term matches in the MEDLINE cor-
pus and 13.2M in the PMC corpus (cf. Table 2).
The matches covered major proportions of the
tokens in the two corpora (76% in the MED-
LINE corpus and 70% in the PMC corpus, respec-
tively), though only minor proportions of the set
of all different tokens were covered (6% in the
MEDLINE corpus and 9% in the PMC corpus, re-
spectively).

Source OBO Classes

OBO 827,843
MEDLINE Corpus 125,386 (15%)
PMC Corpus 76,718 (9%)
UMLS Metathesaurus 528,356 (64%)
UMLS Specialist Lexicon 128,704 (16%)

Table 3: Number of OBO classes associated with the
OBO terms detected in the text corpora and the UMLS

resources performing IVS-matching

The main focus of the corpus matching study
was on the OBO classes that can be detected in the
two corpora by means of the (slightly enriched)
terms associated with them. We were able to iden-
tify (see Table 3) about 125,000 OBO classes in
the MEDLINE corpus (15%) and almost 77,000 in
the PMC corpus (9%).

For the MEDLINE corpus we carried out ad-
ditional investigations. In order to find out
which impact case normalization, variant gener-
ation and stemming had on the number of trace-
able OBO classes we conducted additional match-
ing experiments (exact term matching, case in-
sensitive matching, and case insensitive match-
ing considering term variants). By applying
exact term matching only the total number of
matches dropped to 25.4M and the number of
OBO classes that we were able to identify de-
creased by four percentage points to approximate-
lyly 94,000. This is only 75% of the classes found
by IVS-matching. Case normalization and the
generation of term variants accounted for major
parts of the difference, while stemming had only
little impact.

Next we investigated the importance of syn-
onyms for detecting OBO classes in the corpus.
We applied IVS-matching omitting all OBO syn-
onyms. As a result, the number of term matches
dropped to 26.8M and the number of traceable
OBO classes was reduced by three percentage
points to approximately 97,000. This incorpo-
rated only 78% of the classes found when con-
sidering synonyms.

Finally we analyzed from which OBO ontolo-
gies the OBO classes identified in the corpus
came. The study revealed that a subset of only
nine (out of 80) OBO ontologies accounted for
more than three-fourths of the traceable OBO

classes (namely the NCI Thesaurus, the NCBI

Taxonomy, the MESH, the ontology for Chemical
Entities of Biological Interest (CHEBI), the Gene
Ontology (GO), the INOH Molecule Role ontol-
ogy (IMR), the Human Developmental Anatomy
ontology (EHDA), the Foundational Model of
Anatomy (FMA ), and the Disease Ontology, see
Table 4). The same set of ontologies holds 76%
of all OBO terms and 79% of all OBO classes.

4.2 Results of the UMLS Matching Study

The focus of the UMLS matching study was on the
term overlap of the OBO ontologies with UMLS
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OBO Ontologies Identified Classes in
MEDLINE Corpus

NCI Thesaurus 22.26%
NCBI Taxonomy 15.87%
MESH 10.25%
CHEBI 6.61%
GO 6.21%
IMR 5.61%
EHDA 4.54%
FMA 4.47%
Disease Ontology 4.22%

total 80.05%

Table 4: Nine out of eighty OBO ontologies account
for more than 80% of the OBO classes identified in the
MEDLINE corpus

resources. We found (see Table 3) approximately
763,000 OBO terms that also appeared in the
UMLS Metathesaurus and about 119,000 that also
appeared in the UMLS Specialist Lexicon, ap-
plying IVS-matching. The OBO terms matching
Metathesaurus terms were associated with about
528,000 OBO classes (64%), those matching Spe-
cialist Lexicon terms with almost 129,000 (16%).

4.3 Results of the Analysis of Lexical
Properties of Terms

We found (see Table 5) the OBO terms to be on
the average three tokens and 27 characters long,
about twice as long compared with the OBO terms
detected in the MEDLINE and the PMC corpus,
and also compared with the terms in the UMLS

Specialist Lexicon. Furthermore, they contained
more than twice as often numbers and special
characters. Compared with the terms in the UMLS

Metathesaurus OBO terms were shorter and con-
tained less often non-alphabetic characters (nu-
mers, parentheses, special characters). In addi-
tion, we found that only a small proportion of
OBO terms contained underscores and 17% of
UMLS Metathesaurus terms were marked with the
feature‘contains a comma followed by a blank’
(comma space). To locate these terms in the doc-
uments they had to be normalized first.

4.4 Results of the Evaluation of Semantic
Ambiguity

We found (see Table 6) about 6% of the OBO

terms to be associated with at least two ontology
classes, which makes them potentially ambigu-

Class Names Class Names
& Synonyms

OBO terms 1,040,119 2,013,354
ambiguous 44,193

(4.25%)
122,491
(6.08%)

intra-source
ambiguous

3,816
(0.37%)

43,747
(2.17%)

Table 6: Number of ambiguous OBO class names and
synonyms and intra-source ambiguity

ous. The average number of classes with which
these ambiguous terms were associated was 2.7.
Additional investigations revealed that about one
third of the potentially ambiguous terms were
ambiguous within one ontology and only a very
small number of terms was associated with on-
tology classes that were related by anis-a re-
lationship. When only class names were con-
sidered, i.e., synonyms were discarded, the pro-
portion of ambiguous terms dropped by almost
two percentage points and the average number of
classes these terms were associated with turned
out to be 2.6.

4.5 Results of the GENIA Matching Study

When OBO terms were matched with the GE-
NIA corpus by IVS-matching (see Table 7)
about 317,000 matches were found. These in-
cluded almost 5,000 exact matches of OBO terms
with coreference annotations (some 10% of all
46,000 coreference annotations) and about 40,000
matches of OBO terms that were embedded in a
coreference annotation.

5 Discussion and Conclusions

We presented a study of the lexical properties of
terms contained in the OBO ontologies, identi-
fied an upper bound for the semantic ambiguity of
these terms and investigated how useful they are
to detect references to ontology classes in domain
specific text corpora.

GENIA Corpus

number of annotated corefs 46,067
total matches 317,493
exactly matched corefs 4,722
embedded matches 40,065

Table 7: Term matches found in the GENIA corpus
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Feature OBO terms
(1,383,430)

OBO terms in
MEDLINE

(174,282)

OBO terms
in PMC
(82,786)

UMLS

Metathesaurus
terms

(3,810,230)

UMLS

Specialist
terms

(624,955)

number 32% 12% 11% 34% 1%
parenthesis 10% 1% 1% 21% 0%
comma space 3% 0% 0% 17% 0%
underscore 3% 0% 0% 0% 0%
special character 24% 11% 8% 47% 16%
special characters
(in %)

10 5.70 5.11 12.69 4

# characters 27.12 14.43 12.38 34.83 14.59
# tokens 3 1.78 1.78 4.21 1.49

Table 5: Lexical properties of terms provided by the OBO ontologies, the UMLS Metathesaurus, the UMLS

Specialist Lexicon, and those OBO terms identified in the MEDLINE and the PMC corpus via IVS-matching
(percentages were rounded to integers)

As far as semantic ambiguity of OBO terms
is concerned we were able to characterize up-
per bounds assessing how many OBO terms oc-
curred in more than one OBO class. Future work
will have to constrain the grade of ambiguity
by mechanisms of ontology alignment revealing
semantic equivalences between ontology classes
with different identifiers. After having completed
the alignment of ontologies the maximal number
of pair-wise non-equivalent ontology classes to
which a term is assigned will reflect exactly the
number of different senses of the term (excluding
senses beyond the scope of the OBO ontologies).
At this stage the OBO ontologies would be a valu-
able sense inventory for biomedical terms that
could be used as a basis for word sense disam-
biguation (WSD). WSD is another pending step
of our work. Until now we simply looked for
string-based matches of OBO terms in text cor-
pora and the UMLS, but in case the terms had dif-
ferent senses we did not evaluate which sense of
the term turned up in the text.

We examined whether there was a difference in
the use of domain-specific terminology in scien-
tific abstracts and in full-text documents. Much
to our surprise, we identified less OBO classes in
full-text documents (the PMC corpus) than in ab-
stracts (the MEDLINE corpus). Furthermore, we
found OBO terms matching full-text documents
to be, on the average, shorter and less complex
than those matching abstracts. An explanation
could be that in full-text documents OBO classes
are mentioned in terms of detailed descriptions,

rather than by mentioning their name, whereas
in abstracts knowledge is expressed in a much
denser way, thus requiring more compact domain-
specific terminology. However, the results for the
PMC corpus are weaker than those for the MED-
LINE corpus since it is three times smaller based
on token counts. We are currently working on a
second run of our experiments with a larger sized
PMC corpus to reassess our results.

In the last part of our study we identified ex-
act matches of OBO terms with GENIA corefer-
ence annotations, as well as embedded matches.
What we did not do so far is checking whether in
the case of two expressions matching OBO terms
a semantic link between these expression could
be inferred based on a semantic relation between
OBO classes associated with the matched OBO

terms. Only if such a relation could be found in
the majority of cases coreference resolution sys-
tems would in fact benefit from the incorporation
of OBO ontologies.

The main focus of our study was on the nature
of OBO terms and their use in domain-specific
corpora. Based on term matches we were able
to infer which OBO classes were addressed in the
corpora. We found that simple case normaliza-
tion and term variant generation substantially in-
creased the number of OBO classes that could be
identified. Further, we observed that synonyms
also played an important role.

However, the overall number of OBO classes
that we were able to identify was extremely low
(15% in the MEDLINE and 9% in the PMC cor-
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pus). In fact, at the outset we expected a much
higher proportion of OBO classes to be addressed
in the domain-specific literature. Obviously, the
textual realization of ontology terms is quite dif-
ferent from their appearance in ontologies. We
assume this holds especially for those classes that
are represented by rather lengthy terms contain-
ing many non-alphabetic characters. The problem
of finding these additional mentions of ontology
classes is well known for the Gene Ontology (cf.
Blaschke et al. (2005)). Our data suggests that it
also concerns the whole of OBO.

To be of real use for NLP applications we be-
lieve that the number of OBO classes that can cur-
rently be automatically detected in documents by
string matching routines is still far to low. Our
plans to enhance the number of traceable OBO

classes are based on the following considerations.
First, the OBO ontologies could be enriched with
additional synonyms (presently only 39% of all
OBO classes are provided with synonyms leav-
ing room for improvement). Second, instead
of simple string matching (exact or more liberal
variants) more sophisticated mapping procedures
should be developed particularly suited for de-
tecting multi-token terms and terms that contain
many non-alphabetic characters, such as names of
chemical entities. Some specialized tools already
exist that could be exploited for this purpose, such
as METAMAP, a tool developed at the Ameri-
can National Library of Medicine to match UMLS

terms and their textual forms (Aronson, 2001), or
OSCAR3, a tool for the identification of chemical
entities (Corbett and Copestake, 2008).
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Abstract

Based on an introspective manual analy-
sis how relations between biomedical enti-
ties surface literally in scientific abstracts,
we investigate the performance of dif-
ferent feature sets for biomedical rela-
tion extraction in a supervised machine-
learning setting. We start from fairly simple
ACE-style ones and increasingly include
domain-specific knowledge in these feature
sets. This turns out to have beneficial ef-
fects on the extraction performance of the
system under scrutiny.

1 Introduction

While systems for the recognition and interpreta-
tion of named entities have reached, by and large,
a stable performance plateau at the 80% level,
the extraction of relations between these entities
lags far behind these figures. In the newswire do-
main, e.g., theAutomatic Content Extraction Pro-
gram(ACE) (Doddington et al., 2004) features the
best system with 36.8% f-score in the detection
of relation mentions.1 This data is even underper-
fomed by the winning system of theBioCreative
2 Protein Interaction Sub-Task(IPS) (Hirschman
et al., 2007), whose performance results settled at
only 28.8% f-score. Although for both competi-
tions strict real-world requirements were imposed
on the task – the recognition and interpretation of
all named entities involved, plus the recognition
and interpretation of the associated relation (and,
for the biomedical domain, the mapping of en-
tities onto unique database identifiers) – relation
extraction remains a challenging research prob-
lem under any conceivable conditions.

1Results are published athttp://www.nist.gov/
speech/tests/ace/2007/

Our approach to deal with the challenges aris-
ing from relation extraction (RE) in the biomed-
ical domain is, first, to explore the possible rea-
sons for the inherent hardness of this task through
introspective manual text analysis. In Section 3
we discuss empirical phenomena underlying rela-
tion encodings in biomedical documents, includ-
ing a large variety of patterns and reliance on in-
ferential processes. We then consider the perfor-
mance of a feature-based learning approach for
RE. Since supervised machine learning relies on
carefully crafted feature sets, we consider in Sec-
tion 5 different varieties of these sets, starting
from ones which have already proven useful in
the newswire domain. We then explore, in a pre-
liminary way though, the possible contribution
of domain-specific features for further fine-tuning
these feature sets. Encouraging as these results
may be our current corpus (cf. Section 4) suffers
from an unbalanced occurrence of (too few) pos-
itive examples (clearly an issue that has to be ad-
dressed in future work).

2 Related Work

As far as the state of the art in biomedical RE is
concerned, the simplest method for the extraction
of relations between named entities is the detec-
tion of bag-of-word-styleco-occurrencesof en-
tities of interest within documents or sentences
(e.g., Jenssen et al. (2001)). Co-occurrence-based
approaches are characterized by a high recall at
the cost of an extremely low precision. Further-
more, the type and direction of relation usually
cannot be determined. RE approaches that focus
on higher precision but often suffer from weaker
recall are based onmanually defined patterns
(e.g., Blaschke et al. (1999)). Some pattern-based
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approaches exploit morpho-syntactic and syntac-
tic information and are based onautomatically
learning RE patternsfrom large corpora (e.g,
Hakenberg et al. (2005), Huang et al. (2004)).
These methods provide higher recall than those
based on manually defined patterns.Rule-based
RE approachestypically exploit full parse data
of sentences and additional semantic information
(e.g., Yakushiji et al. (2001), Saric et al. (2004),
Fundel et al. (2007)).

In the newswire domain, supervised ap-
proaches currently dominate RE. This is partly
due to the availability of large annotated corpora
such as ACE (Doddington et al., 2004) that can be
used for the training of machine learning models,
using, e.g., Support Vector Machines (SVM) or
Maximum Entropy (ME) models. The systems
either exploit SVM kernels especially designed
for the comparison of syntactic trees (e.g., Ze-
lenko et al. (2003), Bunescu and Mooney (2005))
or they incorporate a variety of lexical, morpho-
syntactic and syntactic features (e.g., Kambhatla
(2004), Zhou et al. (2005)).

Considering RE in the biomedical domain, to
the best of our knowledge, there are few stud-
ies which deal exclusively with gene regulation.
Yang et al. (2008) focus on the detection of sen-
tences that contain mentions of transcription fac-
tors (proteins regulating gene expression). They
aim at the detection of new transcription factors,
while relations are not taken into account. In
contrast, Saric et al. (2004) extract gene regu-
latory networks and achieve in the RE task an
accuracy of up to 90%. They disregard, how-
ever, ambiguous instances that potentially lower
recall (no recall measures are reported in this
work). TheGenic Interaction Extraction Chal-
lenge (Nédellec, 2005) was organized to deter-
mine the state-of-the-art performance of systems
designed for the detection of gene regulation in-
teractions. The best system achieved a perfor-
mance of about 50% f-score.

The LLL corpus which was especially created
for the Genic Interaction Extraction Challenge,
the AIMED2 and the BIOINFER corpus (Pyysalo
et al., 2007) are considered as the standard cor-
pora in the biomedical domain for evaluation of
RE performance (Pyysalo et al., 2008). They
are usually used for the development and evalua-

2ftp://ftp.cs.utexas.edu/pub/mooney/
bio-data/

tion of feature-based systems (e.g., Katrenko and
Adriaans (2006), Sætre et al. (2007)). Katrenko
and Adriaans (2006) report on experiments in
which they reached f-score peaks on the AIMED

corpus with 54.3% and on the LLL corpus with
72.4%, respectively. It should be noted that the
experimental settings of the evaluations are not
always clear. Therefore, Airola et al. (2008) sug-
gested to indicate the evaluation settings of the
instance-, sentence- or document-wise evaluation
and proposed to use the latter as a default evalua-
tion setting.

In our work we decided to use supervised ma-
chine learning models for gene regulation data
and investigate whether the experience gained
in the newswire domain can be applied to the
biomedical domain as well. We chose the sys-
tem presented by Zhou et al. (2005) that achieved
competitive results of 74.7% in RE on ACE.

3 Textual Patterns for Gene Regulation

Very briefly, the regulation of gene expression can
be described as the process that modulates the fre-
quency, rate or extent of gene expression, where
gene expression is the process in which the cod-
ing sequence of a gene is converted into a ma-
ture gene product or products, namely proteins
or RNA (taken from the definition of the Gene
Ontology classRegulation of Gene Expression,
GO:0010468).3 Transcription factors, cofactors
and regulators are proteins that play a central role
in the regulation of gene expression.

To get acquainted with the textual appear-
ance of gene regulation relations, we manually
analyzed 50 randomly extracted sentences from
MEDLINE abstracts (see Section 4 for a detailed
description of that collection) in order to find re-
current patterns by which gene regulation rela-
tions are literally expressed in sublanguage doc-
uments. We found 58 encoded relations and dis-
covered in this set at least thirteen stable patterns
how gene regulation relations surface in texts. In
the following list we rank these patterns by their
frequency in the set (in descending order).

1. [Agent] V-active [Patient Action-NN]
“IclR also represses the expression of iclR”

2. [Patient Action-NN] V-passive [Agent]
“yeiL expression is positively activated by
Lrp”

3http://www.geneontology.org/
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3. [Agent] - Action-JJ [Patient]
“SlyA-induced proteins”

4. [Agent] is anActor-NN for [Patient]
“IclR is a repressor for the Escherichia coli
aceBAK operon”

5. [Agent Action-NN] V-active [Patient
Action-NN]
“Elevation of ppGpp levels in growing cells
... triggered the induction of all usp genes.”

6. [Agent] V-active (bind to) [Patient] pro-
moter / site
“ZntR is a trans-acting repressor protein
that binds to the znt promoter region”

7. [Agent] is required / essential / involved in
[Patient Action-NN]
“rpoS function is essential for bgl silencing”

8. [Action-NN of Patient] by [Agent]
“transcription repression of the Escherichia
coli acetate operon by IclR”

9. [Patient Action-NN] V-active [Agent]
“Expression of the tau and ssu genes re-
quires the LysR-type transcriptional regula-
tory proteins CysB and Cbl”

10. Promoter of [Patient] contains binding
site for [Agent]
“The promoters of the mar/sox/rob regulon
of Escherichia coli contain a binding site
(marbox) for the homologous transcriptional
activators MarA, SoxS and Rob.”

11. [Patient Action-NN] V-passive (caused
by) [Agent]
“bgl silencing caused by C-terminally trun-
cated H-NS”

12. [Agent Action-NN] V-active (cause)
[Patient Action-NN]
“Disruption of cueR caused loss of copA
expression”

13. [Action-NNPatient] is under control of
[Agent]
“Synthesis of Cbl itself is under control of
the CysB protein”

The two most frequent patterns that contain the
mention of regulation verbs (V-active, V-passive)
cover a large amount of relation instances (1. (15
relations), 2. (11 relations)). The use of adjec-
tives and Actor nominalizations (Actor-NN such
as ‘regulator’) are other frequent patterns in the
expression of gene regulation relations (3. (6 re-
lations), 4. (4 relations)). Uncertain expressions

such as‘be essential’, ‘be involved in’are used
for the description of unspecified gene regula-
tion relations (7. (3 relations)). Besides regulation
verbs and their nominalizations and adjectives in-
dicating requirements or dependencies, authors
frequently describe the molecular process of the
binding of a transcrition factor to a gene region
(promoter) or provide information that a gene
contains a binding site for a transcription factor
(6. (3 relations), 10. (1 relation)). Another pattern
group contains causal relations between molecu-
lar processes in which gene and transcription fac-
tors are involved (5. (3 relations), 11. (1 relation),
12. (1 relation)). Five out of 58 relations could not
be classified into the featured thirteen patterns.

We see two challenges for the correct detection
of gene regulation relations in sentences (given
adequate syntactic structures are available): (1)
the detection ofis-a relations between mentions
of entities participating in regulation process, and
(2) inferential processes on biomedical knowl-
edge for correctly distinguishing between positive
and negative regulation processes.

The first issue concerns the frequent occurrence
of appositions and predicate noun relations be-
tween participants, and the use of anaphoric men-
tions of participants in the regulation process. For
example, in“zntR gene encodes a putative regu-
latory protein that controls the expression of the
znt operon” we have anis-a relation between
‘zntR gene’and‘putative regulatory protein’.

The second challenging issue concerns the cor-
rect detection of the category of gene regula-
tion relations (positive, negativeor unspecified).
Experimental environments for gene regulation
detection often involve genetic modifications of
transcription factors. By means of these genetic
modifications and the expression levels of other
genes, researchers implicitly draw conclusions
about the role of the transcription factor in the
gene regulation processes. The sentence“The
production of C51 microcin decreased or was ab-
sent in rpoS, crp and cya mutant cells.”contains
a description of the decrease of‘C51’ expression
level. The fact that‘rpoS’, ‘crp’ and ‘cya’ genes
are inactivated (‘mutant cells’) leads to the con-
clusion that they positively regulate‘C51’. The
detection of the correct type of relation requires
knowledge about experimental conditions (indi-
cated here by‘mutant cells’) and inferences on
biomedical knowledge.
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4 Corpus Annotation

In this section we introduce theJULIE Lab Gene-
Reg corpuswhich consists of MEDLINE abstracts
dealing with gene regulation inE. Coli. It pro-
vides three types of semantic annotations:

• named entities involved in gene regulatory
processes, such as TFs (transcription factors,
cofactors and regulators) and genes,

• pairwise relations between TFs and genes,

• triggers (e.g., clue verbs) essential for the de-
scription of gene regulation relations

For all three annotation levels the annotation
vocabulary was taken from theGene Regulation
Ontology(GRO) (Beisswanger et al., 2008). GRO
describes gene regulation processes occurring on
the intra-cellular level (such as the binding of
transcription factors to DNA binding sites) and
physical entities that are involved in these pro-
cesses (such as genes and transcription factors).

A set of 32,155 abstracts was compiled from
MEDLINE based on a query including the MESH
terms Escherichia coli, Gene Expressionand
Transcription Factors(amongst others). From
this set we randomly selected a corpus of 314 ab-
stracts for manual annotation.

4.1 Named Entities

All abstracts in the corpus were annotated man-
ually by a graduate student of biology consider-
ing the semantic categories enumerated in Table 1
which also gives the annotation counts (for defi-
nitions of the selected categories see GRO).4

Named Entity Category Annotations

Transcription Factor 2496
Transcription Cofactor 14
Transcription Regulator 40
Gene 2547
Gene Group 1180
Gene (anaphoric) 24
Gene Group (anaphoric) 71

Table 1: Number of entity annotations per semantic
category

To assess the Inter-Annotator Agreement
(IAA) for the entity annotation a second gradu-
ate student of biology annotated a subset of 248

4http://www.ebi.ac.uk/Rebholz-srv/
GRO/GRO.html

abstracts. For this subset the IAA was computed
applying three standard IAA measures for the NE
task: Strict IAA (69% (R), 62% (P), 65% (F)),
Correct-Span IAA (74% (R), 76% (P), 72% (F))
and Correct-Category IAA (79% (R), 81% (P),
80% (F)).

Additionally, the biologist annotated anaphoric
mentions ofGeneandGene Groupentities (see
also Table 1). The motivation of this annotation
task was to provide more instances of entity men-
tions for the annotation of gene regulation rela-
tions. Anaphoric mentions were only annotated
in sentences containing gene regulation relations.

4.2 Relations

The corpus of MEDLINE abstracts as described
in Section 4 was also annotated with relations
by a graduate biologist in a two-step annotation
process. In a first step, trigger words indicating
mentions of gene regulation processes were an-
notated. In a second step, the relations between
genes and TFs (affecting the expression of the
gene) were annotated. Next, we describe the two-
step annotation process in more detail.

4.2.1 Annotation of Trigger Words

In preparation of the trigger word annotation,
one biologist and one linguist manually screened
the abstracts in the corpus and compiled a list
of verbalizations of molecular processes that fre-
quently occurred in the description of gene reg-
ulation relations. These processes were grouped
in five categories enumerated in Table 2 based on
conceptualizations and definitions from the GRO.

Trigger words indicating textual mentions of
the listed processes were annotated with the cor-
responding categories. A trigger is any literal ver-
bal form that clearly signals the occurrence of a
particular molecular process. Trigger words are
basically main verbs, verb nominalizations and
adjectives. For example, the sentence“H-NS and

Semantic Category Annotations

GeneExpression 495 (15)
TranscriptionOfGene 46 (12)
RegulationOfGeneExpression (un-
specified)

896 (82)

PositiveRegulationOfGeneExpression 835 (110)
NegativeRegulationOfGeneExpression 441 (93)

Table 2: Number of trigger word annotations per se-
mantic category (unique annotations are in brackets)
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StpA proteins stimulate expression of the maltose
regulon in Escherichia coli.”contains two trigger
words: first,‘stimulate’ is a trigger for a process
in the categoryPositiveRegulationOfGeneExpres-
sion, second,‘expression’is a trigger for a pro-
cess belonging to the categoryGeneExpression.

4.3 Annotation of Gene Regulation Relations

In the second step, the graduate biologist anno-
tated pairwise relations between genes and tran-
scription factors, cofactors and general regula-
tors affecting the expression of the gene. This
annotation was based on the GRO classRegu-
lationOfGeneExpressionwith its two sub-classes
PositiveRegulationOfGeneExpressionand Nega-
tiveRegulationOfGeneExpression. The concept
RegulationOfGeneExpression (unspecified)was
used for the annotation of gene regulation pro-
cesses that could not be specified as either a pos-
itive or a negative regulation. We chose single
sentences as annotation context for this task so
that only those textual mentions of gene regula-
tion relations and their participants were anno-
tated which occurred within the same sentence.

A relation instance contains two arguments,
Arg1 and Arg2. Arg1 is occupied by theagent,
i.e., the entity that plays the role of modifying
the gene expression.Arg2 is occupied by thepa-
tient, i.e., the entity of which the expression is
modified. While agents are proteins that regulate
the expression of genes, patients are typically the
genes of which the expression is regulated by the
agent. The sentence“The uxuAB operon is neg-
atively controlled by the uxuR and exuR regula-
tory gene products.”denotes aNegativeRegula-
tionOfGeneExpressionrelation between the gene
‘uxuAB’ and two transcription factors, viz.‘uxuR’
and‘exuR’.

A set of 65 randomly selected abstracts was an-
notated by the second graduate student of biology
for determing the IAA. A Strict IAA of 82% (R),
84% (P), 83% (F) was achieved for the task of the

Semantic Category Annotations

RegulationOfGeneExpression (un-
specified)

408

PositiveRegulationOfGeneExpression 455
NegativeRegulationOfGeneExpression 272

Table 3: Number of gene regulation relation annota-
tions per semantic category

trigger annotation. An IAA of 78.4% (R), 77.3%
(P), 77.8% (F) was measured for the task of cor-
rect identification of the pair of interacting named
entities in gene regulation processes, while 67%
(R), 67.9% (P), 67.4% (F) were achieved for the
identification of interacting pairs plus the 3-way
classification of the interaction relation.

5 Methods

The patterns discussed in Section 3 already reveal
the diversity how gene regulation relations sur-
face literally in texts. For the automatic extraction
of gene regulation relations, we pursue a feature-
based approach to RE that incorporates diverse
lexical, syntactic and semantic features. We, first,
selected features that had already proved useful in
the detection of relationships between entities in
the newswire domain and were evaluated on the
ACE RE corpus (Doddington et al., 2004). These
features were intensively explored in the work of
Zhou et al. (2005). As a classification model we
chose the Maximum Entropy model implementa-
tion in MALLET .5

5.1 Features for Relation Extraction

Zhou et al. (2005) investigated eight classes of
features suited for RE: words, entity type, men-
tion level, overlap, base phrase chunking, depen-
dency tree, parse tree and semantic resources.
We chose seven classes of features (excluding se-
mantic resources that were suited only for the
newswire domain). In the following, we will
briefly introduce these features. ( for more de-
tailed information, see Zhou et al. (2005)). As a
substitute for Zhou et al.’s semantic resources, we
incorporated a semantic feature class that exploits
information about trigger word occurrence in the
sentence (in the full parse tree path).

In the following we distinguish between two
entity mentions in pairwise relations, i.e., E1 and
E2. E1 is the entity mention that occurs first in
the sentence (before E2). If one of the mentions
includes another entity mention, then the entity
mention with a larger span is classified as E1.

5.1.1 Words Features

This feature class covers four categories of
words: (1) the words of both entity mentions, (2)

5MALLET is available at http://mallet.cs.
umass.edu/index.php/Main_Page
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the words between the entity mentions, (3) the
words before E1, (4) the words after E2. For both
mentions, head words and their combination are
considered. The window for the words before E1
and after E2 has a size of two words.

5.1.2 Entity Features

Entity features account for combinations of en-
tity types, flags indicating whether mentions have
an overlap, and their mention level. For the lat-
ter, we distinguish between name and anaphoric
mentions.

5.1.3 Base Phrase Chunking Features

The chunking features are concerned with the
head words of the phrases between the two en-
tity mentions. Zhou et al. (2005) show that
shallow parsing features play a critical role for
RE. This feature class covers four categories of
phrases: (1) the phrases of both entity mentions,
(2) the phrases between the entity mentions, (3)
the phrases before E1, (4) the phrases after E2.

5.1.4 Full Parsing Features

This class of features deals with full parse tree
information. We included in our work five from
eight features presented by Zhou et al. (2005)
excluding dependency features that concern de-
pendencies derived from full parse tree as they
were unreproducible from the paper’s descrip-
tions. We selected, however, features that exploit
constituency-based parsing and indicate whether
mentions are in the same noun, prepositional or
verbal phrase. The path of phrase labels (without
duplicates) between two entity mentions and the
path enriched with phrase head information are
considered as well.

5.1.5 Relational Trigger Words and Keywords

This newly added feature class accounts for
the connection of trigger words and mentions
in a full parse tree. We exploit features in-
dicating whether the top phrase in the parse
path between the entity mentions contains aReg-
ulationOfGeneExpressiontrigger or one of its
sub-type triggers, and whetherTranscriptionOf-
Gene/GeneExpressiontriggers occur in the same
noun phrase as entity mentions. To acount for the
influence of the experimental intervention context
on the proper detection of the gene regulation re-
lation, we checked whether keywords describing
experimental interventions (e.g.,‘mutant’, ‘dele-
tion’) (altogether, 56 keywords) co-occur in the

same noun phrase with E1 or E2. For the evalu-
ation of these features on the AIMED corpus we
compiled a dictionary of interaction event triggers
from our regulation trigger list and terms used by
Fundel et al. (2007).

6 Experiments and Results

For the evaluation of our feature-based approach
to gene regulation RE, we performed a ten-fold
sentence-wise cross-validation on the GENEREG

and the AIMED corpus. For the evaluation of the
RE task we used original annotations of named
entities and relational trigger words (the AIMED

corpus was automatically tagged for event trig-
ger words (cf. Section 5.1.5)). Anaphoric men-
tions of entities were included in the evaluation as
well. We considered thus only the detection of a
gene regulation relation between two entity men-
tions. As the regulation relation is an asymmet-
ric one, we distinguish betweenARG1-relation-
ARG2and ARG2-relation-ARG1, i.e., the order
in which the entities appear in the sentence.
The overall evaluation results reflect the mean
of both relations. The ten-fold cross-validation
was done for (1) the binary classification ofReg-
ulationOfGeneExpressionrelation and (2) the 3-
way classificationPositiveRegulationOfGeneEx-
pression, NegativeRegulationOfGeneExpression,
andRegulationOfGeneExpression (unspecified).6

The GENEREG corpus was enriched with
morpho-syntactic and syntactic information. For
POS tagging, chunking and parsing we used the
re-trained OPENNLP tool suite.7 These tools had
previously been re-trained (Buyko et al., 2006) on
the GENIA corpus (Ohta et al., 2002).

We evaluated on two feature sets:Feature Set 1
(Zhou et al., 2005) andFeature Set 2that contains,
in addition, the features exploiting relational trig-
gers (see 5.1.5). The evaluation results clearly in-
dicate that the straightforward porting of RE fea-
ture types from the newswire domain to the spe-
cialized biomedical domain does not provide fully
satisfactory results (see Table 4). The addition
of the domain-specific features (relational trigger
words) increases the performance by 3 percent-
age points for the detection of the generic gene
regulation relation (63.0%), and by nearly 14 per-
centage points for the detection of the specific

6RegulationOfGeneExpressiondoes not contain specifi-
cations as to whether it is positive or negative.

7http://opennlp.sourceforge.net/
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Semantic Category Feature Set 1 Feature Set 2
R P F R P F

RegulationOfGeneExp. (generic) 50.0 76.2 60.0 55.0 (78.6) 75.4 (56.8) 63.0(65.5)

RegulationOfGeneExp. (pos.) 28.9 60.6 37.2 39.1 (56.2) 66.0 (48.8) 47.3 (50.0)
RegulationOfGeneExp. (neg.) 18.0 51.8 24.4 29.5 (41.2) 60.5 (51.3) 37.6 (44.5)
RegulationOfGeneExp. (unspec.) 10.8 31.7 14.9 28.5 (45.6) 60.9 (47.3) 37.3 (44.6)
Overall (pos./neg./unspec. at once)19.5 55.6 28.2 31.5 (46.6) 65.0 (49.3) 42.0(47.3)

AIM ED 42.5 66.8 51.5 42.9 64.8 51.3

Table 4: Results of Gene Regulation Relation Extraction on the GENEREG (lines 3–7) and AIMED (line 8) corpus
(reduction of negative examples (under-sampling) in brackets)

gene regulation relations (42.0%). Surprisingly,
the evaluation on the AIMED corpus reveals that
the incorporation of such semantic features does
not enhance the over-all performance.

The error analysis with respect to specific re-
lations revealed that the relation representations
covered by the most frequent patterns (see Section
3) are correctly detected. Still, the main trouble
here is the incorrect analysis of coordinated struc-
tures by the OPENNLP parser. In the incorrectly
parsed sentence“NarL Expression from the Es-
cherichia coli nrf operon promoter is activated by
the anaerobically triggered transcription factor,
FNR, and by the nitrate/nitrite ion-controlled re-
sponse regulators, NarL or NarP, but is repressed
by the IHF and Fis proteins.”only one out of the
five relation mentions was detected (the relation
between‘nrf ’ and‘FNR’).

Another prominent failure source is in the fre-
quent occurrence of anaphoric expressions within
sentences in abstracts. The sentence“The ex-
pression of the appY gene is induced immedi-
ately by anaerobiosis, and this anaerobic induc-
tion is independent of Fnr, and AppY, but de-
pendent on ArcA”contains an anaphoric expres-
sion“this anaerobic induction”that is crucial for
the detection of the relation between transcription
factors and the induced gene.

Furthermore, the rather weak results for the
classification of specific gene regulation relations
are partly due to inferences required for the proper
detection of the category of the gene regulation
relations. Currently, we handle these inferences
(inappropriately though) only by exploiting key-
words in the features. In order to more adequately
deal with this problem we will focus, in future
work, on a hybrid approach which includes at
least a modest level of inferential capabilities.

One of the problems we see in the training data
is the severe imbalance of positive and negative
instances. The corpus contains about 9,000 nega-
tive instances and 1,135 positive instances only.
Such an imbalance may cause serious learning
problems, and is reflected already by the low per-
formance (e.g, the particularly low recall of the
minority class). If the classifier is uncertain, it
typically predicts the majority class (in our case,
the negative class label).

The sparseness of positive learning examples
can be reduced by balancing the number of pos-
itive and negative examples in the training data.
Two sampling schemes are usually applied here,
over-sampling and under-sampling. The aim of
over-sampling is to increase the number of the mi-
nority class instances, the goal of under-sampling
is to reduce the number of the majority class in-
stances. In our experiments, we chose under-
sampling by randomly reducing negative exam-
ples in the training data down to the double num-
ber of the positive instances. The evaluation re-
sults for under-sampling reveal a substantial gain
in the f-score up to 5 percentage points (see Ta-
ble 4). In these runs we achieved the best perfor-
mance of 65.5% for the detection of the generic
gene regulation relation, and 47.3% for the ex-
traction of specific gene regulation relations.

7 Conclusions and Future Work

We presented here a supervised approach to rela-
tion extraction in the biomedical sub-domain of
gene regulation. The main contributions of this
paper are in the descriptive analysis of the inher-
ent hardness of this task and in tests of different
feature sets for the extraction of gene regulation
relations. Our evaluation results reveal that the
straightforward porting of feature types that have
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already proven useful in the newswire RE should
be fine-tuned by integrating domain-specific fea-
ture sets. The balancing of the training data and a
comparison of our approach with state-of-the art
rule-based systems (e.g., Fundel et al. (2007)) are
the focus of our future work.
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Abstract

This paper explores the benefits of using n-
grams and semantic features for the clas-
sification of disease outbreak reports, in
the context of a text mining system —
BioCaster — that identifies and tracks
emerging infectious disease outbreaks from
online news. We show that a combination
of bag-of-words features, n-grams and se-
mantic features, in conjunction with feature
selection, improves classification accuracy
at a statistically significant level when com-
pared to previous work. A novel feature of
the work reported in this paper is the use of
a semantic tagger — the USAS tagger — to
generate features.

1 Introduction

Reliable document classification is an important
pre-processing stage in many Information Ex-
traction and Text Mining systems (Feldman and
Sanger, 2007).1 This paper compares the per-
formance of a document representation based
on highly discriminating unigrams, bigrams, tri-
grams and semantic features, against a repre-
sentation based on unigram and Named Entity
(NE) features used by Doan et al. (2007), for the
classification of disease outbreak reports. While
the document representation used by Doan et al.
(2007) performed well for this task, a statisti-
cally significant improvement in performance was
achieved using a representation based around n-
grams and semantic features. A novel feature of
this work is the use of a general purpose semantic
tagger to generate features.

1Cohen and Hersh (2005) includes a brief review of im-
portant work on text classification in the biomedical domain.

Following a discussion of related work in sec-
tion 2, we describe in section 3 the feature sets
used in this work and how they were derived.
Section 4 sets out the methodology used, while
section 5 presents results, and some discussion
of those results. The final section outlines some
broad conclusions and areas for future work.

2 Background

The BioCaster Corpus is a product of a wider
project designed to aid in the surveillance and
tracking of infectious disease outbreaks using text
mining technology. The BioCaster system
(Doan et al., 2008) scans online news reports for
stories concerning infectious disease outbreaks.
An article is of interest if it contains informa-
tion about newly emerging infectious diseases of
potential international significance, such as, the
spread of diseases across international borders,
the deliberate release of a pathogen, and so on.
There are two methods that users can exploit to
explore extracted data. First, the pre-interpreted
information is publicly available on a web por-
tal (built on Google Maps).2 Second, registered
users can opt to receive information (via email)
on diseases, countries or other alerting conditions
that interest them. According to Heymann et al.
(2001), around 65% of disease outbreaks are first
identified from the web.

The BioCaster gold standard corpus is a
collection of 1000 news articles selected from the
WWW, and subsequently manually categorized
and annotated by two PhD students at the Na-
tional Institute of Informatics (see Figure 1 for

2The publicly accessible face of the BioCaster
system is a visualization tool called Global Health
Monitor. It is accessible at the BioCaster Portal
(http://www.biocaster.nii.ac.jp).
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<DOC id="000101" language="en-us"
source="WHO" domain="health"
subdomain="disease" date=2007/3/2
relevancy="publish">
<NAME cl="DISEASE">Avian
Flu</NAME> situation in <NAME
cl="LOCATION">Vietnam</NAME> update
21
<NAME cl="TIME">16
June 2005</NAME><NAME
cl="ORGANIZATION">WHO</NAME>
is aware of media reports
that <NAME cl="PERSON"
case="true" number="many">six
additional patients</NAME><NAME
cl="CONDITION">infected</NAME>
with <NAME cl="DISEASE">H5N1
avian influenza</NAME> are
undergoing treatment in a <NAME
cl="LOCATION">Hanoi</NAME>
hospital and that <NAME cl="PERSON"
case="true" number="one">a health
care worker</NAME> at the same
hospital may also be <NAME
cl="CONDITION">infected</NAME>.
While these reports have not
yet been officially confirmed by
national authorities, they appear to
be accurate.
<NAME cl="ORGANIZATION">WHO</NAME>
is seeking confirmation and
further information from the <NAME
cl="ORGANIZATION">Ministry of
Health</NAME>. </DOC>

Figure 1: Example Annotated Entry from the
BioCaster Corpus

a truncated example, and Kawazoe et al. (2006)
for a description of the annotation scheme). The
corpus consists of around 290,000 words (exclud-
ing annotation). Articles were collected from var-
ious online news and non-governmental organi-
zation sources, including online news from major
newswire publishers.3 Four per cent of the corpus
was originally gathered by the International Soci-
ety for Infectious Diseases, under the ProMED-
Mail Programme – a human curated disease out-
break report service.4 From the perspective of
the current work, an important characteristic of
the corpus is that each document is classified as
belonging to one (and only one) relevancy cate-
gory with respect to infectious disease outbreaks.
There are four categories:

3Major sources included the BBC (UK), CBC (Canada),
The Nation (Thailand), IRIN (United Nations), and the Syd-
ney Morning Herald, among others.

4http://www.promedmail.org

Figure 2: Binary Categories in BioCaster Corpus

• Alert — News stories tagged “alert” are
deemed to be of immediate interest to health
professionals.
• Publish — News stories tagged “publish”

are judged to be of archival importance to
health professionals.
• Check — News stories tagged “check” are

deemed to be of possible interest to health
professionals. The category includes suspi-
cious sounding disease outbreak events for
which full information is not available.
• Reject — News stories tagged “reject” are

deemed to be of little or no interest to health
professionals.

In situations where annotators disagreed on the
class of a document a domain expert was con-
sulted for clarification. All these categories (and
guidelines for determining categories) were de-
veloped in consultation with the National Insti-
tute of Infectious Diseases (Japan) and based on
World Health Organization guidelines.5

The corpus is composed of news articles from
several different domains (see Table 1). Although
over half of the documents in the corpus are clas-
sified as belonging to the health domain, it is im-
portant to stress that articles classified as alert,
publish or check can also be found in the busi-
ness category (say, the effect of a livestock dis-
ease on the agricultural sector) or in the science
and technology category. Additionally, an arti-
cle may be concerned with a specific infectious
disease, but not directly concerned with an out-

5The WHO guidelines can be found at:
www.who.int/gb/ghs/pdf/IHR IGWG2 ID4-en.pdf
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Domain Number of Documents
Health 539

Business 173
Society 85
Sport 50

Politics 95
ScienceTech 8

Science 44
Technology 3

Entertainment 3

Table 1: Domains in the BioCaster Corpus

break of that disease. Instead, the article could be
about a vaccination campaign or a medical break-
through. Also, the corpus contains documents
which are about serious non-infectious diseases,
like, for instance, most forms of cancer. These
non-infectious disease news stories are marked as
reject.

In order to create a binary classification
scheme, the three categories that can broadly be
described as relevant with respect to infectious
disease outbreaks (publish, alert and check) were
conflated into a single relevant category (see Fig-
ure 2). The binary corpus consists of 350 relevant
documents and 650 non-relevant documents.

Doan et al. (2007), working on an identical
task, points out that a bag-of-words representation
struggles to identify biomedically relevant senses
of polysemous words like virus (computer virus
or biological virus) or control (control a disease
outbreak or control inflation) and proposed the
use of NE based semantic features as a possible
solution.

The approach outlined in this paper develops
the work reported in Doan et al. (2007) for binary
classification of the BioCaster corpus. We
take Doan et al. (2007)’s work one stage further
by employing n-grams, a semantic tagger and fea-
ture selection to achieve enhanced classification
accuracy.

3 Feature Sets

The text classification community has expended
a huge amount of research effort on identifying
the most effective features for representing text
documents. Yet the simplest and most commonly
used text representation — the so-called “bag-of-
words” representation where each distinct word
in a document collection acts as a feature — has
proven stubbornly effective. Lewis (1992) com-
pared simple phrase based features with a bag-

Named Entity Attributes
PERSON case,number
ORGANIZATION none
LOCATION none
TIME none
DISEASE none
CONDITION none
NON-HUMAN transmission
VIRUS none
OUTBREAK none
ANATOMY transmission
SYMPTOM non
CONTROL none
CHEMICAL therapeutic,transmission
DNA none
RNA none
PROTEIN none

Table 2: Named Entities and Roles in the
BioCaster Named Entity Annotation Scheme

of-words representation and found that classifi-
cation performance deteriorated when more com-
plex features were used. The use of syntactic fea-
tures was again assessed by Moschitti and Basili
(2004), who found “overwhelming evidence” that
syntactic features fail to improve topic based clas-
sification. Scott and Matwin (1999) in a series
of experiments using Reuters news wire data re-
ported that phrase based representations (in this
case, noun phrases) failed to improve topic clas-
sification compared to bag-of-words, and con-
cluded that, “it is probably no worth pursuing
simple phrase based representations any further.”
Domain sensitive semantic representations have
however been shown to enhance text representa-
tions in some situations (Doan et al., 2007).

3.1 Named Entity Based Features
Doan et al. (2007) used the 18 NE tags (some of
which have associated attributes or “roles”) in the
BioCaster annotation scheme to augment bag-
of-words features (see Table 2 for a list of NEs
and their associated roles), increasing classifica-
tion accuracy from 74% accuracy with a bag-of-
words representation (BOW) to 84.4 % accuracy
with a feature set consisting of BOW plus all NS
and all NE attributes (BOW+NE+roles). Figure
3 shows how features were generated from a sen-
tence snippet of the BioCaster corpus.

3.2 N-gram Features
N-grams were used (where n > 1) as they may
help reduce the problems presented by polyse-
mous words and identify concepts highly char-
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Figure 3: Generating BOW+NE+roles Features
(Based on Doan et al. (2007))

acteristic of disease outbreak reports. The tri-
gram ministry of health may help iden-
tify disease outbreak reports more effectively
than its constituent unigrams ministry, of
and health. Unigrams were derived from the
BioCaster corpus itself, whereas bigrams and
trigrams were acquired from a larger in-domain
corpus of 874,000 words from ProMED-Mail dis-
ease outbreak report service. This was used in
preference to the BioCaster corpus because of
its size. Only bigrams and trigrams that occurred
at least twice in the ProMED-Mail corpus were
retained and used in our document representation.

3.3 USAS Semantic Tagger Features

The semantic tags used in this work were gen-
erated using the USAS semantic tagger (Rayson
et al., 2004).6 The USAS tag scheme consists
of 21 major discourse categories and 232 fine
grained semantic tags and relies heavily on a lex-
icon to assign semantic classes.7 Figure 4 shows
the twenty-one top level categories.

According to Rayson et al. (2004) assigning a
semantic tag is a two stage process. First, as-
signing a list of possible semantic tags to a word.
Second, identifying the contextually appropriate
sense from the list of possible tags. A combina-
tion of several different methods are used to dis-
ambiguate word senses.

• FILTER BY POS TAG. For example,
“spring” (season) and “spring” (jump) can be

6The USAS (UCREL Semantic Analysis System) was
developed at the University Centre for Computer Cor-
pus Research on Language (UCREL) at the University of
Lancaster. More details of the tagger can be found at:
http://ucrel.lancs.ac.uk/usas/

7The tagset used in the USAS semantic tagger was
loosely based on that developed by McArthur (1981).

Figure 4: UCREL Semantic Tag Scheme

disambiguated using their POS tag. One is a
temporal noun and the other is a verb.
• GENERAL LIKELIHOOD RANKING. For ex-

ample, “green” is used more frequently as a
colour term rather than meaning “naı̈ve.”
• DOMAIN OF DISCOURSE. The domain of

discourse can be specified, and this extra in-
formation used in assigning semantic tags.
For example, in the food domain, “battered”
is more likely to refer to the cooking tech-
nique, rather than, say violence.
• TEXT-BASED DISAMBIGUATION. Lever-

ages the fact that a word is likely to retain
the same sense throughout a given text.
• CONTEXTUAL RULES. Templates are used

to identify some senses. For example, if the
noun “account” occurs in the pattern “NP ac-
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count of NP” it is likely to be concerned with
narrative explanation.
• LOCAL PROBABILISTIC DISAMBIGUA-

TION. Uses local context and collocational
information to determine the correct tag.
This method is only partially implemented.

The tagger is also designed to identify multi
word units (For example, “United States” is
tagged as a multiword unit with a geographical
tag) using various techniques, but for the purposes
of this work, multiword units were ignored. Also,
in some instances the tagger presents two tags as
joint equal in likelihood. For example, in the sen-
tence, “County health officials said the baby also
exposed about 58 children at the Murray Callan
Swim School, also in Pacific Beach,” the high-
lighted word “School” is classified as both Ed-
ucation in general and Architecture: Kinds of
Houses and Buildings. In this kind of situation
– where two tags are presented as equally likely,
both tags are retained and used in the document
representation.

The tagger has previously been embedded in a
translation support system for English and Rus-
sian (Sharoff et al., 2006), and has been used
in the study of the compositionality of multi-
word expressions (Piao et al., 2006). An impor-
tant difference between the USAS semantic tagger
and other more well known lexical semantic re-
sources, like WORDNET (Fellbaum, 1998) is that
the USAS tagger disambiguates between word-
senses (albeit without 100% accuracy), rather
than providing sets of synonyms for each word
sense. Like WORDNET, the USAS semantic tag-
ger is designed for general purpose use, rather
than specifically built for use in the biomedical
domain.8 However, 7.7% of words in the tag-
gers lexical database (3,511 words from a total of
45,870) do have the body or life and living things
as their primary semantic category. Table 3 shows
a breakdown of the number of words for which a
biological sense is dominant.

4 Methodology

In all our experiments, we used a binary feature
representation. That is, if a feature X occurs at

8Note that the general purpose biological categories used
by the USAS tagger, while appropriate for disease related
newspaper texts in the BioCaster corpus, may well be
insufficiently fine grained for effectively representing aca-
demic papers in the biology domain.

Tag Tag Gloss Lexemes
B1 Anatomy & Physiology 756
B2 Health & Disease 25
B3 Medicines & Medical Treatment 348
L1 Life & Living Things 14
L2 Living Creatures Generally 300
L3 Plants 371

Table 3: Biology Related USAS Semantic Tagger Tags

REL correct non-REL correct
Assigned REL a b
Assigned non-REL c d

Table 4: Contingency Table for Calculating Classifi-
cation Accuracy (REL is “Relevant” and non-REL is
“Non-Relevant”)

least once in a document, the feature value for
X in that document is 1, otherwise the value is
0. This binary representation was used as early
experimental work indicated that binary features
performed better than weighted features. Three
machine learning algorithms were used: Naı̈ve
Bayes, Support Vector machines and the C4.5 de-
cision tree algorithm (Witten and Frank, 2005;
Mitchell, 1997). The Weka data mining toolkit9

was used for all the reported machine learning
work, and the classification accuracy levels re-
ported (that is, per cent of correctly assigned in-
stances) are the results of 10-fold cross valida-
tion. Where statistical significance levels are re-
ported, 10 × 10-fold cross validation is used in
conjunction with the corrected resampled t-test as
presented in Bouckaert and Frank (2004). Accu-
racy is the percentage of correctly defined doc-
uments (defined as the number of correctly as-
signed instances divided by the total number of
instances). This can easily be calculated from a
contingency table (see Table 4) as accuracy =
(a + d)/(a + b + c + d).

Feature selection techniques are central to this
work. Yang and Pedersen (1997) showed that ag-
gressive feature selection can increase classifica-
tion accuracy for certain kinds of texts (in their
case, newswire articles). Of the various different
algorithms tested, they found that χ2 and informa-
tion gain proved most effective. Forman (2003)
provides a survey of feature selection methods for
text classification.

The χ2 method was used for feature selection10

9http://www.cs.waikato.ac.nz/ml/weka/
10The Weka implementation of the χ2 feature selection

algorithm was used.

33



Features No. Features NB SVM C4.5
semtag 580 78.8 82.8 76.9

semtag (comp) 263 78.4 82.87 74.14
unigrams 21322 88.4 90.9 80.8
bigrams 1567 87.6 87.1 83.5
trigrams 2345 82.5 81.1 82.2

BOW+NE+roles 20889 88.4 90.6 82.2
χ2 (chi-squared) 9000 94.8 92.2 81.6

Table 5: Initial Results (Note that “BOW” is “Bag-of-
Words”)

Figure 5: Partial C4.5 Decision Tree for Semantically
Tagged BioCaster Corpus

as it has shown to be effective in the context of
text classification (Yang and Pedersen, 1997). For
more on the χ2 method see Oakes et al. (2001).

5 Results and Discussion

Our chosen baseline in this work is the
BOW+NE+roles feature set identified by Doan
et al. (2007) using similar data (that is, an earlier,
smaller version of the BioCaster corpus con-
sisting of 500 documents). This baseline feature
set achieved a classification accuracy of 88.4%,
the same as the unigram feature set. This was
surprising as Doan et al. (2007) found that the
BOW+NE+roles achieved higher accuracy than
the unigram feature set. These differing results
could be accounted for by Doan et al. (2007)’s

use of term weighting rather than a binary repre-
sentation, and the use of a smaller corpus.

Initial comparisons of the several feature rep-
resentations show that n-gram representations
achieved better results than a semantic tag based
feature representation. However, a mixture of un-
igrams, bigrams, trigrams and semantic tag fea-
tures, worked best of all. Table 5 summarizes
these initial results. Note that two different docu-
ment representations based on the USAS semantic
tagger were used. The compressed representation
discarded directionality indicators along a given
dimension, and instead used the presence or ab-
sence of the dimension itself as a feature. For
example, if we take the USAS tag E2 (Liking),
those words tagged E2+ (like adore and beloved)
and those words tagged E2- (like detest and ab-
hor) will be reduced to one feature (E2) reflect-
ing the liking/disliking dimension, although this
change had little impact on the results, which are
very similar for both of the semantic tagger based
representations.

The C4.5 decision tree algorithm seems to
perform consistently worse than both the Naı̈ve
Bayes and SVM11 algorithms. One of the advan-
tages of the decision tree algorithm however, is its
potential for data exploration purposes. Figure 5
shows the root of a partial decision tree derived
from the (full) USAS semantic tag representation
of the BioCaster corpus. Working from the
root of the tree, it can be seen that if the document
does not contain any words that are tagged Health
& Disease then the document is immediately clas-
sified as irrelevant (that is, not a disease outbreak
report). At the next level, if the document con-
tains a Cigarettes & Drugs tag, then the document
is classed as irrelevant as diseases directly related
to cigarettes and non-medicinal drug use are nor-
mally chronic rather than highly infectious. The
next level down refers to Groups and Affiliations,
which in the USAS semantic tagger guidelines is
described as “Terms relation to groups/the level
of association/affiliation between groups,”12 with
prototypical examples like alliance, caste, com-
munity and so on. The importance of this cat-
egory for classification accuracy is explained by
the inclusion of the word “epidemic” (a strong in-

11Default Weka parameters were used for the SVM algo-
rithm.

12Technical material on the USAS se-
mantic tag scheme can be found at:
http://ucrel.lancs.ac.uk/usas/
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dicator that a document is concerned with disease
outbreaks) in the groups and affiliations tag.13

The best performing representation (94.8% us-
ing the Naı̈ve Bayes algorithm – see Table 5)
was derived by performing feature selection on
all the features used (that is, all unigrams, bi-
grams, trigrams and semantic features). This re-
sult was statistically significant when compared
to the BOW+NE+roles feature set. Rather than
choosing an arbitrary cut off point for feature se-
lection, the optimal number of features was de-
rived experimentally. Figure 6 shows that accu-
racy peaks at around 9,000 features, and gradually
decreases when more features are added.

The 9,000 most powerfully discriminatory fea-
tures, as determined by the χ2 method, consist of
a mixture of unigrams, bigrams and semantic fea-
tures, suggesting that a mixed approach to docu-
ment representation is optimal, rather than rely-
ing on a single type of feature. Of the one hun-
dred most discriminating features, 50% were uni-
grams, 37% were bigrams, 8% were trigrams and
5% were semantic tags. As can be seen from Ta-
ble 6, the two most discriminatory semantic fea-
tures are B2 (health and diseases) and L2 (living
creatures), results that are in line with intuitions
regarding the subject matter of disease outbreak
reports.

Of the 9,000 most discriminating features de-
rived using the χ2 method, only 130 are seman-
tic tags (<2%), and as semantic tagging is a rel-
atively complex procedure, we investigated the
performance of the 9,000 feature set with all 130
semantic features removed, in order to test how
much the inclusion of semantic tag features im-
proves accuracy. Running the classifier with the
130 semantic tags removed led to a 0.5% reduc-
tion in classification accuracy; not a statistically
significant difference.

6 Conclusion

In conclusion, we have shown that for the classifi-
cation of disease outbreak reports, a combination
of bag-of-words, n-grams and semantic features,
in conjunction with feature selection, increases
classification accuracy at a statistically significant

13As stated above, if the semantic tagger’s disambigua-
tion mechanisms cannot decide between two tags, both are
included in the document representation. For example, “epi-
demic” counts as both a Health and Disease word, and also
as a Groups and Affiliations word.

1 health 16 the outbreak
2 cases 17 case
3 outbreak 18 the ministry
4 confirmed 19 hospital
5 died 20 cases of
6 disease 21 poultry
7 symptom 22 outbreak in
8 reported 23 suspected
9 ministry 24 the ministry of

10 death 25 fever
11 virus 26 h5n1
12 the disease 27 have died
13 of health 28 provinces
14 B2 29 L2
15 ministry of health 30 the virus

Table 6: Most Discriminating Features in the
BioCaster Corpus

Figure 6: Comparison of Feature Selection Thresholds

level compared to a “BOW+NE+roles” represen-
tation. A novel feature of this work is the use of a
semantic tagger — the USAS semantic tagger —
to generate semantically rich features. However,
most of the increase in classification accuracy
arose from the inclusion of n-grams in the feature
set, rather than the USAS tagger derived seman-
tic features. It is possible that the thesaurus de-
rived scheme used by the tagger is insufficiently
fine grained to capture some important biological
concepts, but that the tagger’s ability to disam-
biguate between potentially polysemous biologi-
cal words (like “virus”) was enough to increase
accuracy slightly.

Further work will fall into two broad areas:

• Developing and testing further domain spe-
cific semantic features (including adding
Doan et al. (2007)’s BOW+NE+roles to the
feature selection operation).
• Semantic features derived from the USAS

tagger will be considered to enhance other
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modules of the BioCaster text mining
system.
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Abstract

Topic segmentation and labeling systems
enable fine-grained information search.
However, previously proposed methods re-
quire annotated data to adapt to differ-
ent information needs and have limited
applicability to texts with short segment
length. We introduce an unsupervised
method based on a combination of Hid-
den Markov Models and latent semantic
indexing which allows the topics of inter-
est to be defined freely, without the need
for data annotation, and can identify short
segments. The method is evaluated in an
application domain of intensive care nurs-
ing narratives. It is shown to consider-
ably outperform a keyword-based heuristic
baseline and to achieve a level of perfor-
mance comparable to that of a related su-
pervised method trained on 3600 manually
annotated words.

1 Introduction

We have previously introduced an application of
Hidden Markov Models (HMMs) to topic seg-
mentation (TS) and labeling of Finnish intensive
care unit (ICU) nursing narratives (Suominen et
al., 2008). In this application, common and re-
peatedly discussed topics, such as breathing and
hemodynamics, are identified in the text, sup-
porting information access and clinical decision-
making. In this supervised approach, annotated
training data are necessary to induce the HMM
model and consequently, the set of possible top-
ics cannot be changed without annotation of addi-
tional training data.

In this paper, we introduce a topic segmenta-
tion and labeling method where the set of pos-
sible topics is not predetermined but is provided

by the user as a set of freely chosen keywords,
such asbreathing or hemodynamics. The pro-
posed method does not require labeled training
data and is, in this respect, unsupervised. This
property allows the topics of interest to be eas-
ily changed — the user simply specifies new key-
words — whereas for a supervised TS and label-
ing system a new training set would need to be
annotated.

The proposed method is a combination of latent
semantic analysis (LSA) and a graphical model
closely related to HMMs. The method is particu-
larly suitable in cases where almost all documents
contain relevant information about the given top-
ics, and the topic segments are short, even shorter
than a single sentence. The applicability of ex-
isting unsupervised TS methods in these cases is
likely to be limited. On the other hand, super-
vised methods relying on manually labeled train-
ing data cannot be applied when the topics can be
chosen freely.

Our motivation and scope comes here from
ICU narratives. However, we believe that as
a general TS and labeling technique supporting
ad hoc information needs the introduced method
may find application also in many other, unrelated
domains. As an example of a class of texts which
are also characterized by short, unmarked seg-
ments, consider scientific publication abstracts,
where the method could be applied e.g. to sep-
arate betweenmethods and results-related seg-
ments.

2 Related work

TS (alternatively referred to as text segmenta-
tion), the automatic division of text into topically
coherent units, is a well-studied problem. Many
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TS methods are based on the location of first
uses of word types, pronoun reference, punctua-
tion marks or other linguistic cues implying topic-
change boundaries. The cues are either hard-
coded domain-specific rules or induced by ma-
chine learning from a corpus (Beeferman et al.,
1997; Reynar, 1999).

Another common approach to TS is to con-
sider the similarity of text before and after a pro-
posed segment boundary by measuring, for ex-
ample, word co-occurrence, repetition or seman-
tic relations; a sudden drop in similarity indicates
a likely change in topic. Algorithms based on
this approach can be fully unsupervised (Hearst,
1997; Ferret, 2002). Further, LSA has been
shown to improve TS when used as a text simi-
larity measure (Bestgen, 2006).

A third major group of TS methods is based on
graphical models for sequence labeling. For in-
stance, HMMs have been applied (Yamron et al.,
1998; Blei and Moreno, 2001; Suominen et al.,
2008). These methods are supervised, but oth-
erwise resemble ours; the approach is a natural
choice because segmentation is given by the as-
signed topic labels.

The applicability of existing TS systems is,
however, limited in our case. To allow a free
choice of topics of interest, we aim at an un-
supervised approach. Further, our data is char-
acterized by very short segment length — sev-
eral topic changes may occur within a single
sentence. Existing unsupervised TS methods
require considerably longer segment sizes (see,
e.g., (Hearst, 1997; Ferret, 2002)) to reliably de-
tect topic change boundaries. For instance, the
TextTiling method of Hearst (1997) searches for
topic boundaries between contexts of 200 tokens,
whereas the average topic length in our data was
only 18 tokens, that is, an order of magnitude
shorter. For short texts, techniques similar to
query expansion in information extraction and use
of likely topic length have been proposed (Ponte
and Croft, 1997; Chang and Lee, 2003), but these
studies do not, however, consider topic labeling.

In our application domain, Cho et al. (2003)
have applied TS and labeling to medical narra-
tives from radiology and urology departments.
However, their method relies strongly on hard-
coded headlining rules, linguistic cues and lexi-
cal patterns seen within training examples. TS
techniques have also been designed for the tempo-

ral order analysis of medical discharge summaries
using a statistical parser to segment the sentences
into clauses and two supervised classifiers to pre-
dict the segment boundaries and assign for every
segment pair their time-wise order (Bramsen et
al., 2006). Finally, Hiissa et al. (2007) have intro-
duced a supervised system classifying segments
of intensive care patient narratives with respect to
topics ofbreathing, blood circulation, andpain;
the segments were, however, created manually.

3 Patient documentation data

The data used in this study consists of nursing
notes of 516 adult ICU patients. These Finnish
patient-specific records are written during every
shift and are mainly used for intra-unit informa-
tion exchange.

The data set consists of 17140 nursing shifts.
We apply a simple domain-adapted tokenizer, ob-
taining 1.2 million tokens (including punctua-
tion). Each shift thus contains, on average, 73 to-
kens. The most common topics of the text were
breathing, hemodynamics, consciousness, rela-
tives, and diuresis. Approximately half of the
shifts contain explicit topic headings, although
these are not standardized and are often mis-
spelled or abbreviated. Additionally, the text is
often telegraphic and the vocabulary is highly
specialized with a substantial amount of profes-
sional terminology, unit-specific documentation
practices, and frequent misspellings. Figure 1 il-
lustrates the data.

As test data, we use a manually annotated sub-
set consisting of 402 shifts randomly chosen from
the records of first 135 patients by their admis-
sion date (Suominen et al., 2008). In the annota-
tion we identify segments belonging to the topics
listed above; text not belonging to any of these is
assigned the topicother. The average length of a
topic segment is 18 tokens.

4 Method

We now first recall basic notions of LSA and
HMMs and then proceed to introduce the unsu-
pervised TS and labeling method which is based
on their combination. The main insight of the pro-
posed method is that the LSA similarity of words
to the given topic keywords can be used to replace
HMM emission probabilities. Whereas a super-
vised HMM requires labeled data to estimate the
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a)

Night shift

B R E A T H I N G: Doing nicely with the mask. Smallish

carbondioxide retention after pain killers, otherwise CO2 <

8.Hourly breathing exercises. Mucus -> wheezing. Able to

cough faintly&swallow mucus.

C O N S C I O U S N E S S: Spontaneously awake.

DRUGNAME 5mg i.m. After that, was able to nod

peacefully. Copes the breathing exercices so-and-so. The

strenght in the extremities exept the left hand with bandage

are weak.

H e m o d : RRmap staying >65. In a sleep quite low

RR.Reduced amount of DRUGNAME and full stop in the

small huors. Steady SR.

D I U R E S I S : More DRUGNAME -> Diuresis > 150

ml/h. Fuzzy in the evening.

O T H E R : Son and his wife visiting.Hevay moistening to

mouth.

2006-02-01 04:55

b)

Long morning s

After admission fast FA which we treid to invert with

electrcity (x3) without result. later FA freq extremely

varying and quite economic. After 14 o'clock, pulse

occasionally tachycardic, slowed down with DRUGNAME

and DRUGNAME infusion (load 150 mg, maintenance

1200 mg/day). Inversion to SR at about

17.30.Hemodynamics quite stable, DRUGNAMEinfusion

cont with moder dosage.

Diuresis narrow, morning DRUGNAME.

PCWP highish (21). Adequate CI.

Dr flow normal, narrow.

Forenoon: despite medicatio, tried to breath 'against

respirator', which is the reason for relaxation (a couple of

times).

Own breatthing started and woke up regardless of sedation

& kooperative. With CPAP ok ox and ventilation.

2006-12-11 18:02

Figure 1: Example of Finnish nursing notes translated to English preserving all typing errors and typographical
properties. The Finnish originals are not included due to space considerations. Note the topic headings in report
a with the untypical use of the headingother instead of the more commonrelatives. In contrast toa, the reportb
does not contain explicit topic headings.

emission probabilities, the unsupervised method
only requires a single keyword for each topic.

4.1 Latent semantic analysis

LSA is a commonly applied technique for induc-
ing text similarity measures from co-occurrence
statistics in a large, unannotated corpus of text. In
our case, we use an LSA-based term-term simi-
larity measure. The standard LSA method based
on decomposition of the term-by-document ma-
trix is not applicable because the context in which
it measures word co-occurrence is the whole doc-
ument. In our case, however, the topic keywords
occur in the majority of documents — here docu-
ment refers to a single shift — and, more impor-
tantly, different topics tend to co-occur in a sin-
gle document, therefore not allowing document-
level distribution of terms to sufficiently distin-
guish the various topics. Instead, we apply the
Word Space model (Schütze, 1998) which de-
composes a term-by-term matrix and only con-
siders word co-occurrence within a fixed context
window rather than in the whole document, there-
fore allowing sub-document distributional proper-
ties to be accounted for.

We denote the LSA similarity of wordwj , j ∈
{1, . . . Nw}, to topic qi, i ∈ {1, . . . Nq}, as
lsa(wj , qi). HereNw is the vocabulary size,Nq

is the number of possible topics, andqi is the key-
word specified by the user for the respective topic.
In our experiments, we use the Finnish equiva-
lents of the keywordsbreathing, hemodynamics,

consciousness, relative anddiuresis to define the
five annotated topics. The sixth topic,other, is
characterized as an LSA queryother NOT breath-
ing NOT hemodynamics NOT consciousness NOT
relative NOT diuresis. The negation operator
NOT is available in Word Space LSA queries
(Widdows and Peters, 2003). The resulting LSA
scores are illustrated in Figure 2; they are ob-
tained by first performing LSA on unannotated
ICU narrative texts and then calculating the LSA
similarity of each vocabulary word with the re-
spective topic keyword (or LSA query with nega-
tions). Punctuation, numbers, and small number
of extremely common stop-words are excluded
from the LSA calculation.

4.2 Hidden Markov Models

We model the problem of segmenting the clini-
cal texts and assigning a topic to each resulting
segment as a sequence labeling task. Given an in-
put word sequencew = (w(1), . . . , w(T )), each
word w(t), t ∈ {1, . . . , T}, is assigned a topic
label q(t) ∈ {q1, . . . , qNq}. Each wordw(t) be-
longs to the vocabulary{w1, . . . , wNw}.

The sequence labeling problem can be solved
by an HMM withNq states wherew corresponds
to the visible sequence of observations and the
sequence of labelsq = (q(1), . . . , q(T )) corre-
sponds to the hidden sequence of HMM states.
We use a first-order HMM, thus a particular hid-
den variableq(t) only depends on the previous
hidden stateq(t − 1), and an observed variable
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RELATIVES

relative

phone

daughter

wife

visit

son

watch

husband

brother

sister

HEMODYNAMICS

hemodynamics

pulse

sr

rr-level

highish

sinus_rythm

rr

blood_pressure

extrasystole

ok

OTHER

stomach

other

net

hemolyzed

shirt

contrast_medium_boosted

blanket

from_DRUGNAME

soft

puncture_sample

1.000

0.947

0.916

0.889

0.877

0.859

0.821

0.820

0.785

0.777

1.000

0.910

0.819

0.785

0.784

0.784

0.768

0.716

0.673

0.672

0.683

0.682

0.676

0.673

0.637

0.635

0.630

0.618

0.618

0.614

Figure 2: Translated examples of the words most similar to selected topics and their associated LSA similarity
values.

w(t) is only dependent on the value of the hidden
variableq(t). Additionally, the initial probabil-
ity of states is uniformly distributed. The label-
ing given by the HMM is the best hidden state
sequencêq obtained by solving

q̂ = arg max
q∈Q

P (w, q), (1)

whereQ is the space of all hidden state sequences
and

P (w, q) = P (w(1)|q(1)) ·
T∏

t=2

P (w(t)|q(t))P (q(t)|q(t− 1)).

The optimal sequencêq is known as the Viterbi
path and the optimization problem (1) can be effi-
ciently computed using the standard Viterbi algo-
rithm. For a detailed introduction to these algo-
rithms, see, for example, Rabiner (1989).

4.3 The proposed unsupervised method

In order to solve (1), the conditional probabilities
P (w(t)|q(t)), typically referred to as theemission
probabilities, andP (q(t)|q(t − 1)), typically re-
ferred to as thetransition probabilities, must be
defined. In the supervised case, these are obtained
from training data as maximum-likelihood esti-
mates. Here we aim to obtain these conditional
probabilities in a minimally-supervised manner
which does not require annotated training data.
To simplify the notation, we will refer in the fol-
lowing text, whenever possible, to the conditional
probabilitiesP (wj |qi) andP (qj |qi) without the
sequence indext.

4.3.1 Transition probabilities P (qj |qi)

We distribute the transition probabilities uni-
formly since, due to our unsupervised setting,

there is no annotated data available for direct es-
timation. In order to be able to control the like-
lihood of switching from one topic to another,
thus controlling the segmentation granularity, we
introduce aself-transition probability parameter
δ ∈ (0, 1). The HMM transition probability is
then defined as

P (qj |qi) =

{
δ if j = i
1−δ

Nq−1 if j 6= i
.

The probability of continuing the current topic is
thus δ, and the remaining probability1 − δ of
switching a topic is distributed evenly. Trivially,∑

qj
P (qj |qi) = 1 for anyqi.

4.3.2 Emission probabilities P (wj |qi)
Our aim is to derive the value of the emission
probability P (wj |qi) from the LSA similarity
lsa(wj , qi) of the wordwj to the topicqi, or more
accurately to the keyword that defines the topic
qi. A straightforward approach is to normalize
the LSA similarity into probabilities so that

P (wj |qi) =
lsa(wj , qi)∑Nw

k=1 lsa(wk, qi)
. (2)

This normalization strategy, however, assumes
that there is some total mass of relatedness to be
redistributed by LSA among the individual words
and that this mass is topic-independent. Other-
wise, a topic with a small number of related terms
will distribute the probability mass of1 among
a small number of words as opposed to a topic
with a large number of related terms. Conse-
quently, the emission probabilities of such a topic
will numerically dominate the calculation of the
Viterbi path q̂ and result in poor performance of
the model — an effect we have observed in our
early experiments. We avoid this type of numeri-
cal domination by relaxing the HMM model.
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4.3.3 Relaxed graphical model

Instead of normalizing the LSA similarities by
Equation 2, we use the unnormalized LSA val-
ues directly. This yields a graphical model that
preserves the overall structure of an HMM but re-
places the emission probabilities with a quantity
that is not a probability. The optimal state se-
quence in this graphical model is then obtained
by solvingarg maxq∈QC(w, q), where

C(w, q) = lsa(w(1), q(1)) ·
T∏

t=2

lsa(w(t), q(t))P (q(t)|q(t− 1)).

Replacing the probabilityP (w(t)|q(t)) with
the non-probabilitylsa(w(t), q(t)) is the only dif-
ference between the HMM cost functionP (w, q)
and the relaxed model cost functionC(w, q). This
change does not violate any assumptions in the
Viterbi algorithm which thus remains directly ap-
plicable to the computation of the optimal se-
quence of states also in the relaxed model.

This relaxed formalization does not suffer from
the problem of a single topic numerically domi-
nating the cost function value and, in our prelimi-
nary experiments, resulted in a significant gain in
performance. However, a problem of mutual in-
comparability of the LSA similarity values across
topics persists; there is no basis for the implicit as-
sumption that the same LSA similarity value cor-
responds to the same underlying degree of relat-
edness, regardless of the topic in question. As an
illustrative example of the general problem, let us
consider a topicq1 defined by a single keyword
u1. We then havelsa(u1, q1) = 1 since the LSA
similarity of a word to itself is by definition1. On
the other hand, this does not hold for topics de-
fined by more than one keyword, where the simi-
larity of any of the several defining keywords with
the topic is strictly smaller than 1 (except in de-
generate cases). Consequently, the same degree
of relatedness does not necessarily correspond to
the same LSA similarity values across topics. A
re-scaling strategy is thus called for which would
aim to improve the numerical comparability of the
LSA values across topics. We introduce one such
possible strategy based on the following insight.

Let us consider words in the descending order
by their LSA similarity to a topicqi and compare
for each word its LSA similarity withqi and the
maximum of its LSA similarities with any topic

other thanqi (see Figure 3 for illustration). The
position in the ordering at which, for the first time,
a word has a higher similarity with a topic other
thanqi, which we refer to as theimpact index, nat-
urally divides the ordered list of words into two
parts. Words up to the impact index are those that
have a high LSA similarity to the topicqi and, at
the same time, do not have higher similarity with
any other topic. These words are thus strong in-
dicators of the topicqi. The LSA similarity of
the word at the impact index, which we refer to
as theimpact similarity is then, for the topicqi,
a natural cut-off point that gives the lowest LSA
similarity at which the words can yet be consid-
ered as strong indicators of the topic. Numeri-
cally, the impact index and impact index similar-
ity may vary significantly across topics.

Since the impact similarity has a clear intu-
itive interpretation, we propose a strategy which
re-scales the LSA values for each topic so that
the impact similarity is set to a given, topic-
independent constantα. Additionally, the re-
scaling sets the LSA similarity of the most similar
word for any topic as equal to 1 and the minimal
similarity of any word to any topic to be a con-
stantβ. The effect of this re-scaling is illustrated
in Figure 3.

We now proceed to define the re-scaling strat-
egy formally. Let us consider an ordering
πi of the words such that the valueπi(wj)
gives the index at which the wordwj is found
in a sequence of words ordered in descend-
ing order by their LSA similarity withqi. Let
lsa1(qi) = maxwj lsa(wj , qi) and lsam(qi) =
minwj lsa(wj , qi). Finally, let lsaI(qi) denote
the LSA similarity lsa(wj , qi) whereπi(wj) =
I(qi), that is, the impact point similarity for topic
qi. These quantities are illustrated in Figure 3.
The re-scaled LSA similarity, denotedlsa, is then
defined in Equation 3.

The optimal state sequence through our
final model is then obtained by solving
arg maxq∈QC(w, q), where

C(w, q) = lsa(w(1), q(1)) ·
T∏

t=2

lsa(w(t), q(t))P (q(t)|q(t− 1)).

To summarize, we have now obtained a graph-
ical model for unsupervised topic segmentation
and labeling of text that is closely related to first-
order HMMs. The transition probabilities other
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lsa(wj , qi) =

{
1−α

lsa1(qi)−lsaI(qi)
· (lsa(wj , qi)− lsaI(qi)) + α if πi(wj) ≤ I(qi)

α−β
lsaI(qi)−lsam(qi)

· (lsa(wj , qi)− lsam(qi)) + β otherwise
(3)

0.1

0.7

 0

 0.2

 0.4

 0.6

 0.8

 1

322 1  10  100  1000  10000

LS
A

 s
im

ila
rit

y

Word index (log scale)

0.1

0.7

 0

 0.2

 0.4

 0.6

 0.8

 1

322 1  10  100  1000  10000

LS
A

 s
im

ila
rit

y

Word index (log scale)

0.1

0.7

 0

 0.2

 0.4

 0.6

 0.8

 1

322 1  10  100  1000  10000

LS
A

 s
im

ila
rit

y

Word index (log scale)

0.1

0.7

 0

 0.2

 0.4

 0.6

 0.8

 1

322 1  10  100  1000  10000

LS
A

 s
im

ila
rit

y

Word index (log scale)

0.1

0.7

 0

 0.2

 0.4

 0.6

 0.8

 1

322 1  10  100  1000  10000

LS
A

 s
im

ila
rit

y

Word index (log scale)

0.1

0.7

 0

 0.2

 0.4

 0.6

 0.8

 1

322 1  10  100  1000  10000

LS
A

 s
im

ila
rit

y

Word index (log scale)

Figure 3: The effects of re-scaling the LSA similarity
values of the topicother by Equation 3. The re-scaled
LSA values are shown as a full line, the unscaled LSA
values as a dotted line, and the maximum LSA simi-
larity with any other topic as a gray line. The impor-
tant characteristics of the LSA values in this case are:
lsa1(qi) = 0.71, I(qi) = 322, lsaI(qi) = 0.41, and
lsam(qi) = 0. The re-scaling parameters areα = 0.7
andβ = 0.1.

than the parameterized self-transition probabil-
ity δ are uniformly distributed and the emission
probabilities are replaced by LSA similarity val-
ues that have been re-scaled to improve numerical
comparability across topics. The main difference
of this model and the standard supervised HMM
is that the proposed model does not require la-
beled training data. Instead, it only requires a set
of keywords defining the topics and large-enough
body of unannotated text on which the LSA is cal-
culated. The model is decoded using the standard
Viterbi algorithm.

5 Performance evaluation

We evaluate the proposed method on manually
annotated gold-standard data (see Section 3). The
test set consists of 204 and the training set of 198
annotated shifts randomly selected from 135 pa-
tient reports. If two shifts report on the same pa-
tient, both are placed either in the train set or in
the test set. LSA is calculated from all text avail-
able in the 448 patient reports from which no shift
was selected into the test set.

To reduce sparseness problems due to the
highly-inflective nature of Finnish, we lemma-

tize the text using a version of the FinTWOL
Finnish morphological analyzer1 (Koskenniemi,
1983) whose lexicon has been extended by ap-
proximately 3500 clinical domain terms. For ev-
ery word analyzed by FinTWOL, we use the first
lemma given, and for words outside of FinTWOL
lexicon, we use the unchanged surface word form.
The LSA similarity scores are computed using the
Infomap NLP software2 (Dorow and Widdows,
2003).

Since a fully-unsupervised parameter-selection
method is so-far not available, we select the pa-
rameters by grid search on a held-out set of 60
annotated shifts. These shifts are not part of the
test set in order to avoid overfitting the parame-
ter selection. The context window width is set to
30 words (left and right context both 15 words),
and the method parameters areδ = 0.6, α = 0.3,
andβ = 0.15. All other LSA-related parameters
(max number of singular values, number of Word
Space columns, etc.) are left at their default after
preliminary experiments indicated that they have
only marginal effect on the overall performance.

To establish the relative merit of the unsu-
pervised method, we compared its performance
against two other methods: a keyword-trigger
method and a comparable supervised learning
method. The keyword method is a simple base-
line that performs segmentation and labeling by
looking for the occurrence of the five topic key-
words (breathing etc.), assigning each word to
a labeled segment corresponding to the previous
seen keyword. The assigned label is given the ini-
tial valueother at the start of each shift. To al-
low the keyword-based approach to benefit from
the normalizing effect of morphological analysis,
the trigger words are matched against the lemmas
given by FinTWOL.

The supervised method compared to is a ba-
sic first-order HMM. This choice is made not out
of ignorance of advances such as conditional ran-
dom fields (see, e.g., (Sutton et al., 2007)), but
rather as HMM is a close supervised equivalent
of the proposed model — we sought to determine

1http://www.lingsoft.fi/
2http://infomap-nlp.sourceforge.net/
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Accuracy WindowDiff
majority baseline 23.4 0.32
keyword baseline 66.9 0.16
unsupervised model 74.9 0.23
supervised HMM 82.9 0.21

Table 1: Performance of the three compared methods.
Note that for WindowDiff lower value indicates better
performance — a perfect segmentation obtains Win-
dowDiff score of zero. Majority baseline refers to as-
signing the most common topic in the data (conscious-
ness) to all tokens.

the relative efficiency of the unsupervised and su-
pervised alternatives in setting the parameters of
the graphical model. For the HMM, the only pa-
rameter, the smoothing model and its setting, was
selected on the training set by a separate search of
the parameter space so as to avoid overfitting the
test set. The selected optimal smoothing model
was Lidstone (add-γ) smoothing withγ = 0.3.

The primary evaluation measure is micro-
averaged accuracy, the proportion of words in the
test set with correctly identified label. Further, we
report macro-averaged WindowDiff (Pevzner and
Hearst, 2002) score, which is often used to eval-
uate segmentation quality independently of the
topic labels. The WindowDiff window size was
set to half of the average segment size in the gold
standard data, a standard way to set this parame-
ter. Note that WindowDiff only takes into account
the positions of segment boundaries, ignoring the
topic labels.

6 Results and discussion

The performance of the methods on the test set
(204 shifts, 15839 tokens) is reported in Table 1.
As expected, the accuracy of the unsupervised
model is between the performance of the keyword
baseline and the supervised HMM. The unsuper-
vised model considerably outperforms the key-
word baseline. Further, it is not surprising that the
supervised HMM performs better than the unsu-
pervised model, considering that it receives much
more detailed information about the distribution
of words with respect to topics.

Interestingly, the WindowDiff results are in dis-
agreement with the accuracy results, with the key-
word baseline reaching better WindowDiff per-
formance than even the supervised HMM. We
have currently no explanation for this highly unin-
tuitive secondary result. Nevertheless, as the un-
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Figure 4: Learning curve for the supervised baseline
method. The performance of the unsupervised and
keyword-based methods are shown for reference.
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Figure 5: Learning curve for the unsupervised method.

supervised method performs nearly at the level of
the supervised in terms of WindowDiff and this
measure does not take into account the assigned
labels, a key aspect of the method, we do not view
this result as compromising the positive primary
findings in terms of accuracy. In the following,
we will only focus on accuracy results.

An interesting question to ask here is how
many words of labeled data does the HMM re-
quire to reach the accuracy of the unsupervised
method. The learning curve of the HMM, that
is the dependence of its accuracy on the amount
of available training data, is given in Figure 4.
Here we observe that in order to reach the per-
formance of the unsupervised method, it is neces-
sary to manually label roughly 3600 words. For
comparison, the learning curve for the unsuper-
vised method is shown in Figure 5; the curve is
generated by varying the amount of text avail-
able to calculate the LSA. Here we see that the
peak performance is reached after about 360,000
words (150 full patient reports). Note that for the
unsupervised method the text is not manually la-
beled; gathering the amount of data necessary for
reaching the peak performance does not involve
any manual annotation effort, unlike in the case
of the supervised HMM.

43



7 Conclusions and future work

We have introduced an unsupervised method for
TS and labeling based on a combination HMMs
and LSA. We have shown that, in order to reach
the performance of the unsupervised method, a
standard HMM would require 3600 words of la-
beled training data, as opposed to just one key-
word per topic necessary for the unsupervised
method. The proposed method is thus applica-
ble to information search tasks with freely-chosen
topics and no labeled data available. We have ap-
plied the method to a real-life clinical task.

In further research, several crucial questions
will be investigated. First is that of unsupervised
selection of the parameters of the system (such as
the LSA window width and self-transition prob-
ability δ). The second open question is whether
the current proposed model can be re-normalized
to obtain an actual HMM without loss of perfor-
mance. This would open further interesting direc-
tions such as the possibility to use the LSA-based
HMM model as an initial state for further unsu-
pervised training of the method, for instance by
the standard Baum-Welch algorithm. Finally, a
general way of modeling the topicother is needed
for applications where some segments do not be-
long to any keyword-defined topic.
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Abstract

This study examines representations of
protein–protein interactions focusing on
the mapping between simple, pairwise
annotation and complex, structured an-
notation. A simple semantic network
representation equivalent to the BioInfer
predicate formalism is introduced and used
to transform the complex annotation of
BioInfer into pairwise annotation through
hand-written rules. Evaluation shows that
this binarisation can be largely validly
performed with limited loss of information,
but also reveals specific challenges. The
binarised BioInfer is the first corpus of
this type where the inclusion rules are
formalised to the level of a computational
implementation and is freely available at
http://www.it.utu.fi/BioInfer .

1 Introduction

The identification of protein-protein interactions
(PPI) from free text is one of the most important
and widely studied information extraction tasks
in biomedical natural language processing. Auto-
matic PPI extraction would benefit a wide range
of applications, from advanced search engines to
automated pathway database construction.

The great majority of PPI extraction methods
and annotated corpora have cast the task as one of
identifying pairs of protein names for which some
relationship is stated. While the simplest case
of extracting unordered pairs is the most widely
studied, approaches targeting e.g. ordered pairs
or pairs with a connecting relationship type (e.g.
Ding et al. (2002), Ńedellec (2005)) have also
been published, as have some methods for ex-
tractingn-ary (forn > 2) relations (McDonald et

al., 2005). However, pairwise approaches remain
the norm and the information extracted by these
constitutes only a small part of the knowledge in
biomedical literature.

Recently two corpora that contain PPI annota-
tion considerably more detailed than pairwise re-
lations have been introduced. These resources,
the BioInfer (Pyysalo et al., 2007) and GENIA
Event (Kim et al., 2008) corpora, aid the develop-
ment of extraction systems that capture complex
PPI—here, understood to refer ton-ary interac-
tions of proteins and to include also structured
(nested) relations where, for example, a protein
affects the interaction of other proteins. This pa-
per explores the relationship between this type of
complex annotation and the prevailing pairwise
annotation.

First, it is argued that a representation capable
of capturing the core of information in complex
relationships while remaining practical to extract
is needed in complex PPI extraction. In this paper,
protein relationships are represented as semantic
networks. Since they are based on the BioInfer
annotation, these networks follow the textual ex-
pressions of the statements of those relationships
and are capable of expressing complex PPI. While
this is not a fully formal knowledge represen-
tation, it aims to support automatic, consistent
derivation of simpler, more easily extracted tar-
gets and serve as a practical intermediate between
textual expressions and formal biological knowl-
edge.

Second, the representation is applied together
with a transformation ruleset tailored for the task
of transforming the complex relationships in the
BioInfer corpus into typed binary (i.e. pairwise)
relationships where the types preserve consider-
ably more information regarding the nature of
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Figure 1: Examples of annotation in a) AIMed, b) LLL and c) BioInfer as semantic networks. Note that the
original annotation does not include this representation.

PPI than simple protein pairs. This transforma-
tion aims to capture all (and only) biologically
meaningful relationships in the original annota-
tion. The transformation is evaluated in a detailed
analysis where the magnitude and properties of
the information loss necessarily entailed by such
a simplification is further discussed along with its
significance to the PPI extraction task.

2 Representing biomedical knowledge

The PPI annotation schemes in most domain cor-
pora aim at capturing simple facts about proteins
rather than serving as a knowledge representation
in the sense of a computable model that supports
deductive inference.

Figure 1 illustrates the information contents of
annotations in the AIMed (Bunescu et al., 2005),
LLL (N édellec, 2005) and BioInfer corpora as
informal semantic networks1. AIMed and LLL
model interactions as pairwise relationships while
BioInfer allows complex relationships. Further-
more, AIMed is not annotated for direction or
type while LLL and BioInfer are. The key lim-
itation of pairwise relationship annotation is its
incapability to express complex structured rela-
tionships. Thus, the annotation involves decom-
position that leads to approximations and loss of
information. For example, in the LLL annotation
in Figure 1b, the effect of SpoIIE on sigmaF is not
explicitly annotated and cannot be inferred from
the annotation shown in the figure, which is in-

1Note that not all the information in Figure 1 is explicitly
represented in the corpora: for example, interaction types in
LLL are found as comments in the corpus file.

distinguishable from the annotation that would be
given, for example, toSpoIIE activates SpoIIAA
which binds SigmaF.

In addition to loss of information, the decom-
position can lead to inconsistencies. There is
large variation in annotation principles (see e.g.
Pyysalo et al. (2008)) which evidently leads to an-
notation of a variety of interaction types across
domain resources. For individual corpus anno-
tation efforts, inconsistencies in decomposition
principles may contribute to low inter-annotator
agreement (see e.g. Alex et al. (2008)).

Despite the limitations of pairwise annotation,
pairwise relationships may be necessary in appli-
cations such as querying for interactions between
two proteins. Assuming that complex relation-
ships are a useful target for information extraction
efforts and that simple relationships have benefits
in post-extraction applications, a mapping from
complex to simple relationships is needed. Fur-
ther, significant challenges still remain even in
pairwise PPI extraction (Krallinger et al., 2007),
and while carefully hand-crafted systems extract-
ing complex PPI have been introduced (Fried-
man et al., 2001), reliable machine-learning ap-
proaches to complex PPI extraction may not
emerge in the near future. A reliable mapping
of the BioInfer and GENIA annotations to pair-
wise annotations would thus serve to increase the
applicability of these resources to presently avail-
able extraction methods.
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3 Methods and resources

3.1 Corpora

BioInfer was the first domain corpus to introduce
the annotation of complex protein relationships.
It consists of 1100 sentences annotated for protein
names, their relationships, and dependency syn-
tax and uses a predicate formalism in its PPI an-
notation (see Figure 1c). The GENIA event cor-
pus contains similar annotation, but its relation-
ship annotation of 1000 PubMed abstracts was
published late during the present study, which
thus focuses on the BioInfer corpus. The essential
features of the PPI annotation of the BioInfer and
GENIA corpora are largely identical: complex re-
lationships are annotated, participants in relation-
ships are not restricted to protein names but refer
to the actual participants even when these are e.g.
abstract entities such asgene expression, and the
annotation is fully bound to the text. Therefore,
the methods described in this paper could well be
applied to GENIA in a future study.

3.2 Semantic network representation

The term semantic networkcan refer to a va-
riety of graphical representations of knowledge
which differ in expressive strength and complex-
ity. A graph representation is a natural choice for
semantics, and several well-developed and pow-
erful formalisms have been introduced (Sowa,
1976; Mel’̌cuk, 1988). However, their complexity
makes them difficult targets for automated extrac-
tion. An ideal representation for PPI extraction
would be as simple as possible, yet capable of
capturing all PPI statement types in natural lan-
guage, and formally well-founded.

In the context of this paper, a semantic net-
work is understood to refer to a directed graph
in which the nodes represent biological con-
cepts and the edges represent the stated roles of
these concepts. As the applied networks derive
from the BioInfer predicate annotation, the graphs
are further acyclic, that is, DAGs. The nodes
are bound to their corresponding textual expres-
sions throughtext bindingsfollowing the original
BioInfer annotation. A relationship is defined as
a directed subtree with at least two leaves, and a
relationship composed of an entire subtree rooted
at a source (DAG “root”) is termed a complete re-
lationship. In this model a binary relationship is
defined as a relationship containing exactly three

type meaning
agent agent in an asymmetric process

patient patient in an asymmetric process
participant participant in a symmetric process

sub substructure or member
super superstructure, family or group

identity identical entities
possessor possessor of a property

Table 1: Edge types used in the semantic network.

nodes, two of which are leaves, and a complex
relationship is one that is not binary.

The nodes and the edges in the network can
represent any concept of interest and any seman-
tically sound role, respectively. However, the set
of valid edge types is restricted by the type of the
predecessor. For example,actin (a physical en-
tity) can have an agent or patient role indepoly-
merisation(a process) but not infilaments(an-
other physical entity). A controlled vocabulary
or, ideally, an ontology must be employed to ac-
curately and formally express the knowledge.

A predicate representation such as that of
BioInfer can be directly mapped into an equiva-
lent semantic network where the node types cor-
respond to predicates and their arguments and
the edge types only distinguish between the argu-
ment positions (1st, 2nd etc.). In case of BioInfer,
the node types thus correspond to types in the
BioInfer ontologies. Further, edge types (shown
in Table 1) are indirectly obtained from the de-
scription of the nesting and the predicates (see
Section 3.3.1). Thus, the network representation
can capture the same general set of biomedical
relationships as the original BioInfer annotation.
However, the network representation has several
practical advantages over the predicate represen-
tation of BioInfer. Biological concepts, which can
be either physical, such as molecules or cell com-
ponents, or abstract, such as processes, properties
or relationships, are represented in a unified man-
ner, unlike in the predicate representation that dif-
ferentiates between predicates (relationships) and
entities. Further, the participant roles are explic-
itly represented, facilitating processing of rela-
tionships. Finally, the network representation is
naturally extensible: for example, information re-
garding cell type could be added simply by attach-
ing additional edges to the network.

Figure 2 provides an example of a seman-
tic network that uses the BioInfer ontologies.
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Figure 2: Example of a semantic network representing
the sentenceInhibition of B by A causes stimulation of
phosphorylation of D filaments by C. Agentis abbrevi-
ated asa andpatientasp.

The fact that no agent is stated for the node
STIM.(STIMULATE) renders this particular rela-
tionship unexpressable in the BioInfer formalism
without adding an anonymous entity.

3.3 Binarisation process

Here, binarisation is defined as a process of
mapping a complex relationship into a set of
(typed) binary relationships, aiming at sound
(valid, truth-preserving) inference as well as to
preserve the key biological information of the
original relationship. This is achieved through
a corpus-specific set of hand-written inference
rules. Instead of formal inference (as understood
in logic) aiming at finding new (unstated) knowl-
edge, the purpose of the inference rules is to re-
duce original annotation into binary annotation by
applying transformations that generate the most
accurate approximation of the original informa-
tion content.

The validity of inference is evaluated with re-
spect to biologists’ understanding of whether the
generated binary relationships describe relations
stated in the text. Ideally, the binary annotation
includes all (and only) pairwise PPI that are bio-
logically relevant, along with appropriate types.
Note that not all protein pairs forming a rela-
tionship generate biologically relevant binary re-
lationships: for example, no such relationship can
be validly inferred betweenp1 and p3 from the
statementp1 prevents the phosphorylation ofp2

by p3. By contrast, forp1 prevents the binding of
p2 to p3, a p1–p3 relationship could be inferred
becausebind is a symmetric relationship.

Before binarisation, the semantic network is
preprocessed to simplify the binarisation process
and to separate the binarisation from refinement
of relationships.

3.3.1 Preprocessing of the network

The BioInfer corpus contains annotation for a
number of non-biological relationship types, such
as equality and coreference, which are used to de-
tail the expression of other, biological, relation-
ships. Non-biological relationships are excluded
from the binarised corpus. However, to preserve
as much biological information as possible, these
relationships are resolved by graph transforma-
tions following their interpretations, as given in
(Pyysalo et al., 2007).

For example, in BioInfer the EQUAL predicate
is used to express identity relationships, mostly
in abbreviations and synonym definitions, and the
COREFER predicate is used to express corefer-
ence. Only the first argument of these predicates
is then used in other relationships, and thus in the
network these relationships are introduced for the
second argument by copying edges and nodes, as
illustrated in Figure 3.

Figure 3: Preprocessing EQUAL predicates. The an-
notation AFFECT(p1,p2) EQUAL(p2,p3) for the ex-
pressionp1 affectsp2 (also calledp3) is preprocessed
into AFFECT(p1,p2) AFFECT(p1,p3).

In the BioInfer entity annotation, entities can
be nested, i.e. contain other entities: for example,
p1 subunitis annotated as two entities,p1 subunit
and the nestedp1. However, the annotation does
not specify the type of the relations implied by
nesting. These relations are represented as edges
in the network and their types can be resolved re-
liably by heuristics based on the types and text
bindings of the end nodes of the edges. For exam-
ple, in [depolymerisation of [[actin] filaments]]
the edge fromdepolymerisation ofto filamentsis
resolved intopatient(rule: physical entity nested
in a process withof in its text binding) and the
edge fromfilamentsto actin is resolved intosub
(rule: physical entity nested in larger physical en-
tity). The special predicate REL-ENT, implying
indirect nesting, is resolved similarly.

3.3.2 Extraction of binary relationships

Binary relationships are extracted in a two-step
process. First, candidate relationships are gen-
erated from the original graph by forming all
possible relationships with exactly two proteins
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as leaves. In order to determine the polarity
of the resulting binary relationship, all adjacent
nodes of type NOT are included into the relation-
ship. Since the edges are explicitly labeled with
roles whose interpretation is independent of other
edges, such a subgraph is sufficient to preserve all
the details of the relationship between the two se-
lected proteins while being easier to process than
the entire graph.

Second, the relationships are transformed with
a set of rules that reduce them into binary rela-
tionships. Each rule defines a transformation that
aims to preserve the information content while
simplifying the relationship by removing nodes
and/or altering the types of the nodes and edges.
Unlike in formal inference, each transformation
produces an approximated relationship, and the
validity of the inference is not guaranteed. To
minimise the overall extent of approximations
and to avoid invalid inference, the rules are manu-
ally ordered so that more reliable and less approx-
imative rules have priority.

Rules including the root determine the final re-
lationship type and are applied first. Essentially
these rules process nodes representing verbs with
little semantic content as well as determine the
overall regulatory effect. Rules applying to leaves
remove nodes whose information content cannot
be included in the final relationship, and are ap-
plied only if other rules do not match. In most
cases, the removed information concerns the de-
tails of the exact types of the physical entities. By
iteratively applying the first matching rule, each
relationship is transformed until a binary relation-
ship is obtained or none of the rules match. The
semantic network representing all valid binary re-
lationships is simply the union of the binary rela-
tionships obtained in this step.

Figure 4 illustrates the transformation process.
In step a), a node representing the verbcauseis
removed. This is a minor approximation since
the node (CAUSE) indicates thatp1 is (indirectly)
an agent in the stimulation process. Similarly, an
agent of a regulatory process (INHIBIT) causing
another process (STIM.) is indirectly the agent of
that other process. Hence,INHIBIT is removed
in step b). Step c) is a rearrangement of nodes:
a regulatory process (STIM.) is processed into the
effect attribute (see Section 4.1) of the affected
physical process (PHOS.). In step d), it is ap-
proximated that anything that is stated for a phys-

Figure 4: An example of candidate relationship pro-
cessing. See Figure 2 for description of notation and
Section 4.1 for REG(+) attribute description.

ical entity (PHYS.) is also valid for its component
(p4). In this example the resulting relationship is
REG(+) PHOSPHORYLATE(p1,p4).

3.4 Development and evaluation protocol

In order to be able to fairly evaluate the effect
of the binarisation process on previously-unseen
data, the software and rules were developed on
a random sample of 437 sentences. The pro-
cess was then applied to the complete BioInfer
corpus and all relations in a random sample of
50 previously-unseen sentences of the binarised
BioInfer were analysed by a biologist to deter-
mine the quality of the binarisation.

In the error analysis, instances of information
loss were counted and their causes examined. The
losses were categorised as follows, in decreas-
ing order of severity: missing interaction, in-
valid inference, invalid interaction text binding,
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approximated interaction type, and lost interac-
tion detail. The latter two were considered as
approximations while the other as errors. The
lost interaction details were divided into three cat-
egories (process/property, structure/membership,
identity) and evaluated by counting the entities
that did not contribute to the corresponding bina-
rised relationship.

The applied proof-of-concept software is im-
plemented in Python and Prolog. Any similar
programming language or inference tool would
be equally good provided that it supports the or-
dering of the rules and the search for the first se-
quence (based on the rule order) of transforma-
tions leading to a binary relationship.

4 Results and discussion

4.1 Binarisation details

Single BioInfer predicate types are not alone
sufficient to summarise complex relationships.
In particular, polarity needs to be preserved
to separate explicit negative statements, origi-
nally annotated with the NOT predicate, from
unannotated (i.e. non-existing) statements (see
Pyysalo et al. (2007)). In addition, complex re-
lationships can combine aspects of regulation to
the primary effect: for example, the annotation
for p1 suppresses the polymerisation ofp2 in-
cludes both the SUPPRESS and POLYMERIZE
types but neither alone is sufficient to express the
whole relationship. To make it possible to pre-
serve negation and regulatory aspects, the predi-
cates are augmented withpolarity andeffectat-
tributes.

The base predicate specifies the relevant bi-
ological process while the effect attribute de-
scribes how this process is affected by the agent.
The effect can be positive, negative, or unspec-
ified regulation or a direct action. For simplic-
ity, when polarity or effect have their “default”
values (positive and direct action, respectively)
these are omitted from the augmented predicate:
thus, instead of POSDIRECT INHIBIT simply
INHIBIT is used as the name. Hence, for ex-
ample, NEGPOLYMERIZE indicates the agent
does not polymerise the patient, REG(-)BIND
indicates that the agent negatively regulates the
binding of the patient (to an unspecified entity).

The BioInfer ontologies are modified to bet-
ter support the binarisation as follows. The
Processentity subtree in the entity ontology is

mapped to the relationship ontology: for exam-
ple, the process entity DEPOLYMERIZATION
is mapped to the predicate DEPOLYMERIZE. In
addition, to be able to determine the effect at-
tribute in the binarisation, relationship types con-
sidered regulatory (Dynamics and Amount sub-
trees and the PREVENT type) were flagged.

4.2 Statistics

This section briefly summarises the key statistics
relating to the binarisation. The original BioInfer
corpus in the graph representation contains 2662
complete relationships, 942 of which are binary.
Note that some of these binary relationships (such
as EQUAL) are preprocessed into other relation-
ships. The binarised BioInfer contains 2762 rela-
tionships of which 94.4% (vs. 93.9% in the origi-
nal) have positive polarity and 89.7% direct action
effect.

During the binarisation process, the rules
matched 4794 times in total: the fraction of rules
involving the root is 39.7% and those involving
leaves 51.6%. The most applied root-matching
rules were those processing CAUSE, regulatory
relationship types, and CONTAIN (10.3%, 9.8%,
8.4% resp.) while leaf-matching rules were ap-
plied mostly to remove edges of identity (21.3%)
or structure/membership (17.3%) types.

The distributions of predicates in the original
and binarised BioInfer are clearly different. In the
binarised corpus, general predicates (for exam-
ple PARTICIPATE, AFFECT, and CONDITION)
have nearly all been removed while the number
of predicates in the Change-subtree has increased
63% even though the number of predicates in
its Dynamics-subtree have decreased 25%. The
former two observations confirm that the gen-
eral predicates have been transformed to biologi-
cally relevant ones, as intended. The last observa-
tion corresponds to the regulatory predicates be-
ing reinterpreted as effect attributes.

4.3 Error analysis

Table 2 shows the observed errors and approxima-
tions in the sample. For those types that can oc-
cur only once per relationship, the expected num-
ber per relationship in the binarised BioInfer is
shown. For the lost interaction details, the ex-
pected number per non-leaf entity in the original
BioInfer is shown.

Three of the observed missing interactions are

50



error type count E
missing interaction 7 0.07

invalid inference 13 0.12
invalid interaction text binding 0 0.00

total 20 0.19

approximation type count E
approximated interaction type 8 0.08

lost entity (process/property) 9 0.06
lost entity (structure/membership) 15 0.09

lost entity (identity) 7 0.04
total 31 0.19

Table 2: The errors and approximations observed
in the analysed sample of the binarised BioInfer.
ExpectationE for errors and approximated interac-
tion types given per-relationship, other approxima-
tions per-relation, where per-relationship expectations
refer to the binarised corpus and per-entity expecta-
tions to the original corpus.

duplicates of existing interactions. For example,
two regulatory relationships would be annotated
in the sentenceActin regulates cofilin phosphory-
lation and dephoshorylation,but the binary an-
notation cannot express the difference and hence
produces only one relationship. Another three
missing interactions are deliberately removed as
self-interactions (which are not relationships in
the applied semantic network model). The last
missing interaction is due to the failure in nest-
ing role resolution, caused by an invalid nesting
in a phraseactin-bound nucleotide exchange. The
nesting is technically allowed by the BioInfer an-
notation but the role ofactin in exchangecannot
be expressed with a single edge.

For the majority of the observed invalid infer-
ences the cause is an incorrectly identified effect
attribute. In six cases, the regulatory effect of a
node is missed or falsely assumed. For example,
in the sentenceAddition of profilin caused actin
depolymerisation,the processaddition(annotated
as INCREASE) does not refer to positive regu-
lation but rather to an experimental setup. The
two other effects are misidentified due to a similar
case of nesting as described in the previous para-
graph (consider the phraseconcentration required
for polymerisation). In the remaining five cases,
the true agent is an unexpressed process while the
claimed agent (protein) has an unstated relation-
ship with the patient. This renders the binarised
relationship invalid. Consider the sentenceDe-

phosphorylation of cofilin leads to actin depoly-
merisationas an example in whichdephosphory-
lation causesdepolymerisationwhile the effect of
cofilin as such onactin is unstated.

The expectations for losing information in en-
tities is surprisingly low given that leaf-targeting
rules were the most applied. Moreover, since
words carrying little biologically relevant infor-
mation, such as “protein” and “function”, are in-
cluded in these numbers, the biological informa-
tion loss is even less. The observed approxima-
tions in the interaction types are minor, such as
the type INITIATE being generalised to positive
regulation in mapping to an attribute.

In short, the error analysis reveals some weak-
nesses of the original BioInfer annotation scheme,
especially nesting, while the binarisation fails
mostly on identifying a regulatory effect. Given
that regulatory relationships are a small minority,
the effect attribute could be completely dismissed.

5 Conclusions

This paper has provided the first study of the rela-
tionship between the pairwise annotations com-
monly used to annotate PPI and the complex
annotations in recent corpora such as BioInfer
and the GENIA Event corpus. A simple se-
mantic network representation was presented, and
the BioInfer predicate annotation was mapped
into this representation. This mapping uni-
fies some arguably unnecessary distinctions in
the original annotation, such as the mirroring
of some relationship types with entity types
(e.g. PHOSPRORYLATE vs. PHOSPHORYLA-
TION), and explicitly represents all relationships
between entities, including relationships whose
type is unspecified in the original annotation (e.g.
sub/superstructure). The semantic network thus
provides a more consistent representation of the
relevant information, facilitating rule-based infer-
ence.

The binarisation of the BioInfer relationship
annotation was implemented as a set of graph
transformation rules. This transformation aimed
to determine which biologically relevant rela-
tionships between two proteins can be inferred
from the full semantic network and how much of
the original information content can be preserved
with BioInfer relationship types augmented with
polarity and effect (direct/regulatory) attributes.
A study of the resulting binary PPI indicated that
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while the original annotation and the chosen rep-
resentation are, in general, capable of supporting
this form of inference, a number of errors were
produced in the process. The study of these er-
rors suggested some weaknesses in the original
annotation and further indicated that while the ex-
istence of relationships was inferred correctly, the
effect attribute could not always be reliably de-
termined. The evaluation further provided an es-
timate of the approximations inherent to binary
annotation even when regulatory effects are sepa-
rately captured.

The results suggest that it is sufficient to sum-
marise the relationships between proteins with
a pairwise annotation for use in various appli-
cations. However, information extraction could
benefit from the details available in complex re-
lationships. Thus, together with the possibility to
transform complex relationship into binary ones,
the extraction of semantic networks could prove
to be a feasible approach to PPI information ex-
traction.

The similarities between the network represen-
tation considered here and the conceptual graph
(CG) model of Sowa (1976) suggest that the CG
model could be adopted as a knowledge repre-
sentation for PPI extraction. As a well-founded
formalism, the CG model would provide a means
to robustly express extracted relationships. How-
ever, the CG model may need to be adjusted to
address the linguistic aspects of information ex-
traction in the biomedical domain.

The created binary BioInfer is the first corpus
with pairwise PPI annotation where the rationale
for including or excluding a particular pair is for-
malised to the level of computationally imple-
mented rules. As binary PPI annotation is still
dominant in particular in machine-learning-based
PPI extraction, this resource can provide valu-
able data to a field where annotation consistency
has been a challenge. Similarly, the semantic
network form of the corpus can provide a more
approachable target for automatic PPI extraction
than the original predicate form. The software
tools and the data (in the original BioInfer format)
produced in this study are freely available from
http://www.it.utu.fi/BioInfer .
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Abstract

The co-occurrence of terms in a text corpus
may indicate the presence of a relation
between the referents of these terms. We
expect co-occurrence-based methods to
identify association relations that cannot be
found using static patterns. We developed
a new method to identify associations
between ontological categories in text
using the co-occurrence of terms that
designate these categories. We use the
taxonomic structure of the ontologies to
cumulate the number of co-occurrences
of terms designating categories. Based
on these cumulated values, we designed
a novel family of statistical tests to
identify associated categories. These
tests take both co-occurrence specificity
and relevance into consideration. We
applied our method to a 2.2 GB text
corpus containing fulltext articles and
used Gene Ontology’s biological process
ontology and the Celltype Ontology. The
software and results can be found at http:
//bioonto.de/pmwiki.php/Main/
ExtractingBiologicalRelations.

1 Introduction

An increasing number of biomedical ontologies
address the problem of biological data integra-
tion. Ontologies are a means for organizing and
representing basic categories and relationships
pertaining to the conceptualization of a domain.
Many biomedical ontologies have been developed
according to a common set of criteria based on the

Open Biomedical Ontologies (OBO) or the OBO
Foundry. A common property of these ontologies
is their focus on a single domain. This partic-
ular property provides an easy means for apply-
ing an ontology to a domain-specific application.
However, knowledge bridging multiple domains
remains hidden and not explicit.

To address this problem, so-called “cross-
products” have been created. They define cate-
gories from one ontology using categories from
other ontologies and relations from the OBO Re-
lationship Ontology (RO) (Smith et al., 2005).
Due to the large number of categories in the OBO
ontologies, few of these cross-products exist and
are maintained. For example, parts of the Gene
Ontology (GO) (Ashburner et al., 2000) are de-
fined using categories of cells from the Celltype
ontology (CL) (Bard et al., 2005) and relations
like has-participant from the RO. While many of
these cross-products have been created in a man-
ual curation effort, some were created using auto-
mated information extraction methods (Bada and
Hunter, 2007), which exploit the compositional
nature of many terms in these ontologies.

Methods based on term decomposition can pro-
vide high quality logical definitions suitable for
inclusion in a stable version of the ontology.
Yet, they miss several more intricate relations be-
tween categories that are not reflected in their
names. For example, the relation between car-
diac muscle cells (CL:0000746) and heart loop-
ing (GO:0001947) cannot be uncovered using ba-
sic pattern matching. Other approaches have been
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used to extract relations between categories in on-
tologies. Among them are association rule min-
ing and statistical analysis of term co-occurrences
(Bodenreider et al., 2005).

In this paper, we present a novel method for ex-
tracting association relations between categories
defined in distinct biomedical ontologies. This
method takes as input a set of ontologies and a
text corpus. It then detects associations between
categories of the input ontologies based on the
co-occurrence of terms that designate ontologi-
cal categories. The data obtained by analyzing
co-occurrences is further refined according to the
structure of the input ontologies. The resulting
association relations can either be considered by
human curators, used as input for automated rela-
tionship extraction methods or exploited by ques-
tion answering systems.

2 System and Methods

2.1 Ontologies

An ontology is the specification of a conceptual-
ization of a domain (Herre et al., 2006). Many
biological ontologies are represented as directed
acyclic graphs (DAGs) and are available in the
OBO flatfile format 1. In these DAGs, nodes
represent categories and edges represent relations
between these categories. A category, also called
kind, class or universal, is an entity that is gen-
eral in reality. Examples are dog, apoptosis) or to
transport sugar. Categories may have instances,
of which some may not be further instantiated.
These are called individuals. We call the set of
all categories in an ontology O Cat(O).

Categories may be related to other categories.
The most important relation between two cate-
gories A and B is the is-a relation, isA(A,B). The
relation isA(A,B) can be defined using the instan-
tiation relation: when isA(A,B), then all instances
a of A are instances of B (Herre et al., 2006). This
definition implies that the is-a relation is reflexive
and transitive.

A set of categories with the is-a relation among
them form a taxonomy. These taxonomies of-
ten are the backbone of the OBO ontologies’
DAG structure. We call the set of all successors
of a category A the sub-categories subcat(A) =
{B|isA(B,A)} and its predecessors the super-
categories supcat(A) = {B|isA(A,B)}. The direct

1http://www.cs.man.ac.uk/˜horrocks/obo/

successors and predecessors of A in the taxonomy
are called children (child(A) = {B|isA(B,A)∧B,
A ∧ ∀X(isA(B,X) ∧ isA(X ,A) → X = B)}) and
parents, respectively.

In the OBO flatfile format, ontologies are as-
signed a namespace. Category-identifiers are pre-
fixed with the namespace of the ontology to which
they belong. Therefore, they are unique within
the OBO ontologies. In addition to a unique iden-
tifier, categories are assigned a name and a set of
synonyms. Neither the name nor the set of syn-
onyms must be unique.

2.2 Basic Assumptions

Our method for extracting association relations
between categories is based on two main assump-
tions:

1. Terms can designate ontological categories;
the terms that designate the same category
are henceforth called the category’s synset.
Every occurrence of an element of the synset
of category C is called an occurrence of C.
Every co-occurrence of an element of the
synset of the category C with an element of
the synset of the category D is called a co-
occurrence of C and D.

2. When A is a sub-category of B, then every
co-occurrence of A with C is a co-occurrence
of B with C. Additionally, every occurrence
of A counts as an occurrence of B.

According to our first assumption, we con-
structed synsets from the synonyms attached
to each category in the input ontologies, and
counted the occurrences and co-occurrences of
these synsets based on two contexts: single sen-
tences and sentences in documents2. We used ex-
act matching to identify terms in text. Secondly,
we computed the closure of the occurrences and
co-occurrences of the categories with respect to
the is-a relation, as explicated in our second as-
sumption.

Finally, we test for the collocation between
categories based on the occurrence and co-
occurrence of elements of their synsets. Here,
collocation refers to a co-occurrence that is higher

2The second context refers to whole documents, but co-
occurrence is based on single sentences. Therefore, when
two terms co-occur in two or more sentences within one doc-
ument, their co-occurrence is only counted once.
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than expected by chance. To this end, we de-
signed a family of tests that account for both the
ontologies’ structure and the term distribution in
the text corpus. The tests account for both rele-
vance and specificity of the co-occurrence of cat-
egories. In this context, relevance refers to how
often the categories co-occur in the text corpus
compared to their absolute occurrence. The sec-
ond aspect of the tests allows the identification of
the categories that contain the most information
within the ontologies, i.e., they are the most spe-
cific categories with respect to the is-a relation.

To test our method, we used the biological pro-
cess (BP) branch of the Gene Ontology (GO)
(Ashburner et al., 2000) and the Celltype Ontol-
ogy (CL) (Bard et al., 2005). Our experiments
were conducted using a 2.2 GB text corpus con-
taining 60143 fulltext articles from Open Access
journals listed in Pubmed Central.

2.3 Method
We first analyzed the text corpus for the occur-
rence and co-occurrence of the terms included in
the synsets of categories taken from two ontolo-
gies. Based on these values, we computed the
occurrence and co-occurrence values for the cate-
gories. To test the statistical significance of these
co-occurrence values, we generated several per-
mutations of the data extracted from the text cor-
pus. These approximate a random distribution of
co-occurrence values within the ontologies for the
chosen text corpus. We then calculated the p-
values for the observed values against this random
distribution. Finally, we applied a family of novel
tests to these p-values to identify collocated cate-
gories from the ontologies. The result of our ap-
proach is a list containing pairs of categories that
are collocated with respect to a given cutoff.

2.3.1 Text Processing
First, we counted the number of occurrences

and co-occurrences of the terms contained in
synsets of categories from the input ontologies.
We counted the total number of sentences and
documents in which at least one element of a
synset was found using exact matching. For each
pair of categories, we counted the total num-
ber of co-occurrences of elements of their re-
spective synsets in sentences. Furthermore, we
counted the number of documents in which they
co-occured within at least one sentence. We
used exact matching and abstained from using any

more sophisticated methods for recognizing the
ontologies’ categories in text at this point in time.

The text processing yielded, for each category
C, both its frequency f (C) (total number of oc-
currence of terms from syn(C) in sentences) and
the total number of documents in which an ele-
ment from syn(C) appeared, d(C). Furthermore,
for each pair of categories C1 and C2, we obtained
both the total number of co-occurrences in sen-
tences f (C1,C2) and the total number of docu-
ments containing these co-occurrences d(C1,C2).

2.3.2 Co-occurrence Cumulation Using
Ontologies

The second step in our method implemented
our second assumption, i.e., occurrence and co-
occurrence between categories is transitive over
the is-a relation. We assumed that when two cat-
egories C and C′ stand in the is-a relation, C is-a
C′, then every occurrence of C is also an occur-
rence of C′. This means that the synset-closure
synclos(C) of a category C can be constructed as
follows:

syn(C)⊆ synclos(C) (1)

isA(C,C′)→ (syn(C)⊆ synclos(C′)) (2)

For all categories C, the values ft(C) and dt(C)
represent the sum of the values f (C′) and d(C′)
over all of C’s sub-categories C′. For all cate-
gories C1 and C2, we computed the cumulated f -
and d-values dubbed ft(C1,C2) and dt(C1,C2):

ft(C1,C2) := ∑
a∈subcat(C1)

∑
b∈subcat(C2)

f (a,b), (3)

dt(C1,C2) := ∑
a∈subcat(C1)

∑
b∈subcat(C2)

d(a,b), (4)

For all categories C1 and C2, we defined the fol-
lowing score function:

score(C1,C2) =
log ft(C1,C2)

log(1+ ft(C1))+ log(1+ ft(C2))
·

log(dt(C1,C2))
log(1+max(dt(C1),dt(C2)))

(5)

The first component of the score function imple-
ments the natural logarithm of the Pointwise Mu-
tual Information (PMI) (Manning and Schütze,
1999) score achieved by the categories with re-
spect to their co-occurrence within sentences. In
order to avoid divisions by 0, the denominators
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of all members of the score function were incre-
mented. The second component measures a sim-
ilar value using documents as context. The aim
of the score function is to ensure that categories
that co-occur relatively often are assigned a high
score. The range of the score function is between
0 and 1, and categories with overlapping synsets
will have a score of 1.

2.3.3 Determining the Random Distribution
The score of two categories C and D is in-

fluenced by the topology of the ontology: cate-
gories that are more general occur and co-occur
more often, due to our definition of occurrence
and co-occurrence of categories. Therefore, it is
insufficient to test for a high score to consider
the co-occurrence of two categories as signifi-
cant. A random distribution for the scores of each
pair of categories C and D provides a means for
determining the significance of a co-occurrence.
This random distribution depends on the text cor-
pus, the method for identifying categories, the
score function and the topology of the ontologies.
Hence, we did not assume any statistical distribu-
tion of scores.

We simulate the random distribution of the
scores of each category pair through multiple ran-
dom permutations: the f - and d-values that were
measured for each synset during the first step
of our method were randomly assigned to cate-
gories in the ontology from which they originated.
We then calculated and recorded co-occurrence
scores for all pairs of categories. In addition,
for each category D, such that isA(D,C1), the
score difference score(C1,C2)− score(D,C2) was
recorded. Further, for each category E with
isA(C1,E), the score difference score(E,C2)−
score(C1,C2) was recorded.

Hence, the results of this step were threefold.
First, we approximated the random score distri-
bution for each pair of categories. Second, each
triple of categories C, D and E ∈ child(C) gave
rise to a random distribution of score differences
between (C,D) and (E,D). Third, each triple
C, D and E ∈ parent(C) yielded a random dis-
tribution of score differences between (E,D) and
(C,D).

2.3.4 Significance Testing
To identify strong co-occurrences, we designed

a family of tests for each co-occurrence that
considers a fragment of the path in the ontol-

ogy graph. The first kind of tests is assymet-
rical. At the end of this section, we will in-
troduce a symmetrical form of these tests. The
first tests are designed to test the significance
of the co-occurrence between C1 and C2 based
on three criteria: (1) the score score(C1,C2)
for the co-occurrence should be higher than ex-
pected; (2) for each child category D of C1,
score(C1,C2) − score(D,C2) should be higher
than expected and (3) for each parent category
E of C1, score(E,C2)− score(C1,C2) should be
lower than expected.

The first criterion measures relevance, while
criteria (2) and (3) test for specificity. The first
criterion establishes high confidence in the co-
occurrence strength. The second criterion re-
flects the assumption that a collocation must be
novel, i.e., it must represent an information in-
crease over the co-occurrences of a sub-category.
Therefore, given that isA(D,C1), we assume that
any relevant information obtained from the co-
occurrence between C1 and C2 already appears in
the co-occurrence between D and C2 when the dif-
ference between score(C1,C2) and score(D,C2)
is low (with respect to the random distribution
of scores). We would assume a collocation be-
tween D and C2, because D is more specific than
C1. On the other hand, if the difference between
score(C1,C2) and score(E,C2) is high (with re-
spect to the random distribution of scores), and
isA(C1,E), we would assume a collocation be-
tween E and C2. We describe the intuitions be-
hind our tests below. The complete description
and formalization of the tests can be found on the
project website.

Within this section, let C and D be fixed cate-
gories from ontologies O1 and O2, respectively.
Furthermore, let N be the number of permuta-
tions.

The first test we designed depends on the cat-
egories C and D, the ontology’s structure and the
number of permutations N. It tests for the follow-
ing properties:

• the co-occurrence score between C and D is
high,

• the difference between score(C,D) and
score(C′,D) for every child C′ of C is high,

• the difference between score(C,D) and
score(C′′,D) for every parent C′′ of C is low.
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“Being high” and “being low” were captured
using the values of the cumulative distribution
functions (CDFs) obtained by the N permutations
performed in the previous step: one function for
each pair of categories C and D, one function for
each triple of categories C, D and C′ where C′ is
a child of C, and one for each triple C, D and C′′

where C′′ is a parent of C. We then combined
the p-values of the score differences to children
in a single value using their geometric mean. A
similar combination of the score differences’ p-
values to the parent categories of C was carried
out: here, the combined value is the geometric
mean of 1−x, where x is the p-value in the corre-
sponding CDF.

The geometric mean was used because it has
properties that correspond to our intuitions: when
the score difference to one of the child categories
is very low (the p-value in the CDF is 0), we al-
ways prefer the co-occurrence of the child of C
and D over the co-occurrence of C and D. The
geometric mean would then be 0, and the result
of the first test Θ1 would be 0 as well. Very high
differences (the p-value in the CDF is 1) are ig-
nored, i.e., the value of the geometric mean de-
pends solely on the other child categories of C.

The inverse holds for the score differences be-
tween C and D and the parents of C and D: when
the p-value of the score difference in the CDF is
0, this difference is ignored (because 1− 0 = 1,
and thus does not heavily influence the value of
the geometric mean), while a high difference (the
p-value in the CDF is 1) results in a final score of
0.

The goal of the test Θ1 is to find the most spe-
cific pair of categories that co-occur significantly
often. Therefore, the score between the two cate-
gories should be high, and provide a significant
increase over all the child categories. If there
was no such increase, i.e., the score between C
and D is high and the score between the chil-
dren of C and D is high as well, Θ1 prefers the
co-occurrences between children of C and D, be-
cause they are more specific and therefore contain
more information. The difference to the parents
of C should be low, as otherwise there would be a
significant increase in the score between a parent
of C and D over the score between C and D. Then,
Θ1 prefers the co-occurrence between this parent
and D over C and D.

All other tests are extensions of the first test.

The second test, Θ2, uses the minimum function
instead of the geometric mean to combine the p-
values in the CDFs of the score differences to par-
ents and children.

The first two tests Θ1 and Θ2 do not consider
the variances of the distributions of scores, dif-
ferences in scores to children and differences in
scores to parents. Therefore, we extended these
tests by weighting all three components of the
tests with the variances of their corresponding
distributions. In these tests, high variance low-
ers the impact of the result, while lower variance
strengthens it.

We defined three new distributions for the vari-
ances, and chose the p-value in the respective
CDF as a weight in our tests. We computed the
scores for each pair of category N times, result-
ing in one distribution of scores for each pair of
categories. Each of these distributions has a vari-
ance. The score variance distribution is the finite
distribution (containing N elements) of the vari-
ances of each of these distributions. We defined
the variance distribution for score difference to
parent and child analogously.

The tests Θ3 and Θ4 use only the variance dis-
tribution of scores, while Θ5 and Θ6 use all three
variance distributions. These tests are one-sided,
i.e., they are not symmetric. We define two-sided,
symmetric tests τi(C,D) for all categories C and
D as

τi(C,D) = Θi(C,D) ·Θi(D,C) (6)

3 Implementation

The text processing module is implemented in
Java. The remaining steps are implemented using
a combination of Java classes and Groovy scripts.
The source code for all programs is available un-
der the modified BSD license from the project
webpage. The implementation uses the function-
ality of the GNU GetOpt library3, Java Universal
Network/Graph Framework4 and the Java Colt li-
braries5.

4 Discussion

4.1 Results

We applied the method described here to the bio-
logical process (BP) branch of the Gene Ontology

3http://sourceforge.net/projects/evcgen/
4http://jung.sourceforge.net
5http://dsd.lbl.gov/˜hoschek/colt/
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Figure 1: Distribution of test results. The plot on the left shows the distribution of the test results for τ1. On
the right, the same is shown for τ6. The tests using the minimum function (τ2,4,6) are stronger than the tests
using the geometric mean (τ1,3,5). Furthermore, weighting the tests with the CDFs of the variances (τ3,4,5,6)
produces stronger results than the basic tests (τ1,2). Below the distributions, the quantiles of the GO-CL
dataset for each test are displayed.

p τ1 τ2 τ3 τ4 τ5 τ6

0.5 0.075 0.017 0.024 0.003 0.007 0.001
0.8 0.288 0.145 0.141 0.047 0.061 0.016
0.9 0.522 0.433 0.298 0.168 0.220 0.120
0.95 0.806 0.790 0.472 0.412 0.456 0.400
0.99 0.952 0.950 0.863 0.826 0.859 0.824

Table 1: The table shows p-quantiles for differ-
ent p-values for all six tests. Given a p-value (first
column), the quantiles show the result of each test
for which p-values are below the quantile.

(GO) and the Celltype Ontology (CL). We identi-
fied 3,751 out of the 14,542 terms in the GO’s bi-
ological process ontology in our text corpus. We
found 491 of 754 terms from the CL. Terms from
the GO’s BP branch co-occurred 70,967 times
with CL terms.

Using our method, we identified a total number
of 202,627 co-occurrences between categories.
After applying our tests, 157,894 co-occurrences
produced p-values distinct from 0.6 We illustrate
the quantiles obtained for different p-values in our
six tests, τi, in table 1. The distribution of scores
for τ1 and τ6 are shown in figure 1. The remaining
plots are available on the project webpage.

We found that the tests using the minimum

6The remainder obtained a score of 0 due only to nu-
merical restrictions. They were subsequently excluded, be-
cause they were indistinguishable from the absence of co-
occurrence.

instead of the geometric mean of p-values of
score differences to parent and child categories
are generally stronger, i.e., they include fewer co-
occurrences as significant for a given cutoff. Sim-
ilarly, tests including the variance for scores are
generally stronger than tests that are not weighted
by the variance of score distributions. In this
sense, the tests τ5 and τ6 are the strongest.

Relation Number of occurrences

has-participant 62
Participates-in 13
Located-in 2
unclassified 38

Table 2: Manually identified ontological rela-
tions in the 100 top-scoring association results
(with respect to τ1).

Table 2 shows the kind of relationship be-
tween categories that our tests identified for
the 100 top-scoring results with respect to
test τ1. The has-participant relation is de-
fined in (Smith et al., 2005). We define the
Participates-in relation as: C1 Participates-
in C2 ⇐⇒ ∀x, t1(instanceO f (x,C1, t1) →
∃t2,y(instanceO f (y,C2, t2) ∧
participates-in(x,y, t2))), where participates-
in is the primitive participation relation between
individuals as defined in (Smith et al., 2005). We
extend the definition of located-in in (Smith et al.,
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2005) to a relation Located-in between processes
and objects, which holds when all participants
of a process are located-in a structure during the
entire duration of the process.

In our sample, 38 association relations do not
fall under one of the three relations that we in-
vestigated. We discovered several kinds of un-
classified relations. First, mismatches in gran-
ularity lead to strong associations for unrelated
categories. For example, xanthine transport and
erythrocyte are closely related according to τ1.
Erythrocytes are involved in the transport of xan-
thine. However, the GO category xanthine trans-
port refers to the inter- and intracellular level of
granularity, while erythrocytes transport nutrients
between organs. Second, some categories are in-
directly related via another category. For exam-
ple, osteoclasts and lymph node development are
related via the protein RANK. Third, when cells
have closely related functions, we identify too
specific or too generic cell types as in the case
of the association between basophil degranula-
tion and mast cell. Finally, 6 out of 100 associ-
ations in our sample seem erroneous.

4.2 Comparison with Other Approaches

We did not compute precision or recall for our
method, due to the absence of a gold standard.
However, we compared our method with the
GO-CL crossproducts available7 from the OBO
Foundry8. The dataset contains manually veri-
fied relations between categories from the GO and
the CL that have been extracted using the method
described in (Bada and Hunter, 2007). Because
this method is based on the compositional nature
of terms in the GO, it exclusively identifies rela-
tions in which one category name (usually a type
of cell) is a substring of another category name
(usually a GO category).

The GO-CL crossproduct contains 396 rela-
tions between GO and CL categories. From these
396, we identified 73 that co-occurred in our text
corpus. Table 3 shows the percentage of signifi-
cant co-occurrences within these 73 relations for
different cutoffs in our six tests. Figure 1 shows
the distribution of the 73 pairs with respect to τ1

and τ6.
As our method relies exclusively on the distri-

7http://obofoundry.org/cgi-bin/detail.cgi?
id=go_xp_cell, accessed on January 23rd, 2008.

8http://obofoundry.org

bution of terms and not on their syntactic struc-
ture, it permits the recognition of association re-
lations between categories that could not be rec-
ognized using patterns. An example of such an
association is myoepithelial cell (cells located in
the mammary gland) and milk ejection.

However, while (Bada and Hunter, 2007) iden-
tified well-defined, ontological relations, our ap-
proach is designed to identify strongly associ-
ated categories that can be further refined using
complementary approaches for identifying rela-
tionships from text, such as abductive reasoning
(Hobbs et al., 1988).

Recall τ1 τ2 τ3 τ4 τ5 τ6

95% 0.007 0.006 0.003 0 0.002 0
80% 0.102 0.054 0.028 0.003 0.016 0.002
70% 0.173 0.109 0.049 0.008 0.029 0.004
50% 0.502 0.350 0.173 0.063 0.154 0.060

Table 3: Evaluation of our approach with respect
to the GO-CL dataset (Bada and Hunter, 2007).
The dataset we used for comparison consists of
the 73 relations from (Bada and Hunter, 2007)
found in our text corpus. Columns two to seven
show the cutoff values required to identify the
percentage given in column one of relations as
significant using tests one to six.

4.3 Future Research

The method presented in this paper can be en-
hanced by several means. First, our term iden-
tification approach could be improved. A large
number of variants of the terms included in the
synset of each category may occur in scientific
texts. Since our term recognition is based on ex-
act matching, we expect to miss a large number
of term occurrences and other references to the
ontologies’ categories. In particular, this affects
the recognition of terms from the GO. We expect
that the integration of methods such as (Gaudan
et al., 2008) for recognizing GO categories in text
would improve our results. Further natural lan-
guage processing techniques such as stemming
could improve the identification of categories in
text.

Second, we currently estimate the random
score distribution throughout the ontologies using
multiple permutations. A deeper statistical anal-
ysis could provide insights on how to replace the
random distributions obtained through permuta-
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tions with the exact random distributions. We ex-
pect this to improve the accuracy of our method.

The main goal of our future research will be
to extract well-defined, ontological relations be-
tween categories. The method we propose in this
paper serves as the first step in such an effort,
because it generates relevant associations accord-
ing to the scientific literature used. Additional
methods that may be based on the manual gen-
eration of patterns (Bada and Hunter, 2007), pat-
tern learning (Hao et al., 2005) or the application
of methods from logics and ontologies (Schulz et
al., 2006; Hobbs et al., 1988) could then be ap-
plied.

In the meantime, we plan to apply our method
to other ontologies and lexical resources.This is
possible because our method uses directed graph
structures, in which edges represent relations
from a less specific to a more specific entity. Such
a graph structure can be extracted from a wide va-
riety of biomedical resources.

4.4 Conclusion

We developed a novel method to identify asso-
ciation relations between ontological categories
from co-occurrences between terms obtained us-
ing text-mining techniques. For this purpose, we
have implemented a suite of tools that can be
used to extract these association relations from a
text corpus and two ontologies represented in the
OBO flatfile format. To evaluate the strength of
the association relations between the ontological
categories, we designed a family of novel statis-
tical tests that account for the ontologies’ topolo-
gies and test for relevance and specificity.

We applied our method to extract several thou-
sands of associated categories from the Gene
Ontology and the Celltype Ontology using a
text corpus comprised of fulltext scientific ar-
ticles from PubMed Central. The association
relations that we extracted are available for
downloadat http://bioonto.de/pmwiki.php/
Main/ExtractingBiologicalRelations.
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Abstract

In this paper we present techniques aimed
at detecting, within scientific papers which
describe newly discovered protein interac-
tions, the methods used by the authors of
the research to experimentally verify the in-
teraction(s).

We compare previous results over the
BioCreAtIvE data set with more recent re-
sults over a larger data set, using INTACT
annotations as gold standard. This compar-
ison shows the generality of the proposed
approach and suggests that practical appli-
cation of these techniques within a curation
environment might not be that far away.

1 Introduction

Protein interactions play fundamental roles in bi-
ological processes (e.g. signal transduction). Bi-
ologists routinely perform experiments in order to
detect or confirm protein interactions. In doing
so, they use a variety of experimental methods.

Databases such as INTACT (Kerrien et al.,
2006) or MINT (Zanzoni et al., 2002) aim at col-
lecting the known interactions from the literature.
The process of extracting selected items of infor-
mation from the published literature in order to
store such items in databases is known as “cura-
tion”. This is a costly and time-consuming pro-
cess, which still requires a significant amount of
human resources to be performed effectively.

Tools that can support the process of curation
would be extremely welcome by the community.
Such tools should be capable of detecting within
the papers, with high reliability, all the infor-
mation that the curators need to create database
records.

∗Corresponding author

Repositories of protein interactions, such as
INTACT and MINT, store, together with each in-
teraction, a reference to the experimental method
that was used to detect it, because this informa-
tion is highly relevant to researchers. Therefore,
not only the protein interactions, but also the ex-
perimental methods, need to be identified.

There is a limited number of available experi-
mental methods for the detection of protein inter-
actions, which are all described within the PSI-
MI taxonomy (Hermjakob et al., 2004), in par-
ticular under node MI:0001 (interaction detection
method). Each method is provided with a unique
numerical identifier, a standard name, a definition
and a list of synonyms.1

In order to stimulate research aimed at develop-
ing tools that support the extraction of critical in-
formation from the literature, the recent BioCre-
AtIvE text mining competition set up a number
of tasks which partially simulate the process of
curation. In particular the Protein-Protein Inter-
action task (PPI) was organized in four subtasks
(Krallinger et al., 2008): PPI-IAS (identifica-
tion of abstracts which contains curatable protein-
protein interactions), PPI-IPS (identification of
protein-protein interactions in abstracts), PPI-ISS
(identification of sentences which provide evi-
dence for protein-protein interactions), PPI-IMS
(identification of the experimental method by
means of which the interaction was verified). Our
own participation to BioCreAtIvE focused on the
IPS and IMS subtasks (Rinaldi et al., 2008).

In this paper we describe recent experiments
aimed at testing the coverage of the IMS detec-
tion approach across a larger set of articles.

1For the experiments described in this paper we used ver-
sion 2.5 of PSI-MI.
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MI:0096 (pull down) 20.6%
MI:0007 (anti tag coip) 13.1%
MI:0018 (two hybrid) 12.7%
MI:0006 (anti bait coip) 12.1%
MI:0019 (coip) 8.8%
total 67.3 %

Table 1: The ’Big5’: most frequently occurring meth-
ods in the BioCreAtIvE training data

2 Detection of Experimental Methods

In the original BioCreAtIvE setting, the organiz-
ers asked the participants to deliver the methods
coupled with the interactions to which they ap-
ply. Due to the intrinsic difficulty of the problem,
coupled with the difficulty of finding the interac-
tions, the task was later relaxed, and the partici-
pants were asked to deliver a set of experimental
methods employed in the article.

The approach we used in BioCreAtIvE for the
detection of the experimental methods is based on
pattern matching supplemented by simple statis-
tics. As it would have been impossible to man-
ually develop search patterns for all 155 meth-
ods in PSI-MI, we first observed the distribution
of methods in the training data. The 5 most fre-
quently used methods alone form 67.3% of the
unique pairs of methods and articles (see table 1).
So we decided to focus on these methods for
handcrafted patterns, informed by biological in-
sights, and derive the rest of the patterns automat-
ically from PSI-MI by the following process: (A)
extraction of names and synonyms from PSI-MI,
(B) derivation of patterns by automatic generation
of variants by inclusion/deletion of spaces, tabs,
newlines, returns, hyphens, etc. and allowing free
variation of uppercase and lowercase.

As expected, the results of these automat-
ically generated patterns were bad, especially
for precision. Therefore, handcrafted patterns
for the most frequent methods2 were developed
by our team’s computational linguist and biolo-
gist in an iterative process of identifying unde-
tected articles (false negatives), manually find-
ing hints for methods, constructing patterns, and
testing them. This process was most success-
ful for MI:0007 (anti tag coimmunoprecipitation),

2The five methods in table 1 plus MI:0428 (imaging tech-
niques), because of low recall of the automatically generated
patterns, and MI:0401 (biochemical), because of low preci-
sion.

Run R P F
run 1 29.4% 65.4% 40.6%
run 2 56.8% 43.5% 49.3%
run 3 53.9% 51.3% 52.6%
run 1 20.02% 66.79% 30.81%
run 2 43.02% 40.34% 41.64%
run 3 40.96% 49.65% 44.89%

Table 2: Above: our best results over BioCreAtIvE
training data. Below: our official results over BioCre-
AtIvE test data3

MI:0006 (anti bait coimmunoprecipitation), and
MI:0019 (coimmunoprecipitation). As the au-
tomatically generated patterns for MI:0096 (pull
down) and MI:0018 (two hybrid) were already
quite good, the handcrafted patterns did not per-
form much better. The approach leads to good
recall but low precision (R=73.4%, P=24.3%,
F=36.5%), over all file-method-pairs in the train-
ing data.

As an example of a handcrafted pattern, con-
sider the method MI:0428, which is named
“imaging techniques” in PSI-MI 2.5. This name
is not actually used by authors, however strings
beginning with “colocaliz” or “colocalis” (allow-
ing hyphens and spaces within the string) are a
very good indicator for this method.4

At this point, rather than focusing on improv-
ing the patterns, it was decided to consider the
results obtained (methods for a given file) as a set
of candidates, which could be filtered with sta-
tistical means.5 A reduction from about 6.8 can-
didate methods (per file) to about 2.2 (as in the
training data) seemed most promising. For this re-
duction, an empirically derived formula connect-
ing the frequency of the method in the data and
the quality of our patterns for this method was

3The results were evaluated by the organizers accord-
ing to different criteria. We have chosen here the evalua-
tion which corresponds to the approach used to compute the
results presented in this paper (aiming at maximizing the F-
score)

4This pattern could actually be derived from the names
of several obsolete precursors (MI:0021, MI:0022, MI:0023)
for MI:0428.

5Actually the main reason for this is the conceptual
difference between “finding every mention of a method”
(which our patterns already did with good precision) and
finding all interaction detection methods in a file i. e. iden-
tifying the methods used by the authors to detect protein-
protein interactions. The statistics are a simple way to give
more importance to methods which are unlikely to be just
mentioned without a connection to the detected interactions.
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INTACT BCMS OWN Journal
615 5958 5513 The Journal of biological chem.
280 583 0 Cell
170 1142 910 PNAS
147 1290 931 Molecular and cellular biology
143 1048 804 The EMBO journal
143 572 0 Nature

88 437 0 Science
87 626 0 Biochem. and biophys. res.com.
86 298 0 Molecular cell
75 359 0 Genes & development
58 432 102 Biochemistry
56 527 375 Oncogene
55 261 0 Journal of molecular biology
54 526 445 The Journal of cell biology
... ... 0 ...

3260 22804 9080 Total

Table 3: Journal frequencies in INTACT, BCMS and
our own dataset

used. For each method M we compute the fol-
lowing weight:

wM = fM ∗ p2
M

r2
M

where fM is the relative frequency of method
M, while pM and rM are precision and recall of
all patterns for method M.

The candidate methods were ranked according
to their weights. We submitted 3 official runs
(where the results of IMS were coupled with the
results of IPS) and 3 non-official runs (where the
results of IMS were not coupled with the results
of IPS). Of these runs, run 1 was maximizing pre-
cision (by giving only the best candidate and so
hurting recall for all papers containing more than
one method), run 2 was maximizing recall (giv-
ing the three best candidates, so hurting precision
for all papers containing one or two methods) and
run 3 was maximizing F-score (additional condi-
tion that candidates 2 and 3 reached a minimum
in frequency and precision). Our best results for
the training data and the official runs for the test
data of BioCreAtIvE are shown in table 2.

One of the possible criticism to our approach
is that the usage of methods might be time-
dependent. In other words, it is reasonable to as-
sume that some methods might be frequently used
in some periods and then might go ‘out of fash-
ion’, perhaps because newer and better methods
take their place.

3 Evaluation

After the end of BioCreAtIvE the organizers de-
cided to set up a publicly accessible service to
give access to some of the systems which per-
formed best in the competition. This work re-

Interactions Methods %
38220 MI:0018 (two hybrid) 25.5
29268 MI:0676 (tap) 19.8
21205 MI:0096 (pull down) 14.4
20509 MI:0397 (two hybrid array) 13.5
12998 MI:0398 (two hybrid pooling) 8.8
11332 MI:0006 (anti bait coip) 7.7

9473 MI:0007 (anti tag coip) 6.4
6331 MI:0399 (2h fragment pooling) 4.3
6089 MI:0363 (inferred by author) 4.1
1842 MI:0004 (affinity chrom) 1.2

... ... ...
147584 total 100%

Table 4: Distribution of methods per interaction in IN-
TACT

Papers Methods %
1121 MI:0018 (two hybrid) 34.4
1066 MI:0096 (pull down) 32.7
840 MI:0007 (anti tag coip) 25.8
761 MI:0006 (anti bait coip) 23.4
574 MI:0114 (x-ray diffraction) 17.6
287 MI:0019 (coip) 8.8
251 MI:0416 (fluorescence imaging) 7.7
123 MI:0663 (confocal microscopy) 3.8
120 MI:0424 (protein kinase assay) 3.7
115 MI:0071 (molecular sieving) 3.5
111 MI:0004 (affinity chrom) 3.4

82 MI:0676 (tap) 2.5
... ... ...

3259 total -

Table 5: Distribution of methods per paper in INTACT6

sulted in a meta-server (Leitner et al., 2008),
which receives a request from a remote user (ei-
ther via web interface or via XML-RPC) and
forwards the request (via XML-RPC) to specific
servers maintained by the participants. The ser-
vices currently offered by the meta-server are
Gene Mention, Gene Normalization, Interaction
Article and Taxon Classification. The organiz-
ers defined a list of 22804 PubMed papers to be
analyzed by each server (which we will call the
BCMS dataset).

Our initial aim was to offer our IMS tools as
an additional service to be integrated in the meta-
server, so we started from the BCMS list of ar-
ticles.We also wanted to be able to test our re-
sults against already annotated articles at INTACT

(which we will call the INTACT dataset).
The first problem to deal with is that of the

format of the input data. Our approach requires
the availability of a full-document plain text ver-
sion of the original article. Initially, we consid-
ered using only articles available in PubMed Cen-
tral, given the standardized XML format which

6Notice that one paper can contain multiple methods, so
the sum of all values in this table is larger than 100%.
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Year INTACT INTACT/BCMS %
1978 1 0 0%
1980 1 0 0%
1987 1 0 0%
1988 4 0 0%
1989 1 0 0%
1990 2 0 0%
1991 2 0 0%
1992 2 0 0%
1993 14 0 0%
1994 21 0 0%
1995 38 4 10.5%
1996 61 11 18.0%
1997 96 25 26.0%
1998 144 33 22.9%
1999 182 54 29.7%
2000 242 58 24.0%
2001 268 67 25.0%
2002 320 80 25.0%
2003 360 64 17.7%
2004 461 66 14.3%
2005 304 50 16.4%
2006 418 131 31.3%
2007 255 6 2.4%
2008 55 0 0%

Table 6: Distribution of INTACT-curated papers per
year, and their proportion in the INTACT/BCMS
dataset

would definitely simplify conversion to plain text.
Unfortunately BCMS has a low overlap with
PubMed Central (only 35 articles).

Therefore we decided to implement our own
dedicated HTML to text converters for the most
frequent journals in BCMS.7 We focused on jour-
nals which appear to have a reasonably standard
HTML structure for the articles, and which were
easily obtainable from our library service, obtain-
ing a total of 9080 converted articles. Table 3
shows the most frequent journals in INTACT and
BCMS, and for each of them the number of arti-
cles that we converted (‘OWN’). Among the con-
verted articles, 649 are also present in the INTACT

set (as of May 31st, 2008). This is the dataset
upon which we base our experiments (which in
the rest of this paper will be referred to as the IN-
TACT/BCMS dataset).

In INTACT every protein interaction is asso-
ciated with the papers where it is discussed and
with the experimental method that was used to de-
tect it. Table 4 reports the most frequently used
methods based on the number of interactions that
they are associated with. However, there are some
methods which, although used very rarely, can de-

7Although a generic HTML to text converter could have
been used for the application that we describe in this paper,
our aim is not only to extract the experimental methods, but
also the protein interactions, using a full NLP approach, for
which we need a much better conversion.

Year P (%) R (%) F (%) Big5 (%)
1995 50 66.7 57.2 71
1996 46.9 71.4 56.6 70
1997 47.9 55.7 51.5 68
1998 41.1 55.7 47.3 68
1999 44.9 58.3 50.7 65
2000 47.6 59.6 52.9 69
2001 42.5 58.6 49.3 65
2002 44.2 53.1 48.2 64
2003 44.9 51.6 48.0 62
2004 39.4 48.1 43.3 59
2005 35.7 45.9 40.2 63
2006 33.2 41.6 36.9 60
2007 44.4 61.5 51.6 60
Total 41.2 51.7 45.9 64

Table 7: Performance over INTACT/BCMS data dis-
tributed per year of publication. The last column
shows the frequency of the ’Big5’ experimental meth-
ods per year.

liver a large number of interactions. One example
is MI:0676 (tap), which is used in only 82 papers.
In one of them alone (pubmed:16429126) it is as-
sociated with 21574 interactions!

Table 5 shows the methods most frequently
used, counting only once a method occurring
multiple times in the same paper. As our approach
delivers the methods per paper (rather than per in-
teraction), these numbers are a more useful guide-
line to the relative importance of each method.

Using metadata from the corresponding
PubMed entry, we get the year of publication
of each INTACT paper. Using that information,
we can verify how much the methods depend
on the year of publication of the paper. Table 6
shows the distribution of INTACT papers by
year of publication, and their proportion in our
INTACT/BCMS dataset. Despite the relatively
recent start of INTACT (2003), the coverage is
reasonably good for the years 1997-2007.

Table 7 shows the results of applying the IMS
system, as described in the previous section, to
the INTACT/BCMS dataset. All tests have been
performed using the modality ‘max F-score’ of
the IMS tools, and the results apply to the asso-
ciation article/method (we do not consider yet the
association of methods with specific protein in-
teractions). The data provides a sufficiently large
time-window, with good distribution for most of
the years of observations (with the exceptions
of 1995, 2007 and possibly 1996). The results
are comparable to those obtained in BioCreAtIvE
(both training and test), which are shown in Ta-
ble 2.

Surprisingly, the value of precision is always
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Figure 1: Trends for methods in INTACT

lower than recall, which was not expected (in or-
der to maximize the F-score, P and R should be
almost equal). This might be caused by the fact
that the articles with only one method are more
frequent in INTACT (43.2%) than in BioCreAtIvE
(34%). There appears to be a decreasing trend
in the years 2004 to 2006 (2007 is too small to
be representative), which could be caused by the
emergence of new experimental methods and re-
duced usage of methods that were popular in pre-
vious years. However, whether this effect is due
to a genuine ‘aging’ of experimental methods, or
it is simply due to the selection of articles by IN-
TACT curators, cannot be said on the basis of the
available data.

The last column of table 7 shows that the fre-
quency of the Big5 methods declines only slowly,
and figure 1 demonstrates that emerging meth-
ods, such as MI:0114 (x-ray diffraction), MI:0416
(fluorescence imaging) and MI:0424 (protein ki-
nase assay), take more importance even more hes-
itantly. Table 7 on the whole confirms that the ap-
proach as such seems not endangered by sudden
‘revolutions’ in the use of experimental methods
and a gradual erosion of our results can be con-
trasted by a periodic reassessment of methods for
which handcrafted patterns have to be developed.

4 Discussion

Given the limited set of documents used in our
experiments, it is important to ask the question
whether the results are sufficiently representative.
Since our approach is based upon patterns, each
of which is designed to recognize lexical hints to
a given experimental method, it is obvious that the
approach can be successful only as long as there
is no large variation in the relative frequency of
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Figure 2: Trends for methods in INTACT/BCMS

methods used in a given set of papers.

4.1 Trends

We have therefore observed the distribution and
historical trends of methods in the whole INTACT

dataset and compared it with the distribution and
historical trends in our own dataset (see figures 1
and 2). Among the 10 most frequently used meth-
ods, the number of them shared in both sets is be-
tween 6 and 8 for each year. The most frequent
methods are the same as in the BioCreAtIvE train-
ing data (see table 1). The proportion of these five
methods in the INTACT data, distributed per year,
is shown in the last column of table 7.

Tables 10 and 11 illustrate the performance
of our search patterns for specific methods over
the INTACT/BCMS dataset. Of these, the first 5
methods are searched for by handcrafted patterns,
the following methods by automatically derived
patterns. The disappearance of MI:0019 (coim-
munoprecipitation) over time can at least partially
be explained by the increase in the use of MI:0007
(anti tag coip) and MI:0006 (anti bait coip). As
these are hyponyms of MI:0019, the process we
observe may not be an evolution of different sci-
entific practices but actually a semantic process:
an increasing preference for the use of a more
specific term, be it by the authors of the papers
themselves or by curators of INTACT. The iden-
tification of ‘challengers’, i.e. new methods in-
creasing in use (per paper), and so probably de-
serving handcrafted search patterns, is rather dif-
ficult. The most obvious candidate is method
MI:0114 (x-ray crystallography), for which the
automatically derived pattern does already per-
form very well, but MI:0416 (fluorescence mi-
croscopy) and MI:0424 (protein kinase assay) for
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Methods Papers %
1 1408 43.2%
2 928 28.5%
3 567 17.4%
4 255 7.8%
5 81 2.5%
6 17 0.5%
7 4 0.1%

Table 8: Number of distinct methods per paper in IN-
TACT

which the performance of the automatically de-
rived patterns is very weak are very promising
candidates (see table 11). On a lower level, meth-
ods such as MI:0004 (affinity chromatography
technology), MI:0047 (far westernblotting) and
MI:0071 (molecular sieving) seem to be the most
interesting candidates, and the very weak perfor-
mance for MI:0004 could certainly profit very
much from a handcrafted search pattern.

4.2 Independence INTACT/ BioCreative

Since the original program was developed using
the BioCreAtIvE training data, it is important to
verify that the data on which we are testing do
not have a major overlap with BioCreAtIvE train-
ing data. Among the whole ‘INTACT/BCMS’
articles, 453 are not in the BioCreAtIvE train-
ing data, 196 are (30.2%). Additionally, 521
of the files BioCreAtIvE training data are not in
‘INTACT/BCMS’. The overlap with the BioCre-
AtIvE test set is less relevant, since it was not
used for development of the program, however
we report it here to show the independence of
the two tests. 522 INTACT/BCMS files are not in
BioCreAtIvE-Test, 127 are (19.6%). 231 BioCre-
AtIvE test files are not INTACT files.

4.3 Choosing the number of methods

The selection of the number of methods for each
paper does have an impact on the final results. If
the program is set to deliver always only the best
ranked method, precision will be relatively good,
but recall will be poor. Conversely, if always the 3
best methods are delivered, the opposite will hap-
pen. Table 9 shows the results obtained by the
system if only the 1st best method is delivered,
the 2 best methods, or the 3 best methods (‘real’).

Another way to observe the impact of the se-
lection of the number of methods on the results is
to conduct the following pseudo experiment: sup-
pose we have the perfect ranking algorithm which
delivers for each paper a list of all methods cor-

real pseudo oracle
1 2 3 1 2 3 -

TP 427 705 773 3260 5112 6036 715
FP 222 584 1124 0 1408 3744 642
FN 1069 791 723 3260 1408 484 781
P 65.8 54.7 40.7 100 78.4 61.7 52.7
R 28.5 47.1 51.7 50 78.4 92.6 47.8
F 39.8 56.0 45.6 66.7 78.4 74.1 50.1

Table 9: Comparison of real and simulated experi-
ments

rectly ranked for relevance. If, for all papers, we
always output only the best method, we are never
damaging precision, but we are reducing recall of
all but the 1-method-files. If, instead, we take al-
ways the two best methods, precision will be low-
ered by taking many unnecessary ‘second best’
methods, but we increase recall. Finally, if we de-
cide to assign to all papers the three best methods,
precision will be much lower and recall will keep
improving. Using the data gathered directly from
INTACT we can compute the results, which are
also presented in table 9 (’pseudo’).

Finally, we can consider the following experi-
ment. Suppose we have an “oracle” which tells
us reliably how many methods we should deliver
for each paper, how good would be our results?
This is a rather realistic scenario, since ideally
the method detection program would be coupled
with an interaction detection program,6 therefore
knowing how many methods are needed. Al-
though we do not have at the moment a program
capable of predicting how many methods should
be associated to each paper, we can simulate it
with data taken out of INTACT: this will be our
“oracle”. With such an help, we can filter the
results of the method selection and ranking pro-
gram, obtaining the results that are show in the
last column of table 9.

These results show that, although usually our
approach delivers the correct ranking for meth-
ods, there must be some cases where a correct
method is ranked lower than a wrong method. A
detailed inspection of these results will provide
useful hints for further development.

4.4 Future Directions

The work described in this paper proves that it
is possible, with reasonably simple techniques, to
capture the most relevant methods with high re-
liability. Additional improvements to the system

6We are developing such a program separately, based on
our BioCreAtIvE submission for the PPI-IPS task.
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are likely to require complex fine tuning.
As it is impossible to handcraft rules for all the

155 methods, it would be meaningful to inves-
tigate how to improve the existing approach via
machine learning. To this aim, we performed an
experiment with a standard text classifier, using
the methods as categories. Although the results
were rather disappointing, this might have been
due to the poor preparation of the input data. We
intend to further investigate if better preprocess-
ing or the usage of more sophisticated classifiers
might help overcome these limitations.

The usage of other terminologies/ontologies
for the extraction of synonyms (e.g. Mesh) is
hampered by the unclear mapping of the rele-
vant entries into PSI-MI entries. Without such
a mapping, any attempt at using other dictionary
sources would simply increase the level of noise.

Any further evaluation of the results would
need to take into account the limitations of the
gold standard. If the program finds a method,
which has been used by the authors, and it is
prominently mentioned in the paper, but it is not
included in the gold standard (maybe because it
is not directly related to any of the interactions
annotated by INTACT curators), then it gets pe-
nalized (one FP). As an example, in PubMed
16293613 there are several mentions of “x-ray
crystal structure(s)” in connection with the au-
thor’s experiments, one of these mentions is in
the experimental procedures section, which seems
to show that method MI:0114 (x-ray crystallog-
raphy) was used, but this was rated as an FP by
comparison with the INTACT gold standard.

As a service to the community, we plan to make
available the functionality of method identifica-
tion as a web service, possibly integrated into the
BioCreAtIvE meta-server described in (Leitner et
al., 2008). We aim at offering coverage of all
PubMed articles for which the full text is freely
available, focusing in particular on PubMed Cen-
tral.

5 Conclusion

We described a system capable of automatically
extracting experimental methods for detection of
protein interactions from biomedical scientific lit-
erature. Participation to the BioCreAtIvE II eval-
uation has proven the competitiveness of the ap-
proach. In this paper we have proven that the
range of applicability of the system goes well be-

yond the scope of the BioCreAtIvE dataset. Rea-
sonable results have been shown over literature
spanning the last ten years.
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Year tp fn fp P R F
MI:0006 (anti bait coimmunoprecipitation)
1995 1 0 0 100% 100% 100%
1996 2 2 1 66.7% 50% 57.2%
1997 1 2 5 16.7% 33.3% 22.2%
1998 5 5 5 50% 50% 50%
1999 4 9 12 75% 30.8% 43.7%
2000 7 11 12 36.8% 38.9% 37.8%
2001 4 9 9 30.8% 30.8% 30.8%
2002 10 20 8 55.6% 33.3% 41.7%
2003 5 18 7 41.7% 21.7% 28.5%
2004 7 11 13 35% 38.9% 36.8%
2005 2 8 11 15.4% 20% 17.4%
2006 23 33 27 46.0% 41.0% 43.4%
2007 0 2 0 0 0 0
total 71 130 110 39.2% 35.3% 37.1%
MI:0007 (anti tag coimmunoprecipitation)
1995 0 0 1 0 0 0
1996 1 1 2 33.3% 50% 40%
1997 2 6 3 40% 25% 30.8%
1998 3 3 8 27.3% 50% 35.3%
1999 10 5 10 50% 66.7% 57.2%
2000 10 7 5 66.7% 58.8% 62.5%
2001 10 10 7 58.8% 50% 54.0%
2002 12 14 11 52.2% 46.2% 49.0%
2003 13 12 9 59.1% 52.0% 55.3%
2004 13 12 9 59.1% 52.0% 55.3%
2005 8 6 6 57.1% 57.1% 57.1%
2006 27 14 19 58.7% 65.9% 62.1%
2007 3 1 1 75% 75% 75%
total 112 91 91 55.2% 55.2% 55.2%
MI:0018 (two hybrid)
1995 3 0 0 100% 100% 100%
1996 3 1 2 60% 75% 66.7%
1997 15 1 4 78.9% 93.8% 85.7%
1998 13 1 5 72.2% 92.9% 81.3%
1999 27 0 8 77.1% 100% 87.1%
2000 28 0 5 84.8% 100% 91.8%
2001 30 2 9 76.9% 93.8% 84.5%
2002 31 0 13 70.5% 100% 82.7%
2003 23 0 10 69.7% 100% 82.1%
2004 20 0 12 62.5% 100% 76.9%
2005 18 1 7 72% 94.7% 81.8%
2006 20 0 12 62.5% 100% 76.9%
2007 2 0 3 40% 100% 57.1%
total 233 6 90 72.1% 97.5% 82.9%
MI:0019 (coimmunoprecipitation)
1995 2 0 1 66.7% 100% 80.0%
1996 4 0 5 44.4% 100% 61.5%
1997 4 2 12 25% 66.7% 36.4%
1998 2 1 14 12.5% 66.7% 21.1%
1999 8 5 21 27.6% 61.5% 38.1%
2000 6 3 26 18.8% 66.7% 29.3%
2001 6 3 27 18.2% 66.7% 28.6%
2002 6 7 36 14.3% 46.2% 21.8%
2003 7 2 23 23.3% 77.8% 35.9%
2004 2 3 27 6.9% 40% 11.8%
2005 2 3 21 8.7% 40% 14.3%
2006 0 2 69 0% 0% 0%
2007 0 0 4 0% 0% 0%
total 49 31 286 14.6% 61.3% 23.6%
MI:0096 (pull down)
1995 1 1 1 50% 50% 50%
1996 4 1 1 80% 80% 80%
1997 9 2 3 75% 81.8% 78.3%
1998 12 3 3 80% 80% 80%
1999 16 3 7 69.6% 84.2% 76.2%
2000 24 4 5 82.8% 85.7% 83.7%
2001 23 3 12 65.7% 88.5% 75.4%
2002 33 9 6 84.6% 78.6% 81.5%
2003 27 2 5 84.4% 93.1% 88.5%
2004 28 4 6 82.4% 87.5% 84.9%
2005 18 6 2 90% 75% 81.8%
2006 43 9 18 70.5% 82.7% 76.1%
2007 2 0 1 66.7% 100% 80.0%
total 240 47 70 77.4% 83.6% 80.4%

Table 10: Most frequent methods (Big5):
distribution per year

Year tp fn fp P R F
MI:0114 (x-ray crystallography)
1995 0 0 2 0 0 0
1996 1 0 0 100% 100% 100%
1997 0 0 1 0 0 0
1998 3 0 1 75% 100% 85.7%
1999 1 0 1 50% 100% 66.7%
2000 2 1 4 33.3% 66.7% 44.4%
2001 3 1 4 42.9% 75% 54.6%
2002 8 2 4 66.7% 80% 72.7%
2003 6 4 1 85.7% 60% 70.6%
2004 0 1 2 0 0 0
2005 0 1 4 0 0 0
2006 2 3 12 14.3% 40% 21.1%
2007 0 0 0 0 0 0
total 26 13 36 41.9% 66.7% 51.5%
MI:0424 (protein kinase assay)
1995 0 0 0 0 0 0
1996 0 0 0 0 0 0
1997 0 2 0 0 0 0
1998 0 3 0 0 0 0
1999 0 2 1 0 0 0
2000 0 1 1 0 0 0
2001 2 2 0 100% 50% 66.7%
2002 0 2 2 0 0 0
2003 0 4 2 0 0 0
2004 1 4 0 100% 20% 33.3%
2005 0 2 0 0 0 0
2006 0 10 2 0 0 0
2007 1 0 0 100% 100% 100%
total 4 32 8 33.3% 11.1% 16.6%
MI:0004 (affinity chromatography technology)
1995 0 1 0 0 0 0
1996 0 1 0 0 0 0
1997 0 0 0 0 0 0
1998 0 1 1 0 0 0
1999 0 2 0 0 0 0
2000 0 2 0 0 0 0
2001 0 4 1 0 0 0
2002 0 4 1 0 0 0
2003 0 1 0 0 0 0
2004 1 1 2 33.3% 50% 40%
2005 0 4 1 0 0 0
2006 0 4 1 0 0 0
2007 0 0 0 0 0 0
total 1 25 7 12.5% 3.8% 5.8%
MI:0047 (far western blotting)
1995 0 1 0 0 0 0
1996 0 0 0 0 0 0
1997 2 2 0 100% 50% 66.7%
1998 0 4 0 0 0 0
1999 1 2 0 100% 33.3% 50%
2000 0 1 0 0 0 0
2001 1 2 1 50% 33.3% 40%
2002 0 0 0 0 0 0
2003 0 4 0 0 0 0
2004 0 3 0 0 0 0
2005 0 2 0 0 0 0
2006 1 2 0 100% 33.3% 50%
2007 0 0 0 0 0 0
total 5 23 1 83.3% 17.9% 29.5%
MI:0071 (molecular sieving)
1995 0 0 0 0 0 0
1996 0 0 0 0 0 0
1997 0 0 0 0 0 0
1998 0 0 2 0 0 0
1999 0 1 1 0 0 0
2000 0 2 2 0 0 0
2001 1 1 2 33.3% 50% 40%
2002 0 2 2 0 0 0
2003 2 4 3 40% 33.3% 36.3%
2004 2 2 3 40% 50% 44.4%
2005 0 2 4 0 0 0
2006 2 2 7 22.2% 50% 30.7%
2007 0 0 0 0 0 0
total 7 16 26 21.2% 30.4% 25.0%

Table 11: Other important methods:
distribution per year
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Abstract

We describe Semantic MEDLINE, a Web
application that manages the results of
PubMed searches by summarizing and visu-
alizing semantic predications extracted from
MEDLINE citations and linking them to
several structured resources to provide an
integrated environment. To demonstrate its
utility, we present a scenario in which we
use Semantic MEDLINE to gain insights
into relaxin, a hormone whose function in
humans has not been fully elucidated. We
propose Semantic MEDLINE as an enabling
information resource and exploration tool
for biomedical scientists, health care profes-
sionals, and consumers. (For access, send e-
mail to trindflesch@mail.nih.gov).

1 Introduction

Traditional information retrieval tools often
challenge users with the large number of items
returned. In the biomedical domain, PubMed
provides access to over 17 million citations from
some 5000 journals in the MEDLINE database.
Sophisticated knowledge management applica-
tions are needed to help the user exploit this mas-
sive amount of text. Similarly, the amount of
structured online health-related information, in-
cluding biomedical vocabularies, ontologies,
clinical and molecular biology knowledge bases,
and model organism annotation databases, is
growing at a rate that outpaces the development
of effective access applications.

Linking the biomedical literature and struc-
tured resources presents new opportunities in
user-driven text mining and knowledge discovery
as well as automatic curation of biomedical re-
sources. We are developing a Web application,
called Semantic MEDLINE, which integrates
PubMed with natural language processing, auto-
matic summarization, visualization, and inter-
connections among multiple sources of relevant

biomedical information. The system is intended
to help health care professionals and consumers
keep abreast of current research as well as assist
researchers in mining the literature to generate
hypotheses. In this paper, we first describe Se-
mantic MEDLINE and its implementation and
then discuss a scenario using the tool to elucidate
the peptide hormone relaxin.

2 Related Work

Natural language processing often underpins ap-
plications in biomedicine, and some systems ex-
tract relations from text (Blaschke et al., 1999;
Friedman et al., 2001; Leroy et al., 2003; Lussier
et al., 2006; Rindflesch and Fiszman, 2003).
Others focus on using the information extracted;
examples include automatic summarization
(McKeown et al., 2001, Fiszman et al., 2004a),
question answering (Demner-Fushman and Lin,
2007; Jacquemart and Zweigenbaum, 2003; Sa-
ble et al., 2005; Sneiderman et al., 2007; Wedg-
wood, 2005), and literature-based knowledge
discovery (Ahlers et al., 2007b; Hristovski et al.,
2006; Srinivasan and Libbus, 2004; Swanson,
1986).

Several recent systems visualize the informa-
tion extracted. Ali Baba (Plake et al., 2006) relies
on concepts co-occurring in documents to repre-
sent text as a graph of interrelated relationships.
Based on co-occurrences of genes in MEDLINE
abstracts, Jensen et al. (2001) construct networks
of genes found relevant in gene expression data
analysis. The Telemakus project (Fuller et al.,
2004) is based on relationships identified by
hand and is meant to enable knowledge discov-
ery through interactive visual maps of linked
concepts among documents. The LitMiner sys-
tem (Feldman et al., 2003) represents several
gene-related relations  extracted with a type of
underspecified natural language processing in a
graph. Finally, the PGViewer tool (Tao et al.,
2005) visualizes genomic information across
both structured and textual databases. Integrating
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the biomedical literature with external databases
and ontologies has also been explored: GoPub-
Med (Doms and Schroeder, 2005) and CiteX-
plore (http://www.ebi.ac.uk/citexplore).

3 Background

At the core of Semantic MEDLINE are two ex-
isting tools: SemRep (Rindflesch and Fiszman,
2003), which extracts semantic predications
(subject-predicate-object triples) from text, and
an automatic summarizer (Fiszman et al., 2004a).

3.1 SemRep

SemRep was developed for the biomedical re-
search literature and uses domain knowledge
provided by the Unified Medical Language Sys-
tem (UMLS) (Lindberg et al., 1993). It repre-
sents textual content with semantic predications
consisting of UMLS Metathesaurus concepts as
arguments and UMLS Semantic Network rela-
tions as predicates. Processing relies on an un-
derspecified syntactic analysis based on the
SPECIALIST Lexicon (McCray et al., 1994) and
MedPost part-of-speech tagger (Smith et al.,
2004). MetaMap (Aronson, 2001) maps simple
noun phrases to Metathesaurus concepts, and
“indicator rules” map syntactic elements to Se-
mantic Network predicates. For example, Sem-
Rep identifies the three semantic predications in
(2) from the sentence fragment in (1):
(1) … dexamethasone is a potent inducer of

multidrug resistance-associated protein ex-
pression in rat hepatocytes …

(2) Dexamethasone STIMULATES Multidrug
Resistance Associated Proteins

Multidrug Resistance-Associated Proteins
PART_OF Rats

Hepatocytes PART_OF Rats
These predications comprise executable

knowledge and are amenable to further automatic
manipulation.

3.2 Automatic Summarization

In the semantic abstraction paradigm of auto-
matic summarization (Hahn and Mani, 2000)
semantic predications serve as representation of
the source text and are manipulated to generate a
salient overview of input text. SemRep predica-
tions from multiple documents provide input to
the Semantic MEDLINE summarizer, which
provides a reduced and focused list of predica-
tions (a “semantic condensate”).

Semantic condensates are based on a user-
selected topic and a summarization perspective
(Treatment of Disease, Substance Interactions,
Diagnosis, or Pharmacogenomics). Each per-
spective is represented as a set of formal con-
straints on the arguments and the predicate of the
input predications.

In all perspectives, the transformation from
the initial list of predications to the reduced list
in the semantic condensate is guided by four
principles, which are informally defined as:
 Relevance: Include predications on the topic

of the summary that conform to the selected
summarization perspective

 Connectivity: Include additional useful
predications on the basis of having shared
arguments with the “relevant” predications

 Novelty: Eliminate, using UMLS hierarchical
information, the predications the user already
knows, identified as those having generic ar-
guments, such as “Pharmaceutical Prepara-
tions” or “Disease”

 Saliency: Eliminate predications with low
frequency of occurrence

4 System Implementation

4.1 Enhancing SemRep

SemRep had originally been developed with an
emphasis on clinical research; it was enhanced
for Semantic MEDLINE to accommodate linking
the research literature to structured resources,
including genetic databases. SemRep now aug-
ments mappings provided by MetaMap with
ABGene (Tanabe et al., 2002) and pattern
matching to recognize and normalize gene names
to Entrez Gene (Maglott et al., 2007). For exam-
ple, MetaMap is unable to map the token “c-Jun”
to a Metathesaurus concept; however, ABGene
identifies it as a gene, and the normalization rou-
tine maps it to the Entrez Gene official symbol
“JUN” and records its gene identifier (3725). The
normalization mechanism uses a pre-computed
index based on Entrez Gene official symbols,
names, and aliases stored in a Berkeley DB table.
The normalization index is updated periodically
and is currently limited to human genes.

4.2 Semantic MEDLINE

Semantic MEDLINE is implemented as a three-
tier, Java EE-based Web application (Fig. 1),
which allows separation of user interface, appli-
cation logic, and data storage. We leverage ma-
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ture open-source technologies to the extent pos-
sible. The application runs in a Tomcat servlet
container on an Apache http server and has been
developed using the Apache Struts Web applica-
tion framework (http://struts.apache.org/). This
encourages the use of the MVC (Model-View-
Controller) paradigm to provide a clean separa-
tion of application model, navigational code, and
page design code through the use of Java Servlet
API.

Fig. 1. Semantic MEDLINE architecture

A MySQL database is used to store Semantic
MEDLINE data, which includes semantic predi-
cations extracted from MEDLINE citations in
addition to UMLS Metathesaurus and Entrez
Gene data. The database tables are pre-populated
from plain text files that contain SemRep output
and Metathesaurus/Entrez Gene data using Perl
scripts. The Hibernate object/relational mapping
(ORM) tool (http://www.hibernate.org/) provides
enhanced database access through database con-
nection pooling and query caching.

Semantic MEDLINE supports PubMed
searching through NCBI’s Entrez Programming
Utilities API (http://eutils.ncbi.nlm.nih.gov/) to
provide real-time access to PubMed records, re-
trieved and manipulated in XML format.

 To visualize the semantic condensates as
graphs in Semantic MEDLINE, we developed a
Flash application using the Adobe Flex frame-
work (http://www.adobe.com/products/flex) and

t h e  F l a r e  v i s u a l i z a t i o n  t o o l k i t
(http://flare.prefuse.org/), the ActionScript exten-
sion of the Prefuse toolkit written in Java. Nodes
in a graph represent arguments in SemRep predi-
cations, and the arcs predicates. We enhanced the
visualization capabilities provided by Flare by
linking the semantic predications in the graph to
external structured biomedical resources.

Arcs are linked to the MEDLINE citations
from which the corresponding predications were
extracted, while nodes are linked to three re-
sources in addition to Entrez Gene: the UMLS
Semantic Navigator (Bodenreider, 2000), Online
Mendelian Inheritance in Man (OMIM) (Hamosh
et al., 2002), and Genetics Home Reference
(GHR) (Mitchell et al., 2004).

Linking to the UMLS Semantic Navigator
uses Metathesaurus concept identifiers (CUI) and
allows the user to view the context of a predica-
tion argument in the UMLS hierarchy. The gene
name normalization procedure discussed above
enables linking to Entrez Gene. OMIM identifi-
ers are extracted from the OMIM morbidmap file
periodically and associated with UMLS Metathe-
saurus concepts in the Semantic MEDLINE da-
tabase, while GHR identifiers are extracted from
GHR XML files periodically and, similarly, as-
sociated with Metathesaurus concepts.

SemRep is not fast enough to accommodate
Semantic MEDLINE in real time. We therefore
run SemRep on the MEDLINE database in an
off-line process and store the extracted predica-
tions in the MySQL database as they become
available. Currently, the database contains
9,224,765 predications extracted from 2,779,669
citations processed by MEDLINE during 2004,
2005, 2006, and 2007.

5 User Interface

The Semantic MEDLINE Web page has four
tabs:  Search, SemRep, Summarization and
Visualization.  The Search tab allows the user to
specify a query and select PubMed limits. Titles
of retrieved citations are displayed in tabular
format, hyperlinked to PubMed. On this page and
throughout, Semantic MEDLINE results can be
saved in XML format for later reuse.

The SemRep tab presents predications ex-
tracted from citations retrieved. The user can
then move to the Summarization tab and select a
topic and perspective. Topics appear in a drop-
down list, sorted by frequency of occurrence in
the underlying SemRep predications.
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Fig 2. A view from the Summarization tab

The user may also choose to disable filtering
based on frequency of occurrence of predications
(saliency filter). Fig. 2 shows a view from the
Summarization tab.

The Visualization tab provides access to the
graph representing the summarized semantic
condensate, which guides navigation through the
documents retrieved by the search. Nodes and
arcs are color coded according to meaning. Node
colors are determined by UMLS semantic groups
(e.g. substances, procedures, disorders) (McCray
et al., 2001). The color legends for the nodes and
arcs are displayed in the Filters tab on the right
pane. Each item in the legends is a check box,
and clicking on one of them shows or hides the
nodes (or arcs) with that semantic type (or predi-
cate) in the graph, providing focused views.

Clicking on a graph element displays infor-
mation in the Information tab on the right pane.
In addition to frequency of occurrence of the cor-
responding argument or predication, information
for nodes includes UMLS concept identifier and
semantic type for the corresponding argument as
well as links (if available) to external resources,
including the UMLS Semantic Navigator, Entrez
Gene, GHR, and OMIM; for arcs, arguments of
the corresponding predication and predicate
name are given. The Citation button enables
viewing the MEDLINE citations from which the
predication was extracted, including PubMed
identifier, title and abstract. The citation sentence
in which the predication is asserted is high-
lighted. (See Fig.3 for some aspects of the visu-
alization)

6 Evaluation

We have so far not conducted a user-centered
evaluation. Accuracy of the predications gener-
ated by SemRep is crucial to overall effective-
ness of Semantic MEDLINE. A summary of
prior evaluations of SemRep and the automatic
summarizer (see Table 1) suggests that average
precision is near 77%. The evaluations conducted
have generally been post-hoc and considered
precision only; one study also assessed recall.

In each study, evaluation was limited to par-
ticular predicates: hypernymic (ISA) relations
(Rindflesch and Fiszman, 2003), gene-disease
etiological relations, such as CAUSE and
PREDISPOSE, (Rindflesch et al., 2003b) and
finally, those relations focusing on pharmacoge-
nomics, such as DISRUPTS and INHIBITS
(Ahlers et al., 2007a).

Evaluation of the automatic summarizer in-
volved assessing accuracy of the predications in
semantic condensates produced from various
summarization perspectives. Two focused on
treatment of disease (Fiszman et al., 2004a;
Fiszman et al., 2004b), one with MEDLINE ci-
tations, and the other with an online medical en-
cyclopedia as source documents. Semantic
condensates regarding drug information were
also evaluated (Fiszman et al., 2006). All
evaluation results are presented in Table 1.

7 Investigating Relaxin

We describe a scenario exploiting the compo-
nents of Semantic MEDLINE to elucidate re-
laxin, a peptide hormone originally connected
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Evaluation type and reference Number of predications Precision Recall
SemRep
Hypernymic (Rindflesch and Fiszman, 2003) 830 83%
Gene-disease (Rindflesch et al., 2003b) 1124 76%
Pharmacogenomics (Ahlers et al., 2007a) 623 73% 55%

Automatic summarizer
Treatment of disease (Fiszman et al., 2004a) 306 66%
Treatment of disease (Fiszman et al., 2004b) 190 87%
Drug information (Fiszman et al., 2006) 189 78%

Total 3262 77%
 Table 1. SemRep/automatic summarization evaluation results

with parturition and more recently found to have
a wider range of physiological implications. On
the Search page, the user issues the query “re-
laxin” to PubMed, with the default dates
01/01/2004 through 12/31/2007 reflecting the
part of MEDLINE currently available for proc-
essing. From PubMed Limits, accessible under
“More options,” “Abstracts” is selected. This
query retrieves 349 citations, which generate
2899 predications (on the SemRep page). On the
Summarization page the user chooses “Substance
Interactions” as Summary Type and “Relaxin” as
Summary Topic. The Saliency Filter (keeping
only the most frequent predications) yields 119
predication tokens.

Summarized predications are displayed on the
Visualization page as a graph, which provides an
informative overview of the characteristics of
relaxin as extracted from the retrieved citations.
The user can also follow links to retrieve more
detailed information on selected aspects of the
graph. Contributing resources are the citations
(linked to graph arcs) that produced the predica-
tions as well as related citations computed by
PubMed. Additional structured knowledge
sources include the UMLS Metathesaurus GHR,
OMIM, and Entrez Gene (linked to graph nodes).

The current graph consists of 21 predication
types with four predicate types: ISA, CAUSES,
AFFECTS, and INTERACTS_WITH. One
predication is disconnected from the main graph
(“Isoproterenol CAUSES myocardium; injury”);
the other 20 are connected with “Relaxin” as the
central concept.

Hierarchical structure in the Metathesaurus,
accessible from graph nodes, provides general
information about the entities that relaxin is in-

volved with. For example, two of these are
shown to be peptides:
 Angiotensin II →  Angiotensins →  peptide

hormone
 Adenylate Cyclase →  Intracellular Signal-

ling Peptides and Proteins → Peptides
Perusal of predicate types in the graph eluci-

dates the major characteristics of relaxin in a
principled way. “Relaxin” is in the following
relationships:
 ISA: Hormones, peptide hormone
 CAUSES: Premature Birth
 AFFECTS: Renal fibrosis, Contraction,

Apoptosis, Hemodynamics
 INTERACTS_WITH: Angiotensin II, Colla-

gen, Progesterone, Adenylate Cyclase, In-
terleukin-11, RXFP1, RXFP2

Concentrating first on the ISA predications (ex-
tracted from 52 citations) provides an overview
of relaxin function. For example, the first citation
accessible from the arc between   “Relaxin” and
“Hormones” indicates an important relaxin func-
tion “…reverses cardiac and renal fibrosis…”
(PMID 15967869), while the fourth (PMID
17266534) is a review article describing other
relaxin characteristics: “…denoted initially as a
hormone of pregnancy…” and “…many other
physiological roles have been identified for re-
laxin, including cardiovascular and neuropeptide
functions and an ability to induce the matrix
metalloproteinases…” Further exploration of the
graph reveals additional aspects of relaxin’s ac-
tivities. For example, clicking on the arc (ISA)
between “Relaxin” and “peptide hormones” re-
veals a cognitive function for relaxin. The title of
the first citation (PMID 16262650) is “Relaxin
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Fig. 3. Visualizing summarization results for Relaxin search, with Relaxin INTERACTS_WITH RXFP2 rela-
tion highlighted.

receptor activation in the basolateral amygdala
impairs memory consolidation. ”

Information associated with the graph allows
the user to pursue some particular aspect of re-
laxin in greater detail. For example, there are five
citations available by clicking on the AFFECTS
arc between “Relaxin” and “Hemodynamics.”
Based on the known effects of relaxin during
pregnancy, some of the basic research reported in
these citations investigates its properties more
generally. One of them (PMID 15198972), for
example, tested “…whether relaxin can modify
systemic arterial hemodynamics and load when
chronically administered to nonpregnant rats,”
while the goal of another (PMID 16172427) was
“to determine the cardiovascular effects of
rhRLX in hypertensive rats.” Another study
(PMID 15271674) suggests practical implica-
tions: “…we speculate about the therapeutic po-

tential of relaxin in renal and cardiovascular
diseases.”

As noted above, SemRep precision is around
80%. A SemRep error in the graph is “relaxin
receptors INTERACTS_WITH Hormones,”
which was incorrectly extracted from two cita-
tions (PMID 14965317 and 15240635). Although
neither asserts this predication, both publications
may nonetheless be of interest regarding relaxin
function. The title of the first is “Relaxin: new
functions for an old peptide” and that of the sec-
ond is “Increased expression of the relaxin re-
ceptor (LGR7) in human endometrium during the
secretory phase of the menstrual cycle.”

The graph also serves as a guide to investi-
gating the underlying mechanisms of relaxin.
Interaction with two genes, RXFP1 and RXFP2,
is shown. The title of one of the citations (PMID
15649866) that generated the predication assert-
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ing interaction with RXFP2 confirms that these
are the two major receptors for relaxin: “Multiple
binding sites revealed by interaction of relaxin
family peptides with native and chimeric relaxin
family peptide receptors 1 and 2 (LGR7 and
LGR8).”

Further exploration of RXFP2 is possible in
Entrez Gene, which is accessible through a direct
link from the RXFP2 node. Entrez Gene provides
a wealth of technical information about this gene
and its associated protein, including aliases
(LGR8; GREAT; GPR106; INSL3R; LGR8.1;
RXFPR2) and a brief summary. The functional
information in the summary is augmented by
Gene Ontology annotations and GeneRIFs (gene
references into function), which are curated de-
scriptive phrases culled from relevant MEDLINE
citations. Finally, Entrez Gene provides links to a
large number of structured knowledge sources,
such as HGNC (HUGO Gene Nomenclature
Committee) and KEGG (Kyoto Encyclopedia of
Genes and Genomes).

Fig. 3 shows the visualization for the Relaxin
search. One of the citations from which the
predication “Relaxin INTERACTS_WITH
RXFP2” is generated (PMID 15649866) is dis-
played, with the sentence that generates the
predication highlighted.

8 Conclusion

We discussed the Semantic MEDLINE Web ap-
plication, which helps PubMed users manage
search results based on semantic natural lan-
guage processing, automatic summarization, and
visualization. To show its utility, we used the
application as a guide in examining the peptide
hormone relaxin, whose functions and mecha-
nisms are not fully understood.

We are currently in the process of semanti-
cally analyzing the MEDLINE database and
scaling the system without compromising per-
formance. As the knowledge sources we rely on,
including the UMLS and Entrez Gene, are con-
tinually updated, one challenge is to keep rele-
vant data up-to-date. In addition, a large number
of citations are added to MEDLINE daily, and
these need to be made available through Seman-
tic MEDLINE. At this time, we are putting in
place procedures to automate data updating.

We are also exploring the extension of Se-
mantic MEDLINE to supporting additional
health-related textual databases, such as Clini-
calTrials.gov. Finally, we plan to formally evalu-
ate the user interface, which will no doubt lead to

reassessing some of our design decisions and
ultimate improvements in overall effectiveness of
the application.
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Abstract

Because of the intrinsic complexity of nat-
ural language, automatically extracting ac-
curate information from text remains a
challenge. We have applied rich feature
vectors derived from dependency graphs
to predict protein-protein interactions using
machine learning techniques. We present
the first extensive analysis of applying fea-
ture selection in this domain, and show that
it can produce more cost-effective mod-
els. For the first time, our technique was
also evaluated on several large-scale cross-
dataset experiments, which offers a more
realistic view on model performance.
During benchmarking, we encountered
several fundamental problems hindering
comparability with other methods. We
present a set of practical guidelines to set
up a meaningful evaluation.
Finally, we have analysed the feature sets
from our experiments before and after fea-
ture selection, and evaluated the contribu-
tion of both lexical and syntactic informa-
tion to our method. The gained insight
will be useful to develop better performing
methods in this domain.

1 Introduction

Results of genetic studies are published on a daily
basis and appear in scientific articles, accessible
through online literature services like PubMed
(http://pubmed.gov). Over 17 million citations
are currently available through PubMed and this
resource is still growing exponentially. Fully
automated systems that extract biological know-
ledge from text have thus become a necessity.

Many approaches have been proposed to ex-
tract biological information from research arti-

cles. The first methods mainly relied on co-
occurrence of biological entities. They would
classify two proteins as interacting when men-
tioned in the same sentence, or when their co-
occurrence in an abstract is statistically overrepre-
sented (Ding et al., 2002; Rebholz-Schuhmann et
al., 2007). Typically, a co-occurrence based tech-
nique exhibits high recall, but low precision.

A second important set of techniques apply pat-
terns or rules which are usually hand-crafted, al-
lowing the method to obtain high precision while
recall typically drops. The RelEx system uses
three rules in combination with information de-
rived from dependency graphs (Fundel et al.,
2007). Dependency parsing uses graph topology
to represent syntactic relations between individ-
ual words of the sentence (Figure 1).

Finally, machine learning techniques use train-
ing data to construct a model, which is then ap-
plied to a test set to predict protein-protein inter-
actions (PPIs). To extract meaningful features for
the model construction, dependency parsing is of-
ten used. Both global context, such as the root of
the tree, and local context, such as the parent of
a particular node, can be taken into account (Ka-
trenko and Adriaans, 2007). Erkan et al. (2007)
extract sentences where two proteins co-occur
with an interaction word. Extracted features in-
clude the interaction words themselves and the
parents of the proteins in the dependency graph.
Kim et al. (2008) present a walk kernel, consist-
ing of patterns of two vertices and their interme-
diate edge (vertex-walk or v-walk), as well as se-
quences of two edges and their common vertex
(edge-walk or e-walk), extracted from the short-
est path between two proteins in the graph. They
also conclude that a feature-based approach per-
formans better than direct kernel techniques. A
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Figure 1: The dependency graph for the sentence ‘The
results show that myogenin heterodimerizes with E12
and E47 in vivo, but it does not homodimerize to a
measurable extent’

more reduced feature set is used by Fayruzov et
al. (2008), taking mainly syntactic information
into account. Finally, deep syntactic parsing can
be combined with a shallow dependency parser to
create a more accurate model (Saetre et al., 2008).

A hybrid approach is also possible, with hand-
crafted rules forming the basis for different ker-
nels, which are then aggregated by linear combi-
nation (Giuliano et al., 2006).

The application of feature selection in the do-
main of natural language processing is relatively
new. Jiang and Zhai (2007) have investigated
the type of features that are potentially useful for
relation extraction in general. Feature selection
techniques have also been employed for the task
of text classification (Wang et al., 2008). How-
ever, to the best of our knowledge, this paper
presents the first study of applying rich feature
vectors in combination with feature selection for
protein-protein interaction extraction. Our study
using fully automated feature selection methods
is clearly different to previous work concerning
manually selected varying sets of features (Ka-
trenko and Adriaans, 2007). Furthermore, it is the
first time that a broad cross-corpus study has been
conducted, offering an evaluation in a more realis-
tic setup than cross-validation on a single dataset.

2 Benchmarking protein-protein
interaction extraction techniques

While studying state-of-the art systems that ex-
tract PPIs from text, it became clear that this field
is struggling with a heterogeneous collection of
datasets and evaluation methods (Van Landeghem

et al., 2008). In this section we will analyse these
problems and introduce practical guidelines in or-
der to improve comparability between extraction
methods in this domain.

2.1 Benchmark datasets

The development of standard benchmarking
datasets is a step forward towards meaningful
comparisons between different information ex-
traction techniques. For genetic interaction ex-
traction, such corpora include AIMed (Bunescu
et al., 2005), Bioinfer (Pyysalo et al., 2007),
HPRD50 (Fundel et al., 2007), IEPA (Ding et al.,
2002) and LLL (Nedellec, 2005). These corpora
all have slightly different scopes, ranging from
protein-gene interactions concerned with Basili-
cus subtilis transcription to human protein-protein
interactions. Recently, conversion software has
been introduced to convert these different datasets
into a common data format, forming a rich cor-
pus with a broad range of genetic interactions
(Pyysalo et al., 2008). Another important re-
source is the Biocreative initiative, which aims
to provide a framework for the construction of
suitable ‘Gold standard’ datasets, applicable for
text-mining systems in biology (Hirschman et al.,
2005). Finally, the Genia corpus can be useful for
benchmarking various subtasks of text-mining al-
gorithms (Kim et al., 2008). It has been shown
by Pyysalo et al. (2008) that the choice of bench-
mark dataset can drastically influence extraction
performance. It is therefor advisable to evaluate
algorithms on a collection of different corpora.

2.2 Instance extraction

Even when evaluating on the same dataset, dif-
ferent preprocessing steps can yield a varying
set of instances. Homodimers, which are self-
interacting proteins, are sometimes discarded
from the dataset. A similar problem is raised by
nested annotations in the corpus which may or
may not be discarded, influencing the final num-
ber of instances in the dataset. To construct neg-
ative examples, the closed world assumption is
usually adapted, stating that no interaction exists
between two entities when there is no annotated
evidence. We believe it is best to always clearly
indicate which rules were applied for instance ex-
traction, and to report on the number of retrieved
instances.
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2.3 The extraction task

For the extraction of protein-protein interactions,
it is often assumed that the proteins in the text
are known a priori. However, when performing
the named entity recognition (NER) step auto-
matically, errors will propagate and cause a drop
in performance. We believe that the NER step
is a different subtask which should be examined
and evaluated separately. Similarly, parse trees
can be automatically constructed or manually ver-
ified. In our opinion, parsing input sentences in a
fully-automated fashion is necessary to provide a
scalable method, applicable to large datasets.

2.4 Cross validation

Ideally, abstracts for the testing phase should be
completely hidden during training. Saetre et al.
(2008) pointed out that some evaluations exhibit
an artificial boost of performance by using fea-
tures from the same sentence in both training
and testing steps of the machine learning process.
This effect is caused by the fact that one sentence
in the dataset yields C2

n distinct instances, where
n is the number of proteins in the sentence and
each instance represents a pairwise combination
of proteins. It is therefore best to modify the reg-
ular cross-validation approach to include all in-
stances from one sentence in the same fold, or
even define folds consisting of complete abstracts.

2.5 Counting true positives

Finally, the definition of a true positive is am-
biguous in the text-mining domain. Each pair of
proteins is usually considered as an individual in-
stance, evaluated independently of others. How-
ever, two distinct instances may be expressing the
same interaction. Thus, to extract a true protein-
protein interaction, retrieving one such instance
suffices. The latter evaluation technique naturally
exhibits higher recall. Even though this technique
is useful for benchmarking complete information
retrieval systems, we feel that instance-level eval-
uation is more representative for the task of ex-
tracting interactions between named entities from
individual sentences.

3 Methods

In our study, we used all the datasets that have
been converted to a common data format by
Pyysalo et al. (2008), with the exception of Bioin-
fer. This corpus is relatively new, and contains

dataset positive negative total
AIMed 1000 4670 5670

HPRD50 163 270 433
IEPA 335 482 817
LLL 164 166 330
All 1662 5588 7250

Table 1: Number of instances in the four corpora

extensive annotations of proteins and interactions.
For example, the words alpha 5 integrins are an-
notated as being a protein reference in the con-
struct alpha 5 and beta 1 integrins. Our extrac-
tion method assumes a protein is mentioned as a
contiguous stream of tokens, which are replaced
by the token PROT for all training and testing in-
stances in the dataset. This is why we exclude
Bioinfer from further analysis and focus on the
other four corpora: AIMed, HPRD5, IEPA and
LLL. However, we plan on resolving these issues
in the future, as well as considering more corpora
to test our method on, such as theBiocreative and
Genia datasets.

3.1 Dataset preprocessing

In preparing the datasets we excluded homod-
imers, as not all corpora support homodimer an-
notation. Sentences with at least two co-occurring
proteins are selected for further processing, cre-
ating a distinct instance in the dataset for each
pairwise combination of proteins in the sentence.
Nested annotations are taken into consideration in
all datasets. We apply the closed-world assump-
tion to create negative instances, assuming there
is no interaction between two proteins when there
is no annotated evidence. For AIMed, the ab-
stracts included in the corpus that contain no in-
teractions are also taken into account. The result-
ing numbers of positive and negative instances are
shown in Table 1.

3.2 Extracting rich feature vectors

Our feature extraction method uses syntactic and
lexical patterns derived from the shortest path
between two proteins in the dependency graph.
These graphs are built automatically using the
Stanford parser (de Marneffe et al., 2006). The
shortest path in the graph is scanned for all sub-
sequent vertices and their intermediate edge (v-
walk), as well as all subsequent edges and their
common vertex (e-walk), taking into account both
syntactic and lexical properties of the walks (Ta-
ble 2, upper four rows). To traverse this path,
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Type Features

Lex v-walk heterodimer nsubj PROT,
heterodimer prep PROT

Syn v-walk VBZ nsubj PROT,
VBZ prep PROT

Lex e-walk nsubj heterodimer prep
Syn e-walk nsubj VBZ prep

BOW

PROT, a, and, but, doe, extent,
heterodimer, homodimer, in,
it, measur, not, result, show,

that, the, to, vivo, with
Lex root heterodimer
Syn root VBZ

Table 2: Syntactic and lexical features for the pair of
proteins (Myogenin, E12) from Figure 1

we go up from the first protein to the root by in-
verting the original direction of the edges, and go
down again from the root to the second protein.
To improve generalization of lexical information
by the classifier, we apply the Porter stemming
algorithm (Porter, 1980). Protein names are sub-
stituted by the token PROT to enable the classi-
fier to learn interaction patterns, disregarding the
specific proteins involved. The walk features are
augmented with a bag-of-words (BOW) approach
in combination with the stemming algorithm, to
capture critical information outside the shortest
path of the dependency graph (Table 2, fifth row).
This bag-of-words approach will give rise to quite
some irrelevant features, which is one of the rea-
sons why we will apply fully automated feature
selection techniques after feature extraction. Syn-
tactic and lexical information from the root node
are stored as separate features (Table 2, last two
rows). Finally there is a numeric feature indicat-
ing the length of the shortest path.

All features are encoded by defining one spe-
cific numeric feature for each syntactic or lexical
pattern, storing the number of times that pattern
occurs in the sentence or its derived dependency
graph. This encoding technique results in sparse
feature vectors and high-dimensional feature sets.
For example, when using cross-validation on the
AIMed dataset, which is the richest corpus of the
four, over 14.000 numeric features are extracted
from the training set.

3.3 Classification model

For our experiments, we made use of a linear sup-
port vector machine classifier (SVM, Boser et al.
(1992)). The SVM is a data-driven method for
solving two-class classification tasks, based on
the concept of large margins, and is known to per-

form well in high-dimensional spaces (Saeys et
al., 2007). We used the Weka1 implementation of
LibSVM, with an internal 5-fold cross-validation
loop on the training portion of the data to deter-
mine the optimal C-parameter.

3.4 Feature selection

Feature selection (FS) techniques are a class of
dimensionality reduction techniques that aim at
identifying a subset of the most relevant features
from a potentially large initial set of features.
In contrast to other reduction techniques such as
methods based on projection, FS techniques only
select a subset of the original set of features, pre-
serving the original semantics.

Advantages of applying feature selection in-
clude its potential to improve generalization per-
formance (by avoiding overfitting), faster and
more cost-effective models and gaining a deeper
insight into the underlying processes that gener-
ated the data. Depending on the interaction with
the model, three classes of FS techniques can
be defined (Guyon and Elisseeff, 2003). In this
work, we will focus on the class of filter meth-
ods, which perform feature selection by looking
only at the intrinsic properties of the data, thus be-
ing independent of the classification model used
afterwards. Advantages of this class of meth-
ods include their scalability to high-dimensional
datasets (such as the ones we deal with in this
work) and their speed. An in-depth analysis of
the different classes of FS techniques, as well as
their application in bioinformatics can be found
in (Saeys et al., 2007).

The filter method we used in this work is based
on the information-theoretic concept of gain ra-
tio. A given set of training patterns S can be re-
garded as a distribution over the class labels, and
its entropy can be calculated as

H(S) = −
s∑

i=1

p(ci) log2 p(ci)

where p(ci) denotes the proportion of patterns in
S belonging to class ci. The information gain
IG(S, D) then represents the expected reduction
in entropy (uncertainty) when splitting on a fea-
ture D, and can be calculated as

IG(S, D) = H(S) − H(S|D)

1Available at http://www.cs.waikato.ac.nz/
ml/weka/
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= H(S) −
∑

j∈V (D)

|Sj |
|S| H(Sj)

where V (D) denotes the possible values for fea-
ture D and Sj is the subset of S for which feature
D has value j.
To adjust the bias towards features with a larger
number of possible values, the information gain
should be scaled by the entropy of S with respect
to the values of feature D, resulting in the gain
ratio GR(S, D):

GR(S, D) =
IG(S, D)

−∑
j∈V (D)

|Sj |
|S| log2

|Sj |
|S|

Applying the gain ratio to every feature in the
dataset gives an estimate of the feature’s impor-
tance, and all features can be ranked from most
influential to least influential by sorting their gain
ratios. The top k features can then be used to con-
struct a simplified classifier.

3.5 Evaluation strategy

For benchmarking our PPI extraction method, we
use instance-level evaluation. We have applied
regular 10-fold cross-validation (Instance CV), as
well as the modified version of 10-fold cross vali-
dation, with folds consisting of complete abstracts
(Abstract CV). We use the gold-standard protein
annotations which are available for all corpora.
As not all datasets provide annotation of the di-
rection of interactions, we consider interactions
to be symmetric. As a performance measure,
the F-measure is used, which is common prac-
tice in this domain. It is defined as the harmonic
mean between precision (p), which expresses how
many of the predictions are correct, and recall (r),
which expresses how many of the true interac-
tions are correctly predicted.

In addition to training and testing on a sin-
gle dataset using CV, we have conducted a large-
scale evaluation using all four corpora. The ra-
tionale for this approach was to analyse the scala-
bility of our approach. Most datasets have been
constructed using specific keywords (e.g. LLL
: Bacillus subtilis transcription), which causes a
bias in the classifier towards this particular do-
main. However, when using features from three
different datasets and testing on an independent
dataset, we obtain a more diverse model, which
is more representative for the real world task of
extracting interactions from various PubMed ab-
stracts. We conducted four experiments, each

Corpus p r F

In
st

.C
V AIMed 0.66 0.58 0.62

HPRD50 0.71 0.71 0.71
IEPA 0.74 0.69 0.71
LLL 0.79 0.84 0.82

A
bs

tr.
C

V AIMed 0.49 0.44 0.46
HPRD50 0.60 0.51 0.55

IEPA 0.64 0.70 0.67
LLL 0.72 0.73 0.73

C
o-

oc
c. AIMed 0.18 1.00 0.30

HPRD50 0.38 1.00 0.55
IEPA 0.41 1.00 0.58
LLL 0.50 1.00 0.66

Table 3: Evaluation on the four individual datasets

time using a different corpus as test set, while in-
cluding the other three in the training data. To the
best of our knowledge, this is the first time such
a large-scale cross-dataset comparison has been
conducted.

4 Results

4.1 Individual dataset evaluation

As a baseline, we evaluated our method on all
datasets separately, using 10-fold instance CV
(Table 3, first row). We then evaluated the method
using the modified version of 10-fold CV, clus-
tering instances originating from the same sen-
tence in the same fold (Table 3, second row).
For the evaluation on AIMed, the original ab-
stract splits were used (Bunescu et al., 2005).
We noticed an artificial boost of performance of
up to 0.16 F-measure when using instance CV.
In both experiments we find a significant differ-
ence in F-measure between the best results (LLL)
and the worst results (AIMed), ranging between
0.20 and 0.27 F-measure. To demonstrate the
inherent differences between the four individual
datasets, we have included the results for a sim-
ple co-occurrence based technique, assigning a

Method p r F

A
IM

ed

ab
st

r.
cv

Rich features 0.49 0.44 0.46
Fundel et al. (2007) 0.40 0.50 0.44

Giuliano et al. (2006) 0.61 0.57 0.59
Saetre et al. (2008) 0.64 0.44 0.52

A
IM

ed

in
st

.c
v

Rich features 0.66 0.58 0.62
Erkan et al. (2007) 0.60 0.61 0.60

Fayruzov et al. (2008) 0.41 0.50 0.45
Katrenko and Adriaans (2007) 0.45 0.68 0.54

Saetre et al. (2008) 0.78 0.63 0.70

L
L

L

in
st

.c
v Rich features 0.79 0.84 0.82

Fayruzov et al. (2008) 0.72 0.86 0.78
Fundel et al. (2007) 0.85 0.79 0.82

Table 4: Comparison to existing techniques for indi-
vidual datasets.
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features p r F syn lex bow

A
IM

ed
14.000 0.49 0.44 0.46 15 61 20
10.000 0.48 0.43 0.45 16 61 19
7.500 0.41 0.41 0.41 17 61 18
5.000 0.44 0.38 0.41 16 59 21

H
PR

D
50

2.600 0.60 0.51 0.55 21 44 29
1.500 0.51 0.60 0.55 23 48 23
750 0.57 0.61 0.59 23 52 20
500 0.61 0.62 0.61 23 45 28
250 0.58 0.36 0.45 23 51 23

IE
PA

6.900 0.64 0.70 0.67 17 49 30
5.000 0.61 0.71 0.65 14 43 38
2.500 0.63 0.75 0.68 22 51 21
1.000 0.54 0.66 0.60 20 42 34

L
L

L

1.600 0.72 0.73 0.73 22 44 28
800 0.75 0.71 0.73 27 48 19
400 0.68 0.77 0.73 33 44 18
200 0.54 0.66 0.60 35 58 3

Table 5: FS on individual datasets, showing the distri-
bution of the three most important type of features in
percentages (syntactic walks, lexical walks and BOW-
features). Evaluation using Abstract CV.

true interaction between each co-occurring pair of
proteins. These results exhibit a difference in F-
measure of up to 0.36 between AIMed and LLL.

Subsequently, we compared our method us-
ing rich feature vectors to other, recently intro-
duced PPI extraction techniques. To allow for a
fair comparison, we only consider studies using a
similar evaluation setup. The results of this anal-
ysis are shown in Table 4. We observe that our
method is comparable to state-of-the art perfor-
mance, and that it achieves particularly good re-
sults when using regular CV on the LLL dataset.

4.1.1 Feature selection
Because our extraction method results in high-
dimensional, sparse feature vectors, we have in-
vestigated the usability of feature selection tech-
niques to improve performance and obtain faster
models. The results of these experiments on the
individual datasets are shown in Table 5. On
HPRD50, recall could be increased with 0.11 re-
sulting in an increase in F-measure of 0.06, while
less than 20% of the features were kept. For IEPA
and LLL, F-measure remains stable when using
respectively 36% and 25% of all available fea-
tures. These results clearly indicate that FS can
reduce the feature set considerably without loss
of performance. For the more extensive dataset
AIMed, the number of extracted features and
training instances are multiplied by a factor 10 in
comparison to the other datasets, which induces
greater complexity. On AIMed, we can filter out
29% of all features while still obtaining the same

test features p r F syn lex bow

A
IM

ed

11.300 0.27 0.67 0.38 12 57 28
10.000 0.27 0.69 0.39 12 55 28
7.500 0.28 0.65 0.39 13 60 24
5.000 0.27 0.60 0.37 14 61 21

H
PR

D
50 26.100 0.62 0.52 0.57 9 67 21

20.000 0.69 0.51 0.59 9 66 21
15.000 0.76 0.47 0.58 9 66 22
10.000 0.80 0.25 0.38 7 69 20

IE
PA

22.500 0.87 0.27 0.41 10 67 21
20.000 0.84 0.24 0.38 9 66 21
15.000 0.84 0.23 0.36 10 66 22
10.000 0.71 0.16 0.25 11 63 23

L
L

L

26.700 0.54 0.32 0.40 9 67 21
25.000 0.51 0.33 0.40 8 66 22
20.000 0.43 0.21 0.28 9 66 22
15.000 0.53 0.28 0.37 9 66 22
10.000 0.93 0.15 0.26 7 69 20

Table 6: FS on cross-dataset experiments, showing the
distribution of the three most important type of fea-
tures in percentages (syntactic walks, lexical walks
and BOW-features). Evaluation using three datasets
as training data and one dataset as test set.

performance. If we filter out 64%, keeping only
5000 features of the original set, the F-measure
drops with 0.05. However, the time necessary to
build the classifier for all ten folds is reduced from
6 hours and 5 minutes to 3 hours and 22 min-
utes, including the FS step itself. This illustrates
the usefulness of feature selection to create more
cost-effective models.

Analysing the distribution of feature types be-
fore and after FS, we see that in general, syntactic
features take up a slightly bigger proportion after
filtering, usually accompanied by a reduction of
word features (Table 5, last three columns). How-
ever, lexical information still takes up the biggest
part of the feature set.

4.2 Cross dataset experiments
To assess the performance of our method in a
more realistic setup, we have conducted large-
scale cross-datasets experiments. For this pur-
pose, we used one dataset for testing, and the
other three for training, which will cause less bias
to a specific training set. These experiments pro-
vide an estimate of the out-of-domain general-
ization ability, by analysing the artificial boost
in performance when only performing a single-
domain evaluation. It is the first time such a broad
cross-corpus study is conducted.

The results of our experiments are shown in Ta-
ble 6. We see that testing on HPRD50 achieves
the best performance, with 0.62 precision, 0.52
recall and 0.57 F-measure. For this corpus, the
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test set Features p r F

A
IM

ed all 0.27 0.67 0.38
syntactic 0.28 0.58 0.37
lexical 0.24 0.72 0.36

H
PR

D
50 all 0.62 0.52 0.57

syntactic 0.70 0.48 0.57
lexical 0.60 0.50 0.54

IE
PA

all 0.87 0.27 0.41
syntactic 0.62 0.26 0.37
lexical 0.82 0.17 0.29

L
L

L all 0.54 0.32 0.40
syntactic 0.64 0.30 0.41
lexical 0.47 0.28 0.35

Table 7: Cross-dataset experiments using lexical infor-
mation, syntactic information or both

performance is similar to the single-dataset eval-
uation. However, we observe a large drop in per-
formance when testing on IEPA and LLL, and to
a smaller extent, on AIMed. This shows that stud-
ies using single-dataset evaluations, are biased to-
wards the specific properties of the corpus used. It
confirms the need for extrinsic evaluations of text
mining tools as stated by Caporaso et al. (2008).

The cross-dataset experiments give rise to high-
dimensional datasets, with up to 26.700 features.
We have applied FS in order to filter out irrelevant
features, and obtain faster models with less risk of
overfitting. The results for all four test cases can
be found in Table 6. In most cases, we are able
to reduce the feature set significantly without loss
of performance. Testing on HPRD50, we achieve
a gain in precision of 0.14 while only sacrificing
0.05 recall, when the feature set is reduced to 57%
of its original size. Model construction with the
entire feature set took one hour and 36 minutes,
while the classifier was built after 57 minutes us-
ing the reduced feature set. The FS step itself only
took an additional 5 minutes. This clearly shows
that FS can lead to faster and more cost-effective
models.

Testing on HPRD50, precision can rise to 0.84
when even more features are filtered, though re-
call starts dropping at this point. Nevertheless this
faster model may be preferred by a user who only
wants to extract highly reliable data. On LLL we
also obtain much higher precision when sacrific-
ing recall. When using AIMed as test set, we are
able to maintain good results when more than half
of the features are filtered out.

4.2.1 Contribution of lexical and syntactic
information

In order to gain deeper insight into the importance
of certain features, we performed a statistical
analysis of the contribution of different categories
of features (Table 6, last three columns). In gen-
eral, we saw that 85-90 % of the features consist
of lexical information (lexical walks and BOW
features combined). This distribution is roughly
maintained after feature selection. This indicates
that both lexical and syntactic information are im-
portant when extracting protein-protein interac-
tions. We validated this assumption by running
the cross-dataset experiments again, once with
only lexical information, and once with only syn-
tactic information. The results are shown in Table
7, demonstrating that the global performance of
both lexical and syntactic approaches are similar
to each other. However, when using only syntac-
tic information and comparing this approach to
the full feature set, a gain of precision of up to
0.10 can be achieved (HPRD50, LLL), while pro-
ducing a similar F-score. The only exception to
this general rule seems to be when IEPA is used as
testing set. In this particular case, high precision
is achieved by mainly lexical information. How-
ever, it is clear that a purely syntactic approach
can produce satisfying performance, while using
only 10-15 % of the original feature set. These
results support the hypothesis stated by Fayruzov
et al. (2008) that using only syntactic information
leads to classifiers that are able to perform well,
while being independent of a specific lexicon. To
improve recall however, including lexical infor-
mation might still be useful.

5 Conclusions and future work

We have developed a technique to extract protein-
protein interactions using rich feature vectors and
machine learning techniques. For the extraction
of relevant features, semantic information from
dependency graphs was used, as well as lexi-
cal information from the sentence expressing an
interaction. We have discussed some important
issues for benchmarking extraction techniques,
and have indicated practical guidelines for set-
ting up a meaningful evaluation. As an important
novelty, we have conducted cross-dataset exper-
iments which offer a more realistic view on the
performance of our method. Finally, for the first
time in this domain, we have applied feature se-
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lection techniques to show these can improve the
generalization performance and lead to faster and
more cost-effective models. Analysing the feature
sets from our experiments before and after feature
selection, we have shown the importance of com-
bining both lexical and syntactic information for
the extraction of interactions from text.

Beyond the approach of rich feature vectors
and feature selection, we would like to use the in-
sight gained from these experiments to develop
more specific kernel-based approaches for the ex-
traction of protein-protein interactions from text,
building further on relation extraction kernels al-
ready developed (Kim et al., 2008).
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Abstract 

The techniques developed within the field 

of Biomedical Text Mining (BioTM) have 

been mainly tested and evaluated over a set 

of known corpora built by a few researchers 

with a specific goal or to support scientific 

competitions. The generalized use of 

BioTM software therefore requires that an 

enlarged set of corpora is made available 

covering a wider range of biomedical re-

search topics. This work proposes a soft-

ware tool that facilitates the task of building 

a BioTM corpus by providing a user-

friendly and interoperable tool that allows 

both automatic and manual annotation of 

biomedical documents (supporting both ab-

stracts and full text). This tool is also inte-

grated in a more comprehensive BioTM 

framework. 

1 Introduction 

Semantic annotation, sometimes called concept 

matching in the biomedical literature, is the 

process of mapping phrases within a source text 

to distinct concepts defined by domain experts.  

Traditionally, such annotation was exclusively 

manual. However, the growing scientific publica-

tion rate, the continuous evolving of biological 

terminology and the more complex analysis re-

quirements brought by systems-level approaches 

urge for automated curation processes 

(Ananiadou et al., 2006; Natarajan et al., 2005; 

Erhardt et al., 2006). 

The research field of BioTM emerged from 

this need and has been providing for helpful 

computerised approaches. In particular, Bio-

medical Named Entity Recognition (BioNER), 

the field that deals with the unambiguous identi-

fication of named entities (such as names of 

genes, proteins, gene products, organisms, drugs, 

chemical compounds, etc.), is the key step for 

accessing and integrating the information stored 

in the literature (Zweigenbaum et al., 2007; Jen-

sen et al., 2006; Natarajan et al., 2005). 

Techniques for term identification are becom-

ing widely used in biomedical research. Lexical 

resources (Fundel and Zimmer, 2006; Mukherjea 

et al., 2004; Kou et al., 2005; Muller et al., 2004) 

and rule-based systems (Hu et al., 2005; Hanisch 

et al., 2005) deliver some degree of automation. 

On the other hand, Machine Learning contribu-

tions (Okazaki and Ananiadou, 2006; Kou et al., 

2005; Shi and Campagne, 2005; Yeganova et al., 

2004; Sun et al., 2006) address issues like term 

novelty, synonymy (including term variants and 

abbreviations) and homonymy.  

Despite current achievements, technique de-

velopment and usage are constrained by the lim-

ited availability of high-quality training corpora. 

In fact, at this point, biomedical annotated cor-

pora represent a bottleneck in the development of 

BioTM software. Existing approaches cannot be 

extended without the production of corpora, con-

veniently validated by domain experts.  
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In this work, a contribution to tackle this mat-

ter is provided, with the development of a novel 

interoperable and user-friendly software applica-

tion that supports manual curation of biomedical 

documents. The proposed software implements a 

workflow where a biomedical corpus is auto-

matically annotated based on a specialised dic-

tionary. The discovered biomedical concept 

output is then directed into a manual curation 

stage, and finally a high-quality biomedical an-

notated corpus is made available. 

Both the automatic and manual annotation 

tasks are envisioned to be flexible, allowing the 

tagging of many biological entity classes and the 

creation and use of different dictionaries, ex-

tracted from major biomedical databases. Al-

though we have our own annotation schema, the 

software is expected to be useful within other 

domains which have domain-specific resources 

available. In other words, if a new annotation 

schema is defined and the dictionary builders 

cope with it, both automatic and manual annota-

tion are granted. 

The remainder of this paper starts by placing 

annotation tools within BioTM scenario, estab-

lishing basic requirements and identifying related 

work. The enumeration of the software develop-

ment aims follows. Next, the main features of the 

proposed software application are discussed, 

namely the creation of particular dictionaries, the 

default annotation schema, the automatic annota-

tion module and user-friendly manual annotation 

environment. Final remarks provide an overall 

perspective of the work and identify new fea-

tures.  

2 The Role of Annotation Tools in 
BioTM 

Emerging efforts in BioTM agree on considering 

manually annotated biomedical corpora as price-

less resources (Kim et al., 2008; Kim et al., 

2003). Many researchers openly contribute and 

disseminate annotated corpora such as GENIA 

(Kim et al., 2003), PennBioIE (Kulick S et al., 

2004) or GENETAG (Tanabe et al., 2005). Also, 

there are datasets coming from knowledgeable 

challenges such as BioCreAtive
1
. Yet, adaptation 

of available resources to new problems (real-

world scenarios) usually requires substantial ef-

forts, since they have been designed to meet a 

particular aim and tend not to comply with any 

common data format.  

                                                           
1 http://biocreative.sourceforge.net/ 

The construction of a new corpus implies the 

laborious and time-consuming manual collection 

and annotation of a significant number (typically 

hundreds) of documents. It is not straightforward 

to gather, organise and annotate a valuable set of 

documents. On the one hand, the set of docu-

ments has to be representative of the domain it is 

supposed to describe, i.e., it has to embrace the 

terminological trends that characterise the do-

main, while establishing a contrast towards other 

domains. On the other hand, annotation has to be 

as comprehensible and consensual as possible. 

According to a given annotation schema, differ-

ent annotators should be able to agree, producing 

similar outputs. Otherwise, either the annotation 

schema is not able to reflect the domain conven-

iently, or the domain requires further annotation 

rules that prevent contradicting or misleading 

outputs.  

It is not reasonable to acknowledge the need 

for corpora without devising computational an-

notation tools. There exist several manual text 

annotation tools for creating annotated corpora. 

General-purpose annotation tools such as Cal-

listo
2
, WordFreak

3
(Morton and LaCivita, 2003), 

the General Architecture for Text Engineering 

(GATE
4
) (Cunningham et al., 2002) and 

MMAX2
5
 are references in the area. However, 

these tools present limited flexibility and its ‘out 

of the box’ usage often demands expert pro-

gramming skills.  

Although offering customisable tasks (for ex-

ample, a simple annotation schema can be de-

fined with an XML DTD), these tools do not 

offer any support for biology-related natural lan-

guage processing. Dedicated tools such as POS 

taggers, parsers and named entity recognisers are 

becoming widely available and it would be desir-

able to include them into annotation tools.  

Tools should support semantic annotation by 

hand and some form of automatic annotation (us-

ing available resources such as dictionaries, on-

tologies, templates or user-specified rules). 

Moreover, by supporting both syntactic and se-

mantic annotation, a wide variety of annotation 

schemas can be defined and used. New annota-

tion tasks can be built without writing new soft-

ware or creating specialised configuration files.  

3 Development Aims  

                                                           
2 http://callisto.mitre.org/ 
3 http://wordfreak.sourceforge.net/ 
4 http://gate.ac.uk/ 
5 http://mmax.eml-research.de/ 
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The development of our biomedical annotation 

tools was driven by two important needs, essen-

tial for creating useful text corpora: i) accuracy 

and consistency of the annotations, and ii) usabil-

ity of the data. The major aim of this work is 

therefore two-fold: i) to provide a friendly envi-

ronment for curators and ii) to take advantage of 

the multiple informational resources available, 

enhancing the annotation process as much as 

possible.  

In this sense, the baseline requirements of our 

tools were interoperability with other 

tools/modules and flexibility in terms of annota-

tion schemas and data exchange formats. Anno-

tation schemas should be made as general as 

possible, covering major biomedical classes and 

thus, enabling (partial) schema interchange. 

Also, document annotation may comprise both 

syntactic (POS information) and semantic anno-

tations (BioNER information).  

The main aim of the annotation environment 

presented here is to provide common text proc-

essing modules and to enable automatic and 

manual document annotation. The text process-

ing pipeline was modelled with minimal assump-

tions on their dependences and application 

ordering. Tokenisation, sentence splitting and 

stopword removal are the basic text processing 

steps, and typically do not rely on previous pre-

processing, whereas chunk parsing as well as 

BioNER may be based on POS annotation. Not 

only the tools should be able to deal with multi-

layer annotation, as annotation processes should 

not have precedence over one another, i.e. se-

mantic annotation may occur after or before POS 

tagging.  

Furthermore, neither automatic nor manual 

annotation processes are considered mandatory. 

Typically, manual annotation is time-consuming 

and should be considered a later step, accounting 

for false positive matches (term homonymy) and 

miss annotations (term synonymy and term nov-

elty). However, it is up to the user to decide 

whether to trigger one or the two processes. 

4 Implementation 

The implementation of our tools devised the fol-

lowing components/modules:   

• an input/output module enabling the con-

version of documents for common file for-

mats (such as PDF and HTML) to plain 

text; 

• a pre-processing module embracing XML-

based text structuring (the title, authors, 

journal, abstract and the location of major 

sections are tagged), tokenisation and stop-

word removal; 

• a default annotation schema embracing all 

major biological entity classes (genes, pro-

teins, compounds and organisms) and some 

uncommon, although valuable classes 

(laboratory techniques and physiological 

states); 

• a lexicon-based biomedical annotator which 

supports the construction of customised dic-

tionaries as well as user-defined rules and 

lookup tables; 

• an user-friendly annotation viewer based on 

Cascade Style Sheets (CSS) that allows the 

user to verify and correct annotations and 

refine dictionary contents. 

 

Additionally, it is important to note that unlike 

many previous approaches our tools are able to 

handle both abstracts and full text documents 

indistinctively. The latter will undoubtedly give 

an increasing amount of useful information in 

most cases. 

4.1 Lexical Resources 

The tool supports two kinds of lexical resources: 

lookup tables and dictionaries. The authors have 

prepared lookup lists of standard laboratory 

techniques and general physiological states. 

Also, the user may create general or particular 

dictionaries from major biomedical databases 

such as BioCyc
6
, UniProt

7
 or ChEBI

8
 and inte-

grated databases such as Biowarehouse
9
 (Figure 

1). Each data source is characterised in terms of 

the embraced biological classes and organism (if 

it is a multi-organism source). The user may de-

cide to include all contents or select just a few, 

depending on the purpose of the dictionary. 

Database copyrights are preserved as there is 

no content distribution with the tool. In order to 

deploy any loader, the user has to download the 

contents from the corresponding source.  

                                                           
6 http://biocyc.org/ 
7 http://www.uniprot.org/ 
8 http://www.ebi.ac.uk/chebi/ 
9 http://biowarehouse.ai.sri.com/ 
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Figure 1. Deploying the construction of a new dictionary using available data loaders. 

 

 

On the other hand, all created resources are 

kept in relational format (currently, on MySQL 

database engine) and thus, allow eventual shar-

ing. 

4.2 Annotation Schemas 

The default semantic annotation schema was cre-

ated by the authors and aims at tracking down 

major biological entities. Currently, the system 

accounts for a total of 14 biological classes as 

follows:  

• gene  

• metabolic gene 

• regulatory gene 

• protein  

• transcription factor  

• enzyme  

• pathway  

• reaction  

• compound  

• organism  

• DNA  

• RNA  

• physiological state  

• laboratory technique  
 

This schema allows the user to identify mo-

lecular entities that may describe different levels 

of biological organisation and thus, lead to a bet-

ter insight in functional description of cellular 

processes. 

For instance, a physiological state is fre-

quently characterised by particular level of de-

fined biological entities, like compounds 

catalysed by certain enzymes, which in turn are 

encoded by the respective genes. Besides com-

mon annotation, this schema also supports anno-

tation linking to lexical resources (Figure 2), i.e., 

it identifies the dictionary entry that triggered 

each tagging as well as the normalised term (the 

“concept label” that gathers together known vari-

ants and synonyms of a given term). 

The ability to use other annotation schemas is 

considered a premise of tool interoperability and 

data re-use. As such, annotation schemas derived 

from the GENIA ontology (Kim et al., 2003), a 

formal model of cell signaling reactions in hu-

man, or used in challenges such as Biocreative, 

often referenced by the research community as 

gold standards, were accounted for. It is possible 

to choose which schema to use on a given anno-

tation task and also to translate from one schema 

to another. Additionally, we devise the incorpo-

ration of new schemas as long as the user speci-

fies tagging and mapping functions. 

Regarding POS, the premise is similar and 

thus, we chose to incorporate GATE for the de-

velopment language processing components. 

GATE provides a reusable design and a set of 

prefabricated software building blocks (namely 

tokenizers, sentence splitters and POS taggers) 

that can be used, extended and customised for 

specific needs. Also, its component-based model 

allows for easy coupling and decoupling of the 

processors, thereby facilitating comparison of 

alternative configurations or different implemen-

tations of the same module (e.g., different pars-

ers). At Figure 2, we illustrate an example of 

POS tagging output. 
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Figure 2. Small piece of an annotated document using the default annotation schema and GATE default POS 

tagging. 

 

 

 
 

Figure 3. Configuring the automated lexical-based BioNER process. 
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Figure 4. Snapshot of the manual annotation environment. 
 

 

4.3 Automatic Annotation 

The conversion of source formats into plain text 

is carried out by freeware programs such as 

Xpdf
10

 (Windows or Linux) and pdftotext
11

 (Mac 

OS). The process of XML-oriented document 

structuring was implemented by the authors us-

ing simple pattern matching. Documents (ab-

stracts or full-texts) are submitted to tokenising 

and stopword removal processes, implemented 

using Lingua::PT::PLNbase and Lin-

gua::StopWords Perl modules, respectively.  

Following the pre-processing step, lexicon-

based BioNER is sustained by a specialised re-

writing system developed by the authors upon 

the Text::RewriteRules Perl module. The user 

specifies the supporting dictionary and the set of 

biological classes to be annotated (Figure 3). 

Lookup tables and general templates may also be 

included. Furthermore, the process can be de-

ployed over abstracts or full-texts. 

The system attempts to match terms against 

dictionary and lookup table contents, checking 

for different term variants (e.g. hyphen and apos-

trophe variants) and excluding too short terms 
                                                           
10 http://www.foolabs.com/xpdf/ 
11 http://www.bluem.net/downloads/pdftotext_en/ 

(less than 3-character long). Annotation gives 

preference to longest term matching, tracking up 

to hepta-grams (i.e. 7-word composition). 

Additional patterns account for previously un-

known terms and term variants. For example, the 

template ”([a-z]{3}[A-Z]+\d*)” (a sequence of 

three lower-case letters followed by an upper-

case letter and a sequence of zero or more digits) 

is used to identify candidate gene names while 

the categorical nouns ”ase” and ”mRNA” track 

down possible enzyme and RNA mentions, re-

spectively. Besides class identification, the sys-

tem also sustains term normalisation, grouping 

all term variants around a “common name” for 

visualisation and statistical purposes. 

4.4 Manual Annotation 

The manual annotation environment accounts 

for the review of automatic annotations by ex-

perts and the enhancement of the lexical re-

sources. Also, manually curated documents are 

intended to be further used as training corpora to 

build annotation, classification or other general-

ised learning models regarding biomedical con-

tents. 

Although the actual corpus file with annota-

tion is encoded in XML, the annotators work on 
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a CSS-styled view which is much more user-

friendly (Figure 4). Furthermore, a query view is 

used to depict the relation of the annotated terms 

with dictionary entries.  

When the user revises dictionary-based anno-

tation and corrects or adds annotations, the dic-

tionary is updated with such previously unknown 

or mischaracterised information. Therefore, this 

process has two major outputs: high-quality an-

notation and dictionary enrichment. The latter is 

a classical example of a process of learning by 

experience that accounts for well-known biologi-

cal issues such as term novelty, term synonymy 

and term homonymy. Term novelty and the asso-

ciation of synonyms are far from being adequate-

ly tackled as they will depend on expert’s 

knowledge, which is limited and often outdated 

just like dictionaries. However, the disambigua-

tion of distinct mentions using the same term 

(e.g. same gene, protein and RNA name) is a 

classical example where manual curation is inva-

luable. 

Also, users may cooperate on curation tasks, 

sharing locally processed documents and taking 

advantage of dictionaries that have been refined 

by other users. 

5 Conclusions 

The need for user-friendly and interoperable se-

mantic annotation tools is indisputable in 

BioTM. Research benefits greatly from the re-

use of data (such as annotated corpora) and the 

capacity to interchange tools (namely POS and 

semantic taggers). However, this is only possible 

if tools are devised for this purpose, i.e., if they 

account for general annotation as well as annota-

tion interchange and if processing tools are pre-

pared to account for distinct annotation schemas. 

On the other hand, annotation is a laborious and 

time-consuming task that requires from the cura-

tors both expertise on the subjects and critical 

judgment. In this sense, it is very important that 

annotation tools take advantage of data mining 

models and available knowledge resources, 

minimising manual curation efforts, and at the 

same time, provide for a user-friendly environ-

ment.  

In this work, a contribution to these issues is 

provided, with the development of a novel inter-

operable and user-friendly software tool for bio-

medical annotation. Its primary contributions are 

as follows: the ability to process abstract and 

full-texts interchangeably; a basic semantic anno-

tation schema encompassing embracing all major 

biomedical entity classes (genes, proteins, com-

pounds and organisms) and some uncommon, 

although valuable classes (laboratory techniques 

and physiological states); the ability to use stan-

dard annotation schemas such as GENIA; a pre-

processing module capable of converting docu-

ments from common file formats (such as PDF 

and HTML) to plain text and then, tokenise and 

remove stopword from such texts; a lexicon-

based biomedical annotator for annotating bio-

medical texts which allows the construction of 

customised dictionaries as well as user-defined 

rules and lookup tables; a user-friendly annota-

tion view that allows the user to verify and cor-

rect annotations and refine dictionary contents. 

The tool can be used as a stand-alone envi-

ronment or it can be integrated in a more com-

prehensive BioTM framework. Currently, it is 

incorporated in the @Note Biomedical Text 

Mining workbench
12

 (Lourenço et al., 2008). 

Here, tool interoperability enables automatic in-

formation retrieval (PubMed keyword-based 

query and document retrieval from open-access 

and subscribed web-accessible journals) as well 

as mining experiments (using annotated corpora 

to construct BioNER models). 

Future work includes the enhancement of an-

notation skills based on curator suggestions and 

the implementation of several measures to mini-

mize discrepancies of inter-annotation and main-

tain the quality of annotation. Semantic type 

checking and detection of anomalies in the re-

sulting annotations are devised as the first steps. 

The tools are freely available from 

http://sysbio.di.uminho.pt/anote.php. 

Acknowledgments 

This work is partly funded by the research pro-

jects recSysBio (ref. POCI/BIO/60139/2004) and 

MOBioPro (ref. POSC/EIA/59899/2004) 

financed by the Portuguese Fundação para a 

Ciência e Tecnologia. The work of Sónia 

Carneiro is supported by a PhD grant from the 

Fundação para a Ciência e Tecnologia (ref. 

SFRH/BD/22863/2005).  

References  

S. Ananiadou, D. B. Kell and J. I. Tsujii (2006). Text 

mining and its potential applications in systems bi-

ology. Trends Biotechnol., 24, 571-579. 

                                                           
12 http://sysbio.di.uminho.pt/anote.php 

91



H. Cunningham, D. Maynard, K. Bontcheva and V. 

Tablan (2002). GATE: A Framework and Graphi-

cal Development Environment for Robust NLP 

Tools and Applications. In Proceedings of the 40th 

Anniversary Meeting of the Association for Com-

putational Linguistics (ACL'02). 

R. A. A. Erhardt, R. Schneider and C. Blaschke 

(2006). Status of text-mining techniques applied to 

biomedical text. Drug Discovery Today, 11, 315-

325. 

K. Fundel and R. Zimmer (2006). Gene and protein 

nomenclature in public databases. BMC Bioinfor-

matics, 7. 

D. Hanisch, K. Fundel, H. T. Mevissen, R. Zimmer 

and J. Fluck (2005). ProMiner: rule-based protein 

and gene entity recognition. BMC Bioinformatics, 

6. 

Z. Z. Hu, M. Narayanaswamy, K. E. Ravikumar, K. 

Vijay-Shanker and C. H. Wu (2005). Literature 

mining and database annotation of protein phos-

phorylation using a rule-based system. Bioinfor-

matics, 21, 2759-2765. 

L. J. Jensen, J. Saric and P. Bork (2006). Literature 

mining for the biologist: from information retrieval 

to biological discovery. Nature Reviews Genetics, 

7, 119-129. 

J. D. Kim, T. Ohta, Y. Tateisi and J. Tsujii (2003). 

GENIA corpus--semantically annotated corpus for 

bio-textmining. Bioinformatics, 19 Suppl 1, i180-

i182. 

J. D. Kim, T. Ohta and J. Tsujii (2008). Corpus anno-

tation for mining biomedical events from literature. 

BMC Bioinformatics, 9. 

Z. Kou, W. W. Cohen and R. F. Murphy (2005). 

High-recall protein entity recognition using a dic-

tionary. Bioinformatics, 21 Suppl 1, i266-i273. 

Kulick S, Bies A, Liberman M, Mandel M, McDonald 

R, Palmer M, Schein A and Ungar L (2004). Inte-

grated Annotation for Biomedical Information Ex-

traction. NAACL/HLT Workshop on Linking 

Biological Literature,Ontologies and Databases: 

Tools for Users (pp. 61-68). 

A. Lourenço, R. Carreira, S. Carneiro, P. Maia, D. 

Glez-Peña, F. Fdez-Riverola, E. C. Ferreira, I. 

Rocha and M. Rocha (2008). @Note: a flexible and 

extensible workbench for Biomedical Text Mining. 

Submitted to BMC Bioinformatics. 

T. Morton and J. LaCivita (2003). WordFreak: an 

open tool for linguistic annotation. Proceedings of 

the 2003 Conference of the North American Chap-

ter of the Association for Computational Linguis-

tics on Human Language Technology: 

Demonstrations (pp. 17-18). NJ, USA: Association 

for Computational Linguistics Morristown. 

S. Mukherjea, L. V. Subramaniam, G. Chanda, S. 

Sankararaman, R. Kothari, V. Batra, D. Bhardwaj 

and B. Srivastava (2004). Enhancing a biomedical 

information extraction system with dictionary min-

ing and context disambiguation. Ibm Journal of 

Research and Development, 48, 693-701. 

H. M. Muller, E. E. Kenny and P. W. Sternberg 

(2004). Textpresso: An ontology-based information 

retrieval and extraction system for biological litera-

ture. Plos Biology, 2, 1984-1998. 

J. Natarajan, D. Berrar, C. J. Hack and W. Dublitzky 

(2005). Knowledge discovery in biology and bio-

technology texts: A review of techniques, evalua-

tion strategies, and applications. Critical Reviews 

in Biotechnology, 25, 31-52. 

N. Okazaki and S. Ananiadou (2006). Building an 

abbreviation dictionary using a term recognition 

approach. Bioinformatics, 22, 3089-3095. 

L. Shi and F. Campagne (2005). Building a protein 

name dictionary from full text: a machine learning 

term extraction approach. BMC Bioinformatics, 6, 

88. 

C. J. Sun, Y. Guan, X. L. Wang and L. Lin (2006). 

Biomedical named entities recognition using condi-

tional random fields model. Fuzzy Systems and 

Knowledge Discovery, Proceedings, 4223, 1279-

1288. 

L. Tanabe, N. Xie, L. H. Thom, W. Matten and W. J. 

Wilbur (2005). GENETAG: a tagged corpus for 

gene/protein named entity recognition. BMC Bioin-

formatics, 6. 

L. Yeganova, L. Smith and W. J. Wilbur (2004). Iden-

tification of related gene/protein names based on an 

HMM of name variations. Computational Biology 

and Chemistry, 28, 97-107. 

P. Zweigenbaum, D. mner-Fushman, H. Yu and K. B. 

Cohen (2007). Frontiers of biomedical text mining: 

current progress. Briefings in Bioinformatics, 8, 

358-375. 

 

  

92



Genic Interaction Extraction by Reasoning on an Ontology

Alain-Pierre Manine, Erick Alphonse
LIPN, Univ. Paris13/CNRS UMR7030
Laboratoire d’Informatique Paris-Nord

Institut Galilée, Université Paris 13
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Abstract

Information Extraction (IE) systems have
been proposed in recent years, to extract
genic interactions from bibliographical re-
sources. But they are limited to single in-
teraction relations, and have to face a trade-
off between recall and precision, by focus-
ing either on specific interactions (for pre-
cision), or general and unspecified inter-
actions of biological entities (for recall).
Yet, biologists need to process more com-
plex data from literature, in order to study
biological pathways, so an ontology is an
adequate formal representation to model
this sophisticated knowledge. But the tight
integration of IE systems and ontologies
is still a current research issue, a fortiori
with complex ones that go beyond hierar-
chies. Here, we propose a rich modeling
of genic interactions with an ontology, and
show how it can be used within an IE sys-
tem. The ontology is seen as a language
specifying a normalized representation of
text. IE is performed by first extracting in-
stances from Natural Language Processing
(NLP) modules, then deductive inferences
on the ontology language are completed.
New instances may be infered, bringing to-
gether otherwise scattered textual informa-
tion. We validated our approach on an an-
notated corpus of gene transcription regula-
tions inBacillus subtilis. We reach a global
recall of 89.3% and a precision of 89.6%,
with high scores for the ten semantic rela-
tions defined in the ontology.

1 Introduction

Interactions between genes and proteins were
long studied, while most of their biological
knowledge is not described in structured formats

of genomic databanks, but scattered in scientific
articles. For this reason, numerous works in re-
cent years have been carried out to design In-
formation Extraction (IE) systems, which aim
at automatically extracting genic interaction net-
works from bibliography (Blaschke et al., 1999;
Craven and Kumlien, 1999; Friedman et al., 2001;
Krallinger et al., 2007). Relations between bi-
ological entities are multiple (protein and gene
regulations, DNA binding, phosphorylation, ho-
mology relations, etc.). Nevertheless, most IE
systems are limited to extract unique relations,
and face a trade-off between recall and preci-
sion. Some focus on precision by extracting spe-
cific interactions, for instance between proteins
(Craven and Kumlien, 1999; Rindflesch et al.,
2000; Blaschke et al., 1999; Ono et al., 2001;
Saric et al., 2005), whereas other stress on recall
using general relations (Nédellec, 2005; Fundel
et al., 2007). However, this does not take into ac-
count the complexity of the data processed by bi-
ologists, such as biological pathways (Oda et al.,
2008). Therefore, ontologies are a well-motivated
formal representation able to convey this com-
plex knowledge, but their utilization in IE, beyond
mere conceptual hierarchies, is still a research is-
sue. In this paper, we introduce a rich modeling
of genic interactions, and a way to fully integrate
an ontology within an IE platform.

We refer to an ontology as a thesaurus (con-
cept and relation hierarchies), along with a log-
ical theory given as a set of inference rules (see
e.g. (Gómez-Pérez, 1999)). The ontology is seen
as a specification of a normalized and decontex-
tualized text representation. A NLP pipeline ex-
tracts a first set of ontology instances, then de-
ductive inferences on the ontology language are
completed, deriving more instances. IE results
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are a set of concept instances linked by seman-
tic relations. Using several well-defined relations
gives the opportunity to model more accurately
biological domains, and inference rules reason-
ing on the ontology are able to gather informa-
tion otherwise scattered throughout bibliographi-
cal databases, and to discover knowledge not ex-
plicitly stated in texts. Inference rules may be
crafted by the domain expert as part of the on-
tology design, or automatically learnt by Machine
Learning (ML) techniques. We focus on this latter
case which has been well-motivated in the context
of IE systems, as a generic component to easily
adapt them to new domains. However, as opposed
to previous approaches, learning takes place in
the ontology language to produce deductive rules
which hold in the domain ontology. From a ML
point of view, the learner uses the ontology as hy-
pothesis language, and instantiations of ontology
as example language.

However, as stated by (Friedman et al., 2002),
ontologies are not necessarily useful to IE, in the
sense that the granularity of the classes between a
conceptual and a sublanguage model may differ.
We deal with this problem by introducing, along
with the ontology, a lexical layer, i.e. relations
and classes in an intermediate level of abstraction
between raw text and concept. This is in line with
(Cimiano et al., 2007; Brickley and Miles, 2005),
who propose a lexicon model to map expressions
in natural language to their corresponding ontol-
ogy structure, although none of them address it in
an IE context.

We discuss related works using ontologies and
ML techniques to support IE systems in section 2.
We present our approach where IE is fully spec-
ified through the design of a domain ontology
along with its lexical layer in the next section. We
describe how ML techniques can be applied on
the ontology instantiations from a corpus to learn
deductive rules which can infer new instances
during the extraction process (section 4). And we
validate our architecture by defining an ontology
of genes transcription in bacteria, and by learning
inference rules to extract genic interactions from
a corpus of the LLL05 challenge (section 5), to
finally give perspectives of our work.

2 Related works

The unifying purpose of the ontology allows us to
integrate several aspects not simultaneously han-

dled in related works. Consider the sentence:

The degR gene is transcribed by RNA poly-
merase containing sigma D, and the level
of its expression is low in a mecA-deficient
mutant. (PMID: 10486575.)

Extracting the interaction-related knowledge in-
volves processes occurring in multiple abstrac-
tion levels. The biological entities have to be
recognized, and properly represented. Simplest
lexical variations are captured by Named Enti-
ties Recognition (NER), as extensively discussed
in (Tanabe and Wilbur, 2002; Park and Kim,
2006). A term–concept connection is assumed by
several systems, which use mere conceptual hi-
erarchies, without relation (Miyao et al., 2006;
Nédellec, 2005; Saric et al., 2005). Here, we
normalize a term as a subgraph of ontology in-
stances, including domain knowledge: in the ex-
ample, the term “RNA polymerase containing
sigma D” may be represented as aprotein com-
plex relation between an “RNA polymerase”en-
zymeand a “sigma D”protein. All the synonyms
have to share the same representation (e.g. “Es-
igmaD” or “RNA polymerase sigma D”). We em-
phasize the terminology status: while, in the pre-
vious expression, (Nédellec, 2005) only tag the
“sigma D” protein and inaccurately regard it as
the interacting entity, we normalize the full term
(“RNA polymerase containing sigma D”). Fur-
thermore, whereas most terminological works fo-
cus on nouns, we handle verbal terms: the terms
“transcription by EsigmaD” and “transcribed by
EsigmaD” will be identically represented.

(Nédellec, 2005; Saric et al., 2004) use respec-
tively a general “genic interaction” relation, or
a very specific one. The ontology allows to de-
fine various conceptual relations: a transcription
event between EsigmaD and degR, and a more
general regulation between the mecA mutant and
the degR gene.

Furthermore, we do not only provide rules pro-
cessing on a syntactico-semantic level (Miyao et
al., 2006; Alphonse et al., 2004; Daraselia et al.,
2004), but using ontology as our representation
language, we can reason at a semantic level (see,
for instance, the use of inference rules in OWL
(Mcguiness et al., 2004)). In the previous sen-
tence, this allows to deduce that, although the sec-
ond interaction of the example involves an inhibi-
tion (“level of its expression is low”), as a mutant
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gene is implied, mecA and degR are linked by an
activation. Inferences may be achieved on multi-
ple sentences, inducing knowledge not explicitly
present in the text as we will show it in section 5.

Ontologies become preeminent in the IE field,
while most authors exploit it punctually. Their
structure may offer a basis to craft extraction rules
(Saric et al., 2005; Friedman et al., 2001), or
a useful disambiguation resource. For instance,
(Cimiano, 2003; Gaizauskas et al., 2003) use it
to solve coreferences, (Daraselia et al., 2004) se-
lects relevant syntactic graphs from a parser using
the structure of an ontology, (Saric et al., 2005)
stress the benefit of an ontology to solve some
syntactical ambiguities relying on concepts arity.
In most IE pipelines, ontology (or conceptual hi-
erarchy) is only applied to enrich the text with se-
mantic categories (Alphonse et al., 2004; Saric et
al., 2004). On the contrary, we used the ontology
structure throughout the extraction process, as a
language to make inferences from text.

ML techniques have often been used to acquire
resources for IE systems, like extraction patterns
or rules (Huffman, 1996; Riloff, 1996; Craven
and Kumlien, 1999; Alphonse et al., 2004), which
are related to our approach. However, they are
limited to learn from enriched text representation,
as opposed to our approach, where learning takes
place in the ontology language.

3 Knowledge representation language of
an IE system based on an ontology

Historically, following the “General Theory of
Terminology” created by Eugene Wüster from
the late 1930s, a term is defined as a word or a
group of words which correspond to a concept in
a pre-existing conceptual model. More recently,
some have criticized this doctrine (Rastier, 1995;
Bourigault and Jacquemin, 2000): the conceptual
model and the terms are not seen anymore as ab-
solute notions, but as the result of an artificial and
application-oriented construction process based
on a domain-related corpus. In other words, the
terminology is notdiscovered, but constructed.
We follow this latter conception: our conceptual
model, the ontology, is seen as a specification of
a normalized representation of a text, neglecting
some aspects of the discourse, and keeping some
other ones. By designing it, we specify an IE sys-
tem. Hence, the IE process is equivalent to an
automatic semantic annotation of text, into which

sentence fragments (terms) are normalized as on-
tology instances.

3.1 Ontology as a representation language

Figure 1 exemplifies a simplified ontology of tran-
scription in bacteria. In this model, the “tran-
scription” of a gene (“et” ) from a promoter
(“t from” ) may happen due to the action of a pro-
tein (“t by” ). Furthermore, a protein results from

Figure 1: Example of ontology. Labels of “isa” rela-
tions are omitted.

the expression of a gene (“product of” ), and a
protein complex results from the assembly of sev-
eral proteins (“complex with” ). Figure 2 shows,
on an example sentence, the result of the IE sys-
tem provided as instances of the ontology. Note
that, as a normalized representation of the text,
not all the meaning is kept: for instance, we do not
stress anymore about the “DNA binding” nature
of the “GerE” protein; the fact that the transcrip-
tion happens from “several” promoters is lost.
The semantic relations at the bottom of the fig-

Figure 2: Example of a semantic representation result-
ing from the IE system.

ure, in plain line, were extracted from text. From
the term “transcription from several promoters”,
a terminological module has extracted instances
of “transcription” and “promoter”. Then, infer-
ences rules have extracted from text a “tfrom”
(“transcription from”) semantic relation between
them. The “pdep” relation, in bold line in the
middle of the figure, is inferred from instances
previously extracted from the text, by applying
deductive rules on the normalized text represen-
tation. This representation fits the specifications
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of the ontology shown in figure 1. Such a rule is
the following:

p dep(B,A) ← t by(C,A),
t from(C,B),
protein(A),
promoter(B),
transcription(C).

It means that “if protein A is responsible for a
transcription event C from promoter B, then B is
dependent on (may be binded by) protein A”. Ad-
ditionally, instances in dotted lines result from do-
main knowledge: the “GerE” protein is encoded
by the “gerE” gene, and the “E sigmaK” protein
is a RNA polymerase complexed with the “SigK”
protein, itself encoded by the “sigK” gene.

3.2 Features choice for text extraction

Inferences from text require more features. Ba-
sically, normalizing a text to a conceptual rep-
resentation is equivalent to gather multiple lexi-
cal forms into a single semantic representation.
Hence, the difficulty of the task is related to the
complexity of the encountered types of varia-
tions. Methods aiming at capturing orthograph-
ical and morphological variations are related to
Named Entities Recognition (NER), described in
(Tanabe and Wilbur, 2002; Park and Kim, 2006).
The more complex types of variations are re-
lated to relational IE, and processing them in-
volves using NLP tools to enrich the text with
syntactic and semantic features. A first set of
works builds syntactico-semantic parsers (Fried-
man et al., 2001; McDonald et al., 2004; Saric
et al., 2004; Saric et al., 2005), whereas a sec-
ond class of systems uses full parsers (Yakushiji
et al., 2001; Daraselia et al., 2004; Miyao et al.,
2006; Fundel et al., 2007). The latter implies two
distinct modules (Yakushiji et al., 2001): a lin-
guistic module, that handles domain-independent
structural aspects of the sentence; and an IE mod-
ule, which is a task-dependent parameter (possi-
bly adapted to the task (Pyysalo et al., 2004)). We
follow this general approach which does not in-
volve designing a new syntactico-semantic parser
for each new application. This impacts the design
of the lexical layer we describe in the next section.

3.3 Lexical layer

We introduce a lexical layer along with the on-
tology, in which we define relevant semantic fea-

Figure 3: Exemple of a text representation

tures. In figure 3, the concept of “regulation” (and
in the example, its instance “stimulate”), and the
concept of “dependence” (and its instance “use”),
are obviously required. Inference rules do not
only need semantic features, but also syntactic
ones. To specify them, we introduce syntactico-
semantic classes and relations in the lexical layer.
Following our conception about ontologies, these
classes and relations will define normalizations of
text in intermediate states of abstraction, between
raw text and conceptual level. They are specified
in the ontology shown in figure 4, and will be in-
stantiated by a parser and a terminological mod-
ule. The layer also allows to introduce classes

Figure 4: Sample of the lexical layer (elements in dot-
ted line) along with the domain ontology.

which may be semantically irrelevant from a do-
main ontology point of view but factorize con-
cepts that share common properties, and thus, fac-
torize together otherwise multiple inference rules.
This is exemplified in figure 5, which shows the
definition of a “biological actor” (bioactor) class,
where a “gene”, a “protein” and a “gene family”
share common syntactical contexts in biological
articles. Figure 3 illustrates a final representation
combining semantic features (a protein instance
“GerE”), and syntactic ones (a subject “subj:V-
N” relation between “GerE” and “stimulate”, an

Figure 5: Definition of a syntactico-semantic feature
(dotted line) in the ontology.
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instance of the “regulation” concept).

4 Acquisition of inference rules

As opposed to previous approaches (see sec-
tion 2), learning takes place in the ontology lan-
guage to produce deductive rules which hold in
the domain ontology and in the lexical layer. A
domain expert has to provide learning examples
defined as instantiations of the ontology. He cre-
ates instances of concepts and relations of the on-
tology from a corpus, some instances being out-
put by NLP modules. Target relations are speci-
fied to be logically implied by the inference rules.
Figure 6 exemplifies such annotation, the dashed
lines corresponding to relations to learn.

Figure 6: Learning example provided by a semantic
annotation.

Learning from such a relational language is
known as Inductive Logic Programming (ILP)
(Muggleton and Raedt, 1994), where the hypothe-
sis and the example languages are subsets of first-
order logic. Most learners handle learning in Dat-
alog which is expressive enough for the task. In
Datalog, examples are represented as closed Horn
clauses, where the head of the clause is the tar-
get relation to learn. For instance, the example of
the “t by” relation in figure 6 will be equivalently
represented as the following (relation names have
been shorten for presentation):

t by(id1, id2) ← subj(id2, id3), obj(id1, id3),
tra(id1, transcription),
pro(id2, ”GerE”),
reg(id3, stimulate).

As several relations have to be learnt, learning is
set into the multi-class setting where each target
relation is learnt in turn, using the other ones as
negative examples. Note that all the ontological
knowledge is given as background knowledge to
the ILP algorithm, like the generalisation relation
between concepts. For instance, specifying that
a protein complex is a protein, and a protein or a
RNA are a gene product, will be represented by a
clausal theory:

protein(A)← protein complex(A).

gene product(A)← protein(A).
gene product(A)← rna(A).

Processing an example involving a protein com-
plex or a RNA, the learning algorithm now have
the opportunity to choose the most relevant gen-
erality level (e.g. “protein complex”, “protein” or
“gene product”) to learn the rules.

5 Results

We validate our architecture by designing an on-
tology of transcription in bacteria, used to learn
inference rules from aBacillus subtiliscorpus.

5.1 Ontology encoding biological knowledge

The ontology includes some forty concepts,
mainly about biological objects (gene, promoter,
binding site, RNA, operon, protein, protein com-
plex, gene and protein families, etc.), and biolog-
ical events (transcription, expression, regulation,
binding, etc.). In the following, we will focus on
the ten relations of the ontology.

We defined ten relations: a general interaction
relation (“i”), and nine relations specific to some
aspects of the transcription (binding, regulons and
promoters). Table 1 lists the set of relation names
with an example of term. For instance, the third
line in the table states that, in the sentence “GerE

Name Example of related term

p dep sigmaArecognizespromoter elements
p of thearaE promoter
b to GerE binds near the sigKtranscriptional

start site
s of -35 sequenceof thepromoter
rm yvyD is a member of sigmaBregulon
r dep sigmaBregulon
t from transcription from the Spo0A-depend-

entpromoter
t by transcription by final sigma(A)-RNA

polymerase
et expressionof yvyD
i KinC was responsible for Spo0A˜Ppro-

duction

Table 1: List of relations defined in the ontology, and
the corresponding examples of term. Arguments of
the relation are shown in italic and bold fonts. The
relations are: promoter dependence (pdep), promoter
of (p of), bind to (bto), site of (sof), regulon member
(rm), regulon dependence (rdep), transcription from
(t from), transcription by (tby), event target (et). “i”
is a general interaction relation.
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Figure 7: Extracted network from: (1) SpoIIID binds
strongly to two sites in the cotC promoter region;
(2) SpoIIID represses cotC transcription by sigma(K)
RNA polymerase; (3) Transcription of cotC by sig-
maK RNA polymerase is activated by GerE; (4)
GerE represses transcription from the sigK promoter.
Dashed lines represent domain knowledge relations,
and bold lines infered ones.

binds near the sigK transcriptional start site”, the
protein “GerE” (in bold font) binds to (bto) the
site “transcriptional start site” (in italics).

Using an ontology including inference rules, to
describe some aspects of the transcription, allows
to model biological knowledge more accurately.
This is exemplified in figure 7, which shows the
instances extracted from four sentences. From
the first sentence, inference rules provide the fol-
lowing normalization: SpoIIID binds to (bto) a
site of (sof) the promoter of (pof) cotC. The
well-defined nature of the involved relations al-
lows to deduce that the cotC promoter is depen-
dent (pdep) of SpoIIID, as the latter binds to
one of its sites. Inferences are not restricted to
a sentence: for instance, as the sentence 3 as-
serts that cotC transcription is activated by GerE,
it is possible to deduce that it happens from
the cotC promoter (tfrom). This latter deduc-
tion permits to conclude that the cotC promoter
is dependent (pdep) of GerE. Implicit knowl-
edge distributed into two sentences is therefore
made explicit. If less descriptive knowledge is
needed, it is easy, by defining a general transi-
tive relation, to provide a database with the genic
interacting couples (spoIIID,cotC), (gerE,cotC),
(gerE,sigK) and (sigK,cotC). Relations between
interacting entities and genes are provided by do-
main knowledge, as illustrated in the figure with
“sigmaK RNA polymerase”. The protein com-
plex is known to include protein sigmaK, which
is the product of the sigK gene.

5.2 Ontology to learn inference rules

We want to validate the interest of using multiple
relations, defined with an ontology, to learn infer-
ence rules by ML. In order to test the ontology
relevance, we reused the corpus of the LLL05
challenge (Nédellec, 2005), containing 160 sen-
tences, in which we annotated terms, concepts
and relations. 541 relations were labeled. Out-
put of NLP tools is complex and heavily noisy,
making errors difficult to trace. Thus, to focus
exclusively on the rules acquisition task, we only
chose to allow as parameters the representation
choice and the learning algorithm, the remaining
having to be constants and as noiseless as possi-
ble. Hence, we enriched and manually curated
the linguistic annotations of the LLL05 corpus
(parse trees, syntactic categories, lemmas). The
representation of the examples was defined fol-
lowing the procedure described in 3.3. We in-
troduced syntactic relations between classes, and
syntactico-semantic classes, meant for factoriz-
ing entities which may share the same syntacti-
cal context: namely, gene and protein, gene fam-
ily and protein family, transcription and expres-
sion events. Eventually, the annotated corpus was
used to produce the learning set. To help learn-
ing, we added a class of non-interacting biologi-
cal entities which was generated using the closed-
world assumption. We applied the multi-class ILP
learner PROPAL (Alphonse and Rouveirol, 2006)
to acquire a set of rules for each relation; the non-
interacting class was used as negative examples
each time but was not learnt. Currently, we only
automatically acquire rules involving syntactico-
semantic attributes. We will remove this lim-
itation by stratification learning. We provided
PROPAL with 541 examples from ten classes, and
10155 from the non-interacting class, and used
ten-fold cross-validation, averaged ten times, to
evaluate recall and precision of the extraction pro-
cess. The results are shown in table 2.

As expected, the more specific relations (et,
r dep, rm), assumed to have little lexical vari-
ability, are rather trivial to learn, and reach es-
pecially high scores. On the contrary, more gen-
eral ones (i, tby), exhibiting greater variability,
are noticeably harder to learn. We also exper-
iment the two-class case, merging the ten con-
ceptual relations into a positive label, and as
shown in table 3, we obtain good recall and pre-
cision. Scores are much better than in prelimi-
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Relation Recall Prec. Numb.

i 76.4 73.5 161
rm 90.0 90.0 17
r dep 95.0 100.0 12
b to 75.0 90.0 14
p dep 91.5 94.3 47
p of 87.5 85.2 39
s of 61.7 80.7 21
et 95.8 99.4 168
t from 85.0 96.7 18
t by 65.5 82.6 44

Table 2: Multi-class learning results, for ten fold cross
validation averaged ten times, with Recall and Preci-
sion in %, and the Number of examples by relation.

nary experiments implying the unique and general
“genic interaction” relation from the LLL05 chal-
lenge. This corroborates the benefit of using mul-
tiple specific relations to model biological knowl-
edge, which involves less complex rules. For in-
stance, in the unique “genic interaction” relation
case, the sentences “sigma(H)-dependent expres-
sion of spo0A” and “sigma(K)-dependent cwlH
gene” would need two rules to be matched (typi-
cally, patterns like “A-dependent expression of B”
and “A-dependent B”); however, in the multiple
relation case, the first sentence would be matched
by the patterns “A-dependent B” (“i” relation) and
“B of C” (“et” relation), and the second sentence
by “A-dependent B” (“i” relation). Thus, in the
second case, the “i” rule matches two sentences,
where two “genic interaction” rules were needed.
By allowing more general rules, the ontology-
based approach decreases the required number of
examples to be used by the ML algorithm, im-
proving its results.

6 Conclusion and Perspectives

Ontology is a well-motivated formalism to model
biological knowledge, and we showed how a do-
main ontology allows access to knowledge, be-
yond the capability of current IE systems. How-
ever, complex ontologies are not yet fully ex-
ploitable in IE systems, which often limit their
use to enrich textual data. In this paper, we pro-
posed an original integration of ontology into IE
systems. We use the ontology as a language to
make inferences on the semantic level, as well as
the syntactico-semantic level, thanks to the addi-
tion of a lexical layer. IE is performed by first
extracting a set of instances from NLP modules,

Recall (%) Prec. (%)

89.3 89.6

Table 3: Results for two classes learning, using ten
fold cross validation averaged ten times.

then deductive inferences on the ontology lan-
guage are performed, to complete the extraction
process. We validated the approach by designing
an ontology of genic interactions, and used Ma-
chine Learning techniques to learn inference rules
from aBacillus subtiliscorpus. From a ML point
of view, we use the ontology as hypothesis lan-
guage, and instances of this ontology as example
language.

We are currently extending the ontology to
handle more phenomenons, especially inhibi-
tion/activation distinction, and non-genic actors
(e.g. environmental factors). Also, from an oper-
ational perspective, we aim at fully automatizing
our system by linking the lexical layer to an avail-
able NLP pipeline. Notably, as the representation
choice is a crucial step in ML, its declarative defi-
nition through the ontology is a significant contri-
bution. We then plan to work on text representa-
tion, through a comparative study of several lexi-
cal layers.
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Abstract

Protein-protein interaction extraction is a
challenging information extraction task in
the BioNLP field. Several kernels focusing
on a part of syntactic information have been
proposed for the task. In this paper, we pro-
pose a method to combine multiple layers
of syntactic information by using a combi-
nation of multiple kernels based on several
different parsers. We evaluated the method
using support vector machine and achieved
an F-score of 62.0% on the AIMed corpus.
Further, we analyzed the performance with
or without including self-interaction pairs,
and found that there is a danger of con-
fusing classifiers and decreasing the perfor-
mance when treating self-interaction pairs
together with real pairs.

1 Introduction

With the growing number of research papers, re-
searchers have difficulty finding the papers that
they need. Biomedical relationships in papers
help biomedical researchers to find specific pa-
pers. Protein-protein interactions (PPI) are one
of relations, and automatic extraction methods
can help to extract biomedical relationships based
on PPI. PPI is also important in biological pro-
cesses, and finding them automatically can help
construct PPI databases that are usually manually
constructed, like BIND (Mathivanan et al., 2006).
To achieve this, researchers in the BioNLP field
have been examining automatic extraction of PPI
from research papers.

One major approach for this task is finding a
criteria to judge whether a sentence which con-
tains a pair of proteins actually implies interac-
tion of the pair or not. Detection of PPI was

initially tackled by using simple methods based
on co-occurrences (Blaschke et al., 1999), while
more sophisticated NLP techniques have been
used later (Bunescu et al., 2005). For example,
NLP tools were used to lemmatize surface words
and tag them by their parts of speech (POS). De-
pendency relations in sentences can also be re-
vealed by syntactic parsers. While NLP tech-
niques make this information explicit, appropri-
ate techniques should be applied to use the infor-
mation collectively for judging the relevance of
a sentence for PPI. For this purpose, several ker-
nels have been proposed, including subsequence
kernels (Bunescu and Mooney, 2005b), tree ker-
nels (Moschitti, 2006; Sætre et al., 2007), short-
est path kernels (Bunescu and Mooney, 2005a),
and graph kernels (Airola et al., 2008). Each ker-
nel utilizes a portion of the structures to calculate
useful similarity. The kernel cannot retrieve the
other important information that may be retrieved
by other kernels.

In this paper, we propose a way of combin-
ing kernels based on several syntactic parsers for
PPI extraction. In order to retrieve the widest
range of important information in a given sen-
tence, it is important to extract as much informa-
tion as possible from the sentence and its parse
graphs. Using a support vector machine (SVM)
with much useful information from the combi-
nation, we achieved an F-score of 62.0% on the
AIMed corpus.

We also analyzed the performance changes
with or without self-interaction pairs (self-pairs).
From this analysis, we found that the self-pairs
can have confuse the classifiers and decrease the
performances. To avoid this and make the per-
formance better, predicting the self-pairs and the
binary-interaction pairs (binary-pairs) indepen-
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XPGp1 protein interacts with multiple subunits of
TFIIH prot and withCSBp2 protein.

Figure 1: A sentence including an interacting protein
pair (p1-p2). (AIMed PMID 8652557, sentence 9, pair
3)

dently could be a better option.

2 The Combination of Kernels Based on
Syntactic Parsers

In recent years, parsing technologies have im-
proved rapidly and many different types of
parsers have been proposed. Some of them are
retrained using biomedical corpora and adapted
to biomedical texts (Miyao et al., 2008). Kernel
methods applicable to structured data have also
been researched. Several kernels are adapted to
the parsers’ outputs and applied to PPI extraction.
The parsers produce different types of structures
providing different information regarding the tar-
get sentence. Each kernel uses different aspects
to extract and utilize some portion of informa-
tion from the outputs of their parsers. We com-
bine the kernels for utilizing the multiple layers
of information that the parsers and the kernels ex-
tracted. To realize our method, the PPI extraction
method (Sætre et al., 2007; Miyao et al., 2008)
is extended. We adopt two types of parsers and
three kernels.

2.1 Syntactic Parsers

There are many types of parsers that output differ-
ent layers of syntactic structures. The structures
have different types of useful information. We fo-
cus on two types of parsers.

2.1.1 Dependency Parser

The task of a dependency parser is to take a
sentence as a sequence of words, and to construct
a dependency tree consisting of dependency links
between words. Figure 2 is a parse tree produced
by a dependency parser.

2.1.2 Deep Parser

A deep parser takes a sentence as a sequence
of words like a dependency parser, and constructs
graph structures that represent theory-specific
syntactic/semantic relations among words. A
predicate argument structure (PAS) is often used
to represent the semantic structure. It is different

before –
middle PROT, and, interact, multiple,

of, protein, subunit, with
after protein

Table 1: BOW features

from the dependency parser, because it also treats
deeper relations and may include reentrant struc-
tures. Figure 3 is a parse graph produced by a
deep parser.

2.2 Kernels

Syntactic parsers produce useful parse trees or
graphs, but the extraction of information from
these structures is an open problem. Several ker-
nels are proposed to extract useful information
from such structures. Words are also useful fea-
tures, and several kernels are proposed to treat the
combination of the words. We use the following
kernels.

2.2.1 Bag-of-words (BOW) kernel

A bag-of-words kernel takes two unordered
sets of words as feature vectors, and calculates
their similarity. As input, three feature vectors are
used. The vectors contain the lemma forms of the
words before, inside of, and after the pair (Sætre
et al., 2007). The lemmas in the vectors are lim-
ited to the top 1,000 most frequent lemmas. Ta-
ble 1 shows BOW features of the sentence in Fig-
ure 1. Polynomial kernels are applied to each fea-
ture vector, and their outputs are summed up as
the output of the kernel.

2.2.2 Subset tree kernel

A subset tree kernel (Moschitti, 2006) calcu-
lates the similarity between two input trees by
counting their common subtrees. Subset tree ker-
nels are applied to the shortest path between pairs
from a parse tree. The shortest path is calculated
including reverse relations to preserve the direc-
tion of the parse tree relations. The predicate
information in PAS from the deep parser, which
was unused in previous works (Sætre et al., 2007;
Miyao and Tsujii, 2008), is used to represent the
dependency types. An example of shortest path
features can be found in Figure 4.

2.2.3 Graph Kernel

A graph kernel (G̈artner et al., 2003; Airola et
al., 2008) calculates the similarity between two
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Figure 3: An output example produced by a deep parser, Enju. (Predicate argument structure)

input graphs by comparing the relations between
common vertices. This graph kernel is called an
all-dependency-paths graph kernel. The weights
of the relations are calculated using all walks be-
tween each pair of vertices.

The graph consists of two directed subgraphs,
a parse graph, and a graph representing a linear
order of words. For a vertex in the first subgraph,
the dependency and the lemma with POS in the
parse graph are used. The dependency and lemma
in the shortest path are distinguished from the oth-
ers. For the PAS structure, the shortest path is
calculated by using constituents, and the words
in the constituents are distinguished. A vertex in
the second subgraph is labeled with the lemma,
the POS, and the place information. The place is
separated into three by the target pair like BOW
features (before, middle, after). Figure 5 is an ex-
ample of subgraphs made from the parse tree in
Figure 2.

For the calculation, two types of matrices are
used: a label matrixL, and an edge matrixA.
The label matrix is aN×L matrix, whereN is
the number of vertices, andL is the number of
labels. It represents the correspondence between
labels and vertices.Lij is 1 if thei-th vertex cor-
responds to thej-th label, and 0 if otherwise. The
edge matrix is aN×N matrix, and represents the
relation between pairs of vertices.Aij is a weight
wij if the i-th vertex is connected to thej-th ver-
tex, and 0 if otherwise. The weight is a predefined
constant and the setting is found in the caption of
Figure 5. Using the Neumann Series, a graph ma-
trix G is calculated as:

G = LT
∞∑
n=1

AnL

= LT((I−A)−1 − I)L. (1)

This matrix sums up the weights of all the walks
between a pair of vertices, so as a result, each en-
try represents the strength of the relation between
a pairs of vertices. Using these two graph matri-
ces, the graph kernelk is defined as:

k(G,G′) =
L∑
i=1

L∑
j=1

GijG′ij . (2)

This kernel sums up the products of the common
relations’ weights.

For fast calculation and performance, the graph
kernels of two subgraphs are calculated separately
and the normalized outputs of the graph kernels
are summed up. In the evaluation, we calculated
the matrices of the weights beforehand, and en-
tered the sparse feature vector of the weights into
a linear SVM.

2.3 Combination of Kernels

The parsers treat different layers of relations. The
dependency parsers ignore some deep informa-
tion, and conversely, the deep parsers do not out-
put certain shallow relations. Every kernel has
different aspects, and has different advantages
and disadvantages. The BOW kernels can com-
bine the words easily, but they ignore the internal
word order and word relations. The subset tree
kernels can calculate the similarity of two short-
est paths, but they ignore the words, the paths out-
side of the shortest path, and cycles in the parsed
graphs. The graph kernels can treat the parser’s
output and word features at the same time. How-
ever, they cannot treat them properly without tun-
ing kernel parameters. They may also miss some
distant words, and similarities of multiple paths.
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(DEPENDENCY(NMOD (ENTITY1 protein) ) (SBJ (protein interact) ) (rCOOD (interact with) ) (rCOORD
(with with) ) (rPMOD (with protein) ) (rNMOD (protein ENTITY2) ) )
(DEEP (nounarg1arg1 (ENTITY1 protein) ) (rverbarg1arg1 (protein interact) ) (rpreparg12arg1 (interact
with) ) (preparg12arg2 (with protein) ) (rnounarg1arg1 (protein ENTITY2) ) )

Figure 4: Shortest path features
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Figure 5: Two directed subgraphs features. One subgraph is made from a parse graph. As a label of a vertex
in the subgraph, the relation with the place (IP:In shortest Path) and the lemma with the POS and the place are
used. The other graph represents the linear order of words. As a label of a vertex in the subgraph, the lemma
with the POS and the place (B:Before, M:Middle, A:After) is used. Weights are assigned to the edges in the
subgraphs (Airola et al., 2008), 0.9 for the edges in the shortest paths and the second graph (represented with full
lines), and 0.3 for the other edges (represented with dotted line).

The kernels calculate the similarity with differ-
ent aspects between the two sentences. Combin-
ing the similarities can reduce the danger of miss-
ing important features, and can produce a new
useful similarity measure. To realize the combi-
nation of the different types of kernels based on
different parse structures, we sum up the normal-
ized output of several kernelskij as:

k(X,X ′) =
K∑
i

P∑
j

kij(X,X ′), (3)

where K represents the number of types of kernels
and P represents the number of parsers. This is a
very simple combination, but the resulting kernel
function contains all of the kernels’ information.

3 Experiments

3.1 Experimental Settings

In the following experiments, we used
AIMed (Bunescu and Mooney, 2004)1, which
is a major corpus for the evaluation of PPI
extraction methods. We pre-processed AIMed for
the named-entity tokenization in the following
way. First, we converted spaces in protein names

1ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/

Suramin induced high-affinity trimerization of
C8self-pair ( Kd = 0.10 microM at 20 degrees C
) and dimerization ofC9self-pair ( Kd = 0.86 mi-
croM at 20 degrees C ) .

Figure 6: Self-interaction pair examples. Each protein
interacts with itself. (AIMed PMID 10346902, sen-
tence 6, pair 4 and 5)

into “ ”, to group named entities. Then, we put
a space between the end of a protein tag and
the beginning of another protein tag when they
were contiguous. Finally, we converted &quot;
to “ or ” according to their portions. AIMed
consists of 225 abstracts (1970 sentences), and
we extracted 5,648 binary-pairs including 1,005
positive pairs and 4,233 self-pairs including
only other 54 positive pairs. Two examples of
self-pairs are shown in Figure 6. Because of the
pre-processing, the number of extracted pairs
differs from other reported PPI extraction meth-
ods. Pre-processing can affect the performance
and make it difficult to compare the result. The
protein names in a sentence were converted to
ENTITY1, ENTITY2, or PROT according to
which pair was being processed. Examples are
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shown in Figures 2 and 3.
Our system is based on the AKANE++ PPI

system2 (Sætre et al., 2007). We utilized Sagae
and Tsujii’s dependency parser3 (Sagae and Tsu-
jii, 2007) as the dependency parser, and the Enju
parser4 (Miyao and Tsujii, 2008) as the deep
parser. Both parsers were retrained using the GE-
NIA Treebank corpus5 (Kim et al., 2003). As
word features, we used the lemma information
from the Enju parser, which originally output
from the GENIA Tagger6. We used SVM for
the evaluation. The performance was measured
in an abstract-wise 10-fold cross validation (CV),
and a one-answer-per-occurrence criterion, which
were used for the evaluation of other PPI extrac-
tion methods before (Giuliano et al., 2006). We
controlled the separating hyperplane of the SVM
by varying the threshold and calculated the aver-
age of the results for each threshold. We fixed
the other parameters, and we set the regulariza-
tion parameter C to 1. We report the best f-value
for each SVM in the following tables.

3.2 Effects of Self-pairs

We extracted 54 self-pairs from AIMed. The
number of the self-pairs is much smaller than the
number of the binary-pairs. Most previous results
were obtained without the self-pairs. We evalu-
ated the performance of our method in three dif-
ferent ways:

1. Evaluation without including any self-pairs

2. Evaluation without trying to predict any self-
pairs

3. Evaluation with prediction of self-pairs

The first way ignores the self-pairs in predic-
tion and evaluation. The result is shown in Ta-
ble 2. We also showed the performance of the
co-occurrence (or all-true) baseline. The result
looks better than others, but it is too optimistic to
assume that self-pairs can be classified with the
same performance as the binary-pairs at the same
threshold. However, this way is useful for com-
paring our method with other reported methods.

2http://www-tsujii.is.s.u-tokyo.ac.jp/˜satre/akane/
3http://www.cs.cmu.edu/˜sagae/parser/
4http://www-tsujii.is.s.u-tokyo.ac.jp/enju/
5http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/
6http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/

K E K+E
C (baseline) 30.2 – –
B 53.9 – –
T 55.5 54.6 57.0
G 59.2 58.4 60.6
T+B 60.1 59.6 60.4
G+B 60.0 59.5 61.0
T+G 62.1 61.6 62.6
T+G+B 62.6 62.7 64.3

Table 2: F-score without including any self-pairs (
K:Sagae and Tsujii’s parser, E:Enju, C:Co-occurrence,
B:BOW, T:Subset Tree, G:Graph, +:Summation of
kernels)

K E K+E
CF (baseline) 30.0 – –
B 52.6 – –
T 54.0 53.2 55.7
G 57.8 57.1 59.2
T+B 58.7 58.2 59.0
G+B 58.5 58.1 59.4
T+G 60.4 60.2 61.1
T+G+B 61.1 61.1 62.7

Table 3: F-score without trying to predict any self-
pairs (CF:Co-occurrence on binary-pairs and all-false
on self-pairs)

K E K+E
CF (baseline) 30.0 – –
B 51.1 – –
T 54.0 53.2 55.7
G 58.2 56.7 59.2
T+B 58.0 57.2 58.7
G+B 59.0 57.8 59.1
T+G 60.7 60.5 61.4
T+G+B 60.2 60.1 61.2

Table 4: F-score with prediction of self-pairs

The second way ignores the self-pairs in predic-
tion, but adds the positive self-pairs as false neg-
atives during evaluation. This way is the same
as applying an all-false method to the self-pairs.
The result is shown in Table 3. The results are al-
ways lower than the first one because of the self-
pairs. The baseline was also calculated using the
all-false method to the self-pairs. The third way
considers the self-pairs in prediction and evalua-
tion. The result is shown in Table 4. This is the
right way when we want to make the PPI extrac-
tion system simple or we place much trust in ma-
chine learning methods. The baseline method is
the same as the second one.

Some of the results using the graph kernels in
the third way performed better than those in the
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second way. The graph kernel can acquire the fea-
tures on the self-pairs, and the graph kernel is one
of the hopeful approaches in treating both pairs
together. In other cases, however, the self-pairs
confused the classifiers and the scores were low
especially with the BOW kernels. It should be
noted that the best threshold in Table 2 was dif-
ferent from the one in Table 4. This indicates that
there is a suited threshold for each type of inter-
action pair. We can judge whether an interaction
pair is a self-pair or not beforehand, and we do
not need to treat both types of pairs together. It
is better to predict the self-pairs and the binary-
pairs independently to ease the task and improve
the performance.

3.3 Accuracy Improvements by
Combinations

In Table 3, we can find that the performance in-
creased with an increase in information. This
shows that both the combination of kernels and
the combination of parsers are effective for PPI
extraction. Our method performed best when all
information was extracted. This is surprising, be-
cause AIMed is very small and there are much rel-
evant information between the graph kernel and
the other kernels, which can cause over-fitting.

The comparison with the results of related PPI
methods is summarized in Table 5. The aver-
ages of Precision, Recall, and the F-score were
calculated independently. For the fair compari-
son, we performed a 10-fold CV in each training
data to tune the threshold for each fold, the re-
sult of which is shown as the F-scores in paren-
theses in Table 5. The F-scores in parentheses
show that our evaluation method overestimated
by only 0.8%, so it is not too optimistic . Ad-
ditionally, we also calculated AUC (area under
the ROC [receiver operating characteristic] curve)
and standard deviations provided for the F-score
and AUC (Airola et al., 2008). The ROC curve
is a plot of TPR (true positive rate) vs FPR (false
positive rate) for different thresholds. The F-score
is the best point from a Precision-Recall (PR)
curve (a plot of Precision vs Recall as we vary
the threshold) . Because of these different points
of view, the best result in AUC differs from the
best result in the F-score. Which result is better
depends on the given task; we have thus reported
both results.

The results cannot be compared directly, be-

cause of the differences in data preprocessing,
the different number of target protein pairs, and
different evaluation methods. We compare our
method with other methods based on the evalu-
ation proposed in other PPI papers. We use the F-
score for all the comparisons except for the com-
parison with (Airola et al., 2008), which used
AUC for the first time in PPI extraction.

Our method outperformed all the PPI extrac-
tion methods evaluated with the abstract-wise 10-
fold CV even though some of them ignored the
self-pairs in their prediction and evaluation. The
result of our method was 0.8% lower than the re-
sult of (Miyao et al., 2008) in the same condition,
which is K+E and T+B in Table 4. This is because
they did not use the predicate information in the
PAS structure. On the other hand, this informa-
tion increased the performance of the graph ker-
nel. We may need to evaluate our method more
precisely in order to decide the optimal input
structures. Our method is different from (Airola
et al., 2008) in that they performed the leave-one-
document-out CV on the training data to tune the
parameter. We compare their results with our re-
sult without including any self-pairs, because they
ignored the self-pairs. Our method performed
7.1% better than theirs in F-score and 0.03 bet-
ter than theirs in AUC. (Giuliano et al., 2006)
performed a different evaluation method. As re-
ported in (Airola et al., 2008), its result was an F-
score of 52.4%. (Bunescu and Mooney, 2005b),
(Erkan et al., 2007), and (Katrenko and Adriaans,
2006) also performed different evaluation meth-
ods. Their methods with our evaluation method
is expected to give a lower performance (Sætre et
al., 2007; Airola et al., 2008).

3.4 Error Analysis

Figures 7 and 8 show some false positive exam-
ples and some false negative examples. Some
false positives and false negatives were caused by
uncertainty and negation of interactions (Pyysalo
et al., 2008). The kernels we used may not be able
to distinguish these interactions from the others,
because they do not extract modal information re-
lated to the interactions. The words representing
the interactions may not exist in the shortest path
in the subset tree kernel, and the information for
the interactions may need relations among more
than three words which are not retrieved in the
graph kernel. Some synonyms and abbreviations
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positive all binary P R F σF AUC σAUC
without including any self 1,005 5,648 60.4 69.3 64.3 (63.5) 4.3 0.879 0.026
without trying to predict any self 1,059 5,648 60.4 65.6 62.7 (62.0) 3.5 0.834 0.032
with the prediction of self 1,059 5,648 57.8 66.1 61.4 (60.7) 3.9 0.914 0.020
(Miyao et al., 2008) 1,059 5,648 54.9 65.5 59.5
(Airola et al., 2008) 1,000 5,834 52.9 61.8 56.4 5.0 0.848 0.023
(Sætre et al., 2007) 1,068 5,631 64.3 44.1 52.0
(Mitsumori et al., 2006) 1,107 5,476 54.2 42.6 47.7
(Yakushiji et al., 2005) 33.7 33.1 33.4

Table 5: Comparison with previous results of the PPI extraction methods with the abstract-wise 10-fold CV on
the AIMed corpus. (The F-scores in parentheses were obtained using the 10-fold CV in each training data to tune
the threshold for each fold. )

Uncertainty Interaction of p85prot subunit ofPI
3-kinaseprot with insulinprot and IGF-1prot
receptors analysed by using the two-hybrid
system .

Synonyms The catalytic domain of activated
collagenaseIprot ( MMP-1pair1, pair2
) is absolutely required for interac-
tion with its specific inhibitor , tis-
sueinhibitor of metalloproteinases-1pair1 (
TIMP-1pair2 ) .

Other Misclassification A 51-residue region
from the conserved C-terminal region of
TBPpair12, pair13, pair14 , previously
shown to be the binding site for the viral
activator proteinE1Apair12 , interacts with
c-Fospair13 and c-Junpair14proteins.

Figure 7: False positive examples. Mis-detected rela-
tions are shown in italic.

were also among the false positives. They cannot
be distinguished from the true positives because
the protein names are hidden. In false negatives,
there were interactions that needed more informa-
tion of the words and the context for the extrac-
tion. Some of the interactions may be extracted
by using the incidental features in many texts, but
other interactions will not be detected by the cur-
rent sentence-based approach.

4 Conclusion and Future Work

In this paper, we have proposed an approach us-
ing a combination of kernels for PPI extraction,
which can in turn extract and combine several dif-
ferent layers of information from a sentence and
its syntactic structures by using several parsers.
Each kernel extracts some information from the
sentence with different aspects and loses the other

Need Information of Context We screened
proteins for interaction with prese-
nilin ( PS) 1pair1, and cloned the full-
length cDNA of humandelta-cateninpair1,
which encoded 1225 amino acids.

Need Information of Context We have engi-
neered and purified recombinantK5pair5
head andDPIpair5 tail , and we demonstrate
direct interaction in vitro by solution-binding
assays and by ligand blot assays .

Negation This demonstrates that the C-terminal
hemopexin domain of MMP-1prot, in con-
trast to the corresponding regions ofgelati-
naseApair4 and gelatinaseBpair5 , does
not interact withTIMP-1pair4, pair5 .

Other Misclassification Using the cytoplasmic
domain of Fas in the yeast two-hybrid system
, we have identified a novel interacting pro-
tein , FADDpair2,pair3, pair4 , which binds
Faspair2andFaspair3 - FD5pair4 , a mutant
of Fasprot possessing enhanced killing activ-
ity , but not the functionally inactive mutants
Fasprot - LPRprot and Fasprot - FD8prot .

Figure 8: False negative examples. Undetected inter-
actions are shown in italic.

information in it. The combination of the ker-
nels can gather up all the kernels’ information
and cover some of the lost information. To show
the usefulness of the combination of kernels and
parsers in the PPI extraction, we evaluated our
method using the AIMed corpus. We achieved
an F-score of 62.0% using a SVM. This result is
better than the results of all the current state-of-
the-art PPI extraction methods.

We also analyzed how the performance
changed when including the self-pairs. The re-
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sults of the graph kernels showed that it may be
a good solution to treat both kinds of pairs to-
gether. We should, however, predict the binary-
pairs and the self-pairs independently to make the
task easier and to improve the performance, be-
cause the best threshold for the binary-pairs is dif-
ferent from the one for the self-pairs. When we
predicted the binary-pairs and the self-pairs at the
same time, the classifiers produced worse results
than the results of the classifiers classifying all the
self-pairs as false. We need a way to detect the
self-pairs better than the all-false method.

There is the possibility of improvement by
adding (or replacing) new kernels and parsers.
This is to remedy the fact that the parsers we used
may miss some information in a sentence and the
kernels we used may not extract full information
of the parsers’ outputs. There may be relevant and
redundant information in the combination of all
the kernels, which can confuse classifiers. How
redundant features affect the performance need
to be analyzed before adopting new kernels and
parsers for evaluating them correctly.
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BioLexicon: A Lexical Resource for the Biology Domain 
 
 

 

Abstract 

Natural language processing technologies 

have advanced remarkably in the past two 

decades.  However, biological terminology is 

a frequent cause of analysis errors when 

processing literature written in the biology 

domain. The BOOTStrep BioLexicon is a 

linguistic resource tailored for the domain to 

cope with these problems.  It contains the 

following types of entries: (1) a set of 

terminological verbs; (2) a set of derived 

forms of the terminological verbs; (3) general 

English words frequently used in the biology 

domain; (4) domain terms. This 

comprehensive coverage of biological terms 

makes the lexicon a unique linguistic resource 

within the domain.  This paper focuses on the 

linguistic aspects of the lexicon. 

1  Introduction 

Over the past twenty years, there have been 

remarkable advances in natural language 

processing (NLP) and text mining (TM) 

technologies.  Various practical NLP/TM tools, 

such as part-of-speech taggers, chunkers, syntactic 

parsers and named entity recognizers, are now 

widely available.    

However, text in biology exhibits different 

characteristics from general language documents 

such as newspaper articles.  The biology domain 

demonstrates strong demands for the results of  

NLP/TM.  However, it is also one of the most 

challenging domains for text processing 

(Ananiadou and McNaught, 2006). 

 

Lack of coverage of the following types of 

terminological information makes NLP/TM tasks 

in this domain difficult: 

 

• Large-scale domain-specific terminologies 

• Domain-specific word usage 

• Domain-specific relations between words 

 

Technical terms are a major barrier to bio-text 

processing. A huge number of biological, chemical 

and medical terms appear in the literature and new 

terms are coined every day.  Furthermore, there are 

many spelling and semantic variants of these terms 

representing the same biomedical entities in 

different written forms.  For example, the 

BioThesaurus
1

 contains more than 15 million 

gene/protein names, but still it does not cover the 

wide variety of variants of gene/protein names 

actually appearing in the literature.  

Word usage can be idiosyncratic to the bio-

domain as well.  For example, express often 

indicates a specific biological process, gene 

expression, and takes as arguments specific types 

of named entities, such as gene and protein names.   

In addition, there are many cases where words 

are related in a biology-specific manner.  For 

example, the verb retroregulate has 

retroregulation as its nominal form and 

retroregulatory as its adjectival form.  This extent 

                                                           
1 

http://pir.georgetown.edu/pirwww/iprolink/biothesaurus.shtml 
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of derivational relations between words in the 

biological domain cannot be fully covered by 

general English dictionaries and thesauri, e.g., 

WordNet. To the best of our knowledge, there is 

no biology-specific lexicon that addresses the 

above linguistic issues.   

2 Overview of the BioLexicon 

Figure 1 shows an overview of the BioLexicon.  It 

consists of four part-of-speech categories: verb, 

noun, adjective, and adverb. Each category 

accommodates terminological words and general 

language words.  Biology terms, e.g., gene/protein 

names, are either gathered from existing databases 

or automatically extracted from text.  Other 

terminological words and their relations are 

manually curated. Inflections of general words are 

manually curated based on the MedPost dictionary 

(Smith et al., 2004).  

The database model of the lexicon follows the 

Lexical Markup Framework (LMF) (Francopoulo 

et al., 2006).  The details of the database model 

were reported in Quochi et al. (2008).  

3 Biology-relevant terminologies 

The terminologies in the lexicon are fivefold: (1) 

verbs, (2) adjectives, (3) adverbs; (4) 

terminological nouns, and (5) biomedical terms. 

(1) – (4) have been manually curated. 

 

(1) Terminological verbs 

759 base forms (4,556 inflections) of 

terminological verbs.   

 

(2) Terminological adjectives 

1,258 terminological adjectives.   

 

(3) Terminological adverbs 

130 terminological adverbs. 
 

(4) Nominalized verbs 

1,771  nominalized verbs.   

 

(5) Biomedical terms 

Currently, the BioLexicon contains biomedical 

terms in the categories of cell (842 entries, 1,400 

variants), chemicals (19,637 entries, 106,302 

variants), enzymes (4,016 entries, 11,674 variants), 

diseases (19,457 entries, 33,161 variants), genes 

and proteins (1,640,608 entries, 3,048,920 

variants), gene ontology concepts (25,219 entries, 

81,642 variants), molecular role concepts (8,850 

entries, 60,408 variants), operons (2,672 entries, 

3,145 variants ), protein complexes (2,104 entries, 

2,647 variants), protein domains (16,940 entries, 

33,880 variants), Sequence ontology concepts 

(1,431 entries, 2,326 variants), species (482,992 

entries, 669,481 variants), and transcription factors 

(160 entries, 795 variants).   

In addition to the existing gene/protein names, 

70,105 variants of gene/protein names have been 

newly extracted from 15 million MEDLINE 

abstracts. Section 5 describes the methods used. 

3.1 Terminological verbs  

Terminological verbs have been manually curated 

through examination of biomedical literature.  As a 

result, 759 verbs were selected. 

Following the selection of verbs, three types of 

orthographic variants were added to the lexicon.   

 

- British/American spelling variants 

e.g., acetylise (British)/acetylize (American) or 

harbour (British)/harbor (American)  

 

- Hyphenation variants 

    e.g., co-activate and coactivate 

 

- Combination of the above two 

e.g., co-localise (British), colocalise (British), 

co-localize (American), colocalize (American)   

 

Inflectional forms are all enumerated in our 

lexicon.  The following verbal inflections have 

been completely curated. 

gene/protein names

chemical, disease, 

enzyme, species 

names,...

new gene/protein names

Verb subcategorization 

frames

general nouns

MEDLINE corpus

Biomedical DBs

Terminological verbsTerminological verbs

Nouns

Verbs

Adjectives

Adverbs

Derived adjectivesDerived adjectives

repressrepressed, repressive,

repressible
repression

repressor

repressibility

Nominalized verbsNominalized verbs

Derived adverbsDerived adverbs

repressively

General verbs

General adjectives

General adverbs

NER+NormalizationNER+Normalization

Figure 1  Overview of the Lexicon 
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VV base form 

VVD past tense 

VVN past participle 

VVZ third person singular present 

VVG gerund or present participle  

 

The above parts-of-speech follow the Penn 

Treebank POS tags (Santorini, 1990). 

 

3.2 Derived forms of terminological verbs 

Our strategy was to expand the terminology from 

terminological verbs to derived forms. Three types 

of derivational relations of the terminological verbs 

have been introduced.  Frequently, nominalized 

verbs play the same role as verbs.  Adjectival and 

adverbial derived forms may also be used to 

represent biological events and processes in the 

same context as their associated verbs. For text 

mining applications, it is important to cover these 

possibilities as far as those derivations are 

linguistically correct.  

 

(1) Nominalization 

    Nominalized verbs are verbs that are used as 

nouns.  A verb can be nominalized with or without 

morphological transformation.  For example, the 

nominalized forms of regulate are regulation and 

regulator.  Following Comrie and Thompson 

(2007), we identified two kinds of nominalization. 

 

(i) Action/state nouns 

The noun expresses an action or state of the verb 

from which it is derived, e.g.,  

 

act (v) →  action (n), 

act (v) → act (n),  

act (v) →  acting (n). 

 

(ii) Agentive nouns 

The noun has an 'agent' role to the verb from 

which it is derived, e.g.,  

 

act (v) →  actor (n) 

 

(2) Adjectival derivation 

The derivational relation between adjectives and 

the verbs from which they are derived was 

manually curated, because there is no dictionary 

that fully covers adjectival derivations of 

biological terms. E.g.,  

 

act (v) →  actable (adj.),  

act (v) → active (adj.). 

 

(3) Adverbial derivation 

   The derivational relation between adverbs and 

the verbs from which they are derived were also 

manually curated, e.g.,  

 

act (v) →  actively (adv.) 

 

3.3 Biomedical terms  

Existing biological databases have served as the 

first source of many nominal types of terms 

represented in the BioLexicon. Detailed 

information can be found on the BOOTstrep web 

site. (Bootstrep, 2008).  Such resources are 

characterized by a high coverage of biological 

entities and they contain terms annotated with 

widely recognized and interoperable accession 

number (e.g., UniProt). On the other hand, some 

terms imported from existing resources are 

assigned to concept identifiers in the process of 

automatic curation. Moreover, although biological 

ontologies and controlled vocabularies are meant 

to represent a wide range of concepts, they are not 

designed to reflect the exact wording found in the 

scientific literature. Therefore, some initial 

filtering of potential terms was necessary before 

they could be included in the BioLexicon. As an 

example, terms of proteins identified in the course 

of high-throughput experiments such as 

hypothetical protein were ignored due to their low 

information value. Also, a small number of highly 

ambiguous terms such as generic enzyme names 

were manually annotated as such. Other 

indications of a term’s discriminatory power 

available in the BioLexicon include its frequency 

in Medline and the British National Corpus, as 

they have proven useful in the task of named entity 

recognition (Pezik et al., 2008). 

The choice of these types of terms can be 

explained in two ways. Firstly, we felt it necessary 

to include the most common semantic types 

relevant to the biology domain, such as terms 

denoting gene and protein names, as well as terms 

for chemicals of biological interest or species 
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names. Secondly, including the smaller and more 

focused sets for terms such as operon names or 

sequence ontology terms was motivated by the 

intention to provide links from the BioLexicon to 

the Gene Regulation Ontology (Beisswanger et al., 

2008) and make it suitable for text mining 

applications dealing with gene regulation topics. 

4 General language words 

To cover general language words that are used in 

biology, we have adopted words from the MedPost 

dictionary. This is distributed as a part of the 

MedPost POS tagger package and is available 

copyright free.
1
 The dictionary consists of words 

appearing in MEDLINE abstracts. 

 

The following numbers of entries were 

generated. 

 

• 496 verbs (2,976 inflectional forms) 

• 2,316 adjectives (2,385 inflectional forms) 

• 428 adverbs (440 inflectional forms) 

• 5,012 nouns (6,182 inflectional forms) 

 

Inflections produced for verbs from the 

MedPost dictionary are the same as for 

terminological verbs.  The POS types NN and 

NNS were assigned to the singular and plural 

forms of nouns, respectively.  

Comparative and superlative forms of 

adjectives and adverbs were completed on the 

basis of the MedPost dictionary entries.  

Since that dictionary was created for the 

purposes of a statistical POS tagger for the 

biomedical domain, it is incomplete from a 

linguistic point of view.  For example, common 

and commonest are accommodated by the 

dictionary; however, commoner is not. Therefore, 

inflections of words in the dictionary were 

manually curated and added to the BioLexicon. 

 5 Biological term variants extracted from 

text 

In addition to biomedical terms gathered from 

existing databases, the lexicon accommodates new 

variants of gene/protein names extracted from text. 

                                                           
1 

ftp://ftp.ncbi.nlm.nih.gov/pub/lsmith/MedPost/medpost.tar.gz 

The extraction process consists of two steps. 

The first step identifies gene/protein names in text. 

Then, the second step maps new variants to 

existing entries. 

This section provides a brief summary of the 

named entity recognition (NER) and term 

normalization used to populate the lexicon with 

gene/protein names extracted from biomedical 

literature. 

5.1 Named Entity Recognition 

For NER, we used our dictionary-based statistical  

named entity recognition tool (Sasaki et al., 2008). 

The tool was trained with Conditional Random 

Fields (CRFs) (Lafferty et al., 2001) on the 

JNLPBA-2004 training data (Kim, 2004) and the 

Genia corpus (version 3.02) (Kim et al., 2003).  

The test data used is the JNLPBA-2004 test set, 

which is a set of tokenized sentences extracted 

from 404 separately collected MEDLINE abstracts, 

where the term class labels were manually 

assigned, in accordance with the annotation 

specification of the Genia corpus. 

Following the data format of the JNLPBA-2004 

training set, our training and test data use the IOB2 

labels, which are “B-protein” for the first token of 

the target sequence, “I-protein” for each remaining 

token in the target sequence, and “O” for other 

tokens. The window size was set to ±2 tokens of 

the current token. 

Table 1 shows the evaluation results. Results 

are expressed according to recall (R), precision (P), 

and F-measure (F), which here measure how 

accurately the various experiments determine the 

left boundary (Left), the right boundary (Right), 

and both boundaries (Full) of protein names.  The 

The F-score of the model trained with all the 

features was 73.78, which is the second best score 

for protein name recognition among research 

reported using the standard JNLPBA-2004 data set. 

Gene/protein names identified by CRF 

classifiers with a probability greater than 99% are 

  R P F 

Sequential  

labeling 

Full 

Left 

Right 

79.85 

84.82 

86.60 

68.58 

72.85 

74.37 

73.78 

78.38 

80.02 

Table 1  NER performance 
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selected as new gene/protein variant candidates 

from 15 million MEDLINE abstracts. 

5.2 Term mapping  

Terms automatically extracted from text were 

mapped to existing gene/protein name entries, 

which are given standard semantic identifiers 

called UniProt Accession Numbers. For efficiency 

reasons, term mapping was conducted through 

term normalization. Since the lexicon contains 

about two million gene/protein names, 

straightforward similarity calculation of term pairs 

is not practical: when an NER component extracts 

tens of millions of gene/protein name candidates 

from a corpus, the similarity distance of 2⋅10
13

 

pairs of terms must be calculated. This amount of    

computation can be drastically reduced to 10
7
 

normalizations and index lookups.   

The normalization steps are as follows: 

 

1.  Create an inverse index that maps 

normalized forms to UniProt Accession 

Numbers. 

2. Normalize newly extracted terms. 

3. Lookup the inverse index to find UniProt 

Accession Numbers of the new terms. 

 

There are several ways to normalize biomedical 

terms.  We employed a method (Tsuruoka et al., 

2007) where the normalization rules were 

automatically generated from a dictionary in which 

terms are clustered according to UniProt Accession 

Numbers.  A brief summary of the method is as 

follows: 

The method finds string-rewriting rules one by 

one based on the following complexity measure: 

 

(complexity)=(ambiguity)× (variability)
α
 

 

where the ambiguity quantifies how ambiguous the 

terms are in the dictionary, the variability value 

quantifies how variable the terms are, and  α is the 

constant that determines the trade-off between 

ambiguity and variability. 

Finding string rewriting rules is quite 

straightforward. We can represent any pair of 

terms x and y as follows:  

 

x = LXR 

y = LYR 

where L is the left common substring shared by 

strings x and y, R is the right common substring, 

and X and Y are the substrings in the center that are 

not shared by the two strings. From this 

representation, we create the rule that replaces Y 

with X, which will transform y into x.  

According to the experimental results reported 

in Tsuruoka et al. (2007), normalization 

performance is the same as normalization rules 

hand-crafted by domain experts.  We generated 

1,000 normalization rules, using the gene/protein 

names gathered from existing databases as the 

dictionary for normalization rule generation. 

Terms mapped to more than 10 accession 

numbers are considered too ambiguous and filtered 

out from the new variant list.  As a result, 70,105 

variants of gene/protein names were extracted from 

15 million MEDLINE abstracts. 

6 Biomedical usages 

In the lexicon, terminological verbs are linked to 

verb subcategorization frames (SCFs) which were 

acquired through unsupervised automatic 

acquisition techniques from linguistically pre-

processed domain corpora. In the biomedical field, 

there is a strongly-felt desideratum that 

subcategorisation patterns should include strongly 

selected modifiers (such as location, manner and 

timing), as these are deemed to be essential for the 

correct interpretation of texts (Tsai et al., 2007). 

According to this, we adopted a “discovery” 

approach to SCF acquisition based on a looser 

notion of SCFs, which include typical verb 

modifiers in addition to strongly selected 

arguments.  

In order to meet this basic requirement, a deep 

level of syntactic annotation was selected as the 

starting point for SCF induction. For this purpose, 

we used the Enju syntactic parser for English 

(Miyao et al., 2003)
1
, characterised by a wide-

coverage probabilistic HPSG grammar and an 

efficient parsing algorithm, and whose output is 

returned in terms of predicate-argument relations. 

In particular, we used the Enju version adapted to 

biomedical texts (Hara et al., 2005).  

The SCF induction process was performed 

through the following steps:  
 

                                                           
1 http://www-tsujii.is.s.u-tokyo.ac.jp/enju/ 
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1. syntactic annotation of the acquisition corpus 

with Enju (v2.2). The acquisition corpus 

included both MEDLINE abstracts and full 

papers containing a total of approximately 6 

million word tokens; 

2. for each verbal occurrence, extraction of the 

observed dependency sets (ODSs). Note that 

the order of the dependencies in each ODS is 

normalised and does not reflect their order of 

occurrence in context; 

3. induction of relevant SCF information 

associated with a given verb. 
 

For each observed dependency set, the 

conditional probability given the verb type v was 

computed: thresholding was used, to filter out 

noisy frames (i.e., frames containing not only 

arguments and strongly selected modifiers, but also 

adjuncts) as well as possible errors of either 

parsing or ODS extraction. An ODS with an 

associated probability score beyond a certain 

threshold is selected as eligible SCF for that verb 

type.  

Careful analysis of acquired SCFs revealed that 

many of the strongly selected modifiers were 

spread over different frames and that, even by 

lowering filtering thresholds, they either 

disappeared from the final output or their role was 

radically underestimated. We thus decided to 

complement acquired SCF information with 

information about individual dependencies of 

verbs. To detect typical verbal dependencies, 

corresponding to either arguments or strongly 

selected modifiers, we used the log likelihood 

score (henceforth ll (Dunning, 1993)). This is a 

logarithmic measure of the degree of correlation 

between v and each dependency type, gauged by 

comparing their joint probability with the 

probability of finding them together by chance, 

given their independent marginal distributions.  

Due to the observed complementarity between 

acquired SCF and individual dependency 

information and its potential usage in different text 

mining applications, we decided to include both 

information types in the lexicon. SCF and 

dependency information was acquired for 759 

orthographic variants of different terminological 

verbs, corresponding to 658 different base forms 

(see section 3.1). In particular, the lexicon includes 

1,410 verb-SCF associations, involving 97 

different SCF types, and 1,718 verb-dependency 

associations, involving 44 dependency types. For 

each SCF, the following information types are 

specified: its conditional probability given the verb, 

and the percentage of times it occurs with the verb 

in the passive voice. This latter information type is 

particularly useful to account for SCFs typically 

associated with the verb used in the passive voice: 

this is the case, for instance, of the verb find whose 

frame  ARG1#ARG2#TO-INF# is typically (i.e., 

89% of the time) associated with passive contexts 

(e.g., This was found to be interesting). Concerning 

individual dependencies, the lexicon includes 

information about its association with respect to 

the verb, expressed in terms of the ll score, and – 

again – the percentage of times it occurs with the 

verb in the passive voice. Tables 2 and 3 show 

examples of subcategorization information stored 

in the lexicon for the verb acquire. 
 

Table 2  Subcategorization frame examples 

 

v SCF p(SCF|v) % pass 

acquire ARG1#ARG2# 0.5461 0.1284 

acquire ARG1#ARG2#PP-in# 0.0886 0.0833 

acquire ARG1#ARG2#PP-from# 0.0406 0.1818 

acquire ARG1#ARG2#PP-by# 0.0406 0.0000 

acquire ARG1#ARG2#PP-during# 0.0295 0.3750 

 

Table 3  Subcategorization slot examples 

 

v DEP ll % pass 

acquire ARG2# 579.96392 0.1512915 

acquire WH-when# 25.703417 0.1 

acquire PP-from# 22.716082 0.3333333 

acquire PP-by# 13.626654 0 

acquire PP-in# 13.416025 0.1666667 

 

7. Comparison to existing lexicons 

Several existing large-scale dictionaries and 

lexicons accommodate biological terms.  Among 

them, many researchers use WordNet and the 

Specialist Lexicon for their text processing. 

WordNet is a general English resource which 

contains domain specific terms.  The Specialist 

Lexicon was created by the National Library of 

Medicine, targeting the biomedical domain in 

general.  

This section shows that our lexicon 

complements these popular lexical resources, by 

focusing on the words and relations that are 
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covered by our lexicon but not by these existing 

ones. 

7.1 WordNet 

WordNet (Fellbaum, 1998) is a general English 

thesaurus which additionally covers biological 

terms.  We used WordNet 3.0
1
 to evaluate term 

coverage.   

Figure 2 shows the proportion of terminological 

words and relations (such as the word 

retroregulate and the relation retroregulate → 

retroregulation) in our lexicon that are also found 

in WordNet. 

Since WordNet is not targeted at the biology 

domain, many biological terms and derivational 

relations are not listed.   

7.2 UMLS Specialist Lexicon 

The Specialist Lexicon2 is a syntactic lexicon of 

biomedical and general English words, providing 

linguistic information about individual vocabulary 

items (Browne et al., 2003).  Whilst it contains a 

large number of biomedical terms, our lexicon is 

tailored to the biology domain and covers more 

terms used within the biology domain, especially 

the molecular biology domain, than the Specialist 

Lexicon. 

Figure 3 shows the proportion of words in our 

lexicon that are covered by the Specialist Lexicon. 

Because the Specialist Lexicon is a biomedical 

lexicon and the target is broader than our lexicon, 

some biology-oriented words and relations are 

missing.  For example the Specialist Lexicon 

includes the term retro-regulator but not retro-

regulate. This means that derivational relations of 

retro-regulate are not covered by the Specialist 

Lexicon. 

8. Conclusion and remarks 

This paper has presented the BioLexicon, a unique 

resource comprising rich linguistic information 

suitable for bio-text mining applications.  The 

lexicon has the following types of entries. 

 

(1) Terminologies 

(2) Derivational relations 

                                                           
1 http://wordnet.princeton.edu/3.0/WordNet-3.0.tar.gz 
2 http://SPECIALIST.nlm.hih.gov 

(3) General English words 

(4) Verb subcategorization frames 
 

Comparisons with WordNet and the NLM 

Specialist Lexicon reveal that the BioLexicon 

covers words and relations which are pertinent to 

the biology domain but not included in these 

resources. We believe that it is a unique resource 

within the domain, which will play a 

complementary role to existing lexicons and 

thesauri. 

The BioLexicon is available for non-

commercial purposes under the Creative Commons 

license.  

Our future work includes incorporating 

semantic event frames, such as gene regulation 

event frames, in the lexicon.  Extrinsic evaluations 

of the lexicon in information extraction and 

question answering tasks are also planed. 
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Abstract

We explore the sources of incompatibility
between the protein annotations made to
two corpora: GENIA and AIMed. We first
hypothesize a problem with the incompati-
bility caused by corpus integration, and we
measure the effect of the incompatibility
on protein mention recognition. Through
a series of experiments, we find several
sources of the incompatibility, and suggest
that more than half of the incompatibilities
can be reduced by properly considering the
scope of the annotated proteins, text pre-
processing, and boundary annotation con-
ventions.

1 Introduction

Human-annotated corpora are widely used in de-
veloping language processing systems. For bio-
text mining, there are several well-known corpora
with protein mention annotations: GENIA (Kim
et al., 2003), PennBioIE (Mandel, 2006), GENE-
TAG (Tanabe et al., 2005), AIMed (Bunescu et
al., 2005), etc. Based on these corpora, many
protein mention recognizers have been developed,
some of which report state-of-the-art performance
(Wilbur et al., 2007).

However, there remains a well-known, but less
studied, problem. Since the protein annotations
are made by different groups, it is likely that the
annotations in different corpora are not compati-
ble with each other.

The incompatibility brings about several signif-
icant problems. For example, it is difficult to ef-
fectively utilize more than one corpus to develop
a protein mention recognizer. Indeed, there has
never been a protein recognizer developed by uti-
lizing multi-corpora, because it is hardly possible

to benefit from corpus integration. It is also diffi-
cult to compare systems developed with different
corpora. Although there are many systems that
claim to recognize protein mentions from MED-
LINE texts, their reported performance varies sig-
nificantly (Tsai et al., 2006). The mentioned prob-
lems are largely caused by the incompatibility
of different protein annotations, and can not be
solved effectively without understanding the dif-
ferences in the annotations (Pyysalo et al., 2008).

In this paper, we explore the potential sources
of incompatibility between two well-known cor-
pora with protein annotations: GENIA and
AIMed. We first characterize the incompatibility
resulting from using the two corpora as a single
resource. Then, we carefully study the documen-
tation of the two corpora in order to figure out
the sources of incompatibility. Through a series
of experiments, we explore the possible sources,
while finding reasonable ways to avoid the prob-
lems caused by the incompatibility of protein an-
notations. Experimental results show that it is
feasible to reduce the incompatibility of the het-
erogeneous annotations by properly considering
the differences. Meanwhile, we can get a com-
prehensive understanding of the two corpora, and
take advantage of the annotations in both corpora,
while minimizing the negative effects caused by
their inconsistency.

The paper is organized as follows. In section 2,
the two corpora used for exploration, GENIA and
AIMed, are described. Two preliminary exper-
iments characterizing the problem of combining
two incompatible corpora are reported in section
3. From section 4 to section 6, the corpora’s dif-
ferences are explored regarding three aspects: the
scope of the entities of interest, text preprocess-
ing, and the conventions for boundary decisions,
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respectively. We propose a way to reduce the cor-
pus inconsistency for each aspect. Following a
final experiment on the remaining inconsistencies
in section 7, our research is concluded in section
8.

2 Data

Here, we briefly introduce the GENIA and the
AIMed corpora, focusing on their size and cov-
ered domain.

2.1 The GENIA corpus

The GENIA corpus (version 3.02) is a collection
of articles extracted from the MEDLINE database
with the MeSH terms “human”, “blood cells” and
“transcription factors”. There are 2,000 abstracts
and 18,545 sentences totally. The term annotation
is according to a taxonomy of 48 classes based on
a chemical classification. Among the classes, 36
terminal classes were used to annotate the corpus.
The total number of annotated terms is 93,293.

In recent years, the GENIA corpus has be-
come one of the most frequently used corpora in
biomedical named entity recognition (Bio-NER)
task (Cohen and Hersh, 2005).

2.2 The AIMed corpus

The AIMed corpus consists of 225 MEDLINE ab-
stracts, of which 180 are known to describe inter-
actions between human proteins, while the other
45 do not refer to any interaction. In all, there are
1,969 sentences and 4,084 protein references.

The AIMed corpus is now one of the most
widely used corpora with protein interaction an-
notation. Its protein annotations are parts of the
protein interaction annotations.

3 Preliminary experiments

We performed two preliminary experiments in or-
der to confirm the following two assumptions.
First, we can improve the performance of a pro-
tein mention recognizer by increasing the size of
the training data set. Second, the system perfor-
mance will drop when incompatible annotations
are introduced into the training data set. The pro-
tein mention recognizer used in our work is a
Maximum Entropy Markov Model n-best tagger
(Yoshida and Tsujii, 2007). To reduce our task to
a simple linear sequential analysis problem, we

removed all the embedded tags in GENIA and
AIMed, and only retained the outermost tags.1

We divided the AIMed corpus into two parts,
70% for training and the remainder for testing.
In the first experiment, we only used the AIMed
training part. In this experiment, we performed
seven sub-experiments, and each time, we added
10% more abstracts into the training portion. In
the second experiment, besides the AIMed train-
ing part, we also added the GENIA protein anno-
tations. In both experiments, we performed the
evaluations on the AIMed test part according to
the exact matching criterion. In this paper, all
the evaluations are carried on the AIMed test part,
whose size is 30% of the AIMed corpus. For con-
venience, the AIMed training part is simply called
the “AIMed corpus” in the following.

A learning curve drawn from the results of the
two mentioned experiments is shown in Figure 1.

Figure 1: Learning curve drawn from the results of two
preliminary experiments.

We can see that the learning curve is still in-
creasing when we used up all the training por-
tions of the AIMed corpus. We would expect a
further improvement if we could add more train-
ing data in a large scale, e.g. the GENIA corpus,
which is ten times bigger than the AIMed corpus.
But when we actually add the protein annotations
in the GENIA corpus to the training data set, we
witness a drastic degradation in the performance.
We assume that the degradation is caused by the
incompatibility of the protein annotations in the
two corpora, and we further assume that as the in-
compatibility decreases, the learning curve would
get back to the original increasing direction.

In the following three sections, we will ex-

1There are 136 embedded occurrences in the AIMed cor-
pus, 3 of which are triple-nested. And there are 1,494 em-
bedded cases in the GENIA corpus.
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plain some differences that cause the performance
degradation, both from the perspective of docu-
mentation and from the experimental results. Ac-
cording to the differences, we design a series
of experiments to reduce the incompatibility be-
tween the two corpora when using them in an in-
tegrated way.

4 Scope of the entities of interest

Although both corpora include protein mention
annotations, the target tasks are different. The
GENIA annotation centers on mining literature
for general knowledge in biology, while the
AIMed annotation focuses on extracting interac-
tions among individual proteins. The difference
has affected the scope of annotated proteins: GE-
NIA concerns all the protein-mentioning terms,
while AIMed focuses only on references of indi-
vidual proteins.

4.1 Categories of annotated proteins

The scope of the proteins annotated in the GENIA
corpus is defined in the GENIA ontology (Ohta et
al., 2002); besides the protein class, other classes
such as DNA, RNA, cell line and cell type are also
included. Further, the protein class is categorized
into seven subclasses: Protein complex, Pro-
tein domain or region, Protein family or group,
Protein molecule, Protein substructure, Pro-
tein subunit and Protein ETC. In other words,
in GENIA, the protein is defined to include all
seven concepts. No other protein subclasses are
defined in the GENIA corpus.

In the case of AIMed, the scope of the proteins
annotated is described by the following statement
in the tagging conventions: generic protein fam-
ilies are not tagged, only specific names (pro-
tein molecules) that could ultimately be traced
back to specific genes in the human genome are
tagged. E.g. “Tumor necrosis factor” would not
be tagged, while “tumor necrosis factor alpha”
would be.

Hence, the documentation of the two corpora
explicitly states that:

(1) the mentions of protein families (Pro-
tein family or group) are annotated in GE-
NIA, but not in AIMed, and

(2) individual proteins (Protein molecule) are
annotated in both corpora.

4.2 Compatible annotations
Section 4.1 provided two clues for the in-
clusion/exclusion of Protein molecule and Pro-
tein family or group annotations, specified in the
published literature. However, there are five other
protein subcategories annotated in GENIA, and
we could not find any mentions regarding the in-
clusion or exclusion of the five protein subcate-
gories in the scope of the annotations in AIMed.
We performed a series of experiments to confirm
the two clues that we found, and to find other
clues for the other five protein subclasses.

+ Subcategory Recall Precision F-score
molecule 52.87 82.80 64.54
subunit 29.63 86.57 44.15
ETC 28.61 89.60 43.37
substructure 28.10 88.00 42.59
complex 28.48 79.93 42.00
domain or region 27.71 79.49 41.10
family or group 26.82 65.02 37.97

Table 1: Experimental results of the AIMed corpus
plus the GENIA protein subcategory annotations.

We used each of the GENIA protein subclasses
in turn together with the AIMed corpus for the
training. That is, each time we regarded the anno-
tations from a different GENIA protein subclass
as positive examples. The experimental results
are listed in Table 1, showing the exact matching
scores. According to the table, it is most harmful
to add the Protein family or group annotations,
supporting the clue we have already found: the
mentions of protein families are annotated in GE-
NIA, but not in AIMed. Also, we notice that the
GENIA Protein molecule annotations least nega-
tively affect the performance of recognizing the
proteins tagged in the AIMed corpus, and the
Protein subunit and Protein complex follow it2.
Meanwhile, we observe that by adding the pro-
tein subcategory annotations, the precision of the
protein mention recognition on the AIMed corpus
is very good, while the recall is very low. This ob-
servation suggests that if we add the annotations
of the three protein sub-classes into the training
material at the same time, we could improve the
recall while maintaining good precision. Table
2 shows the experimental results based on this

2Because the number of the Protein substructure annota-
tions and the Protein ETC annotations are very small ( 103
and 85, respectively), the two protein subcategories were ex-
cluded from consideration.
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AIMed + Subcategory Criterion Recall Precision F-score
molecule + subunit Exact 53.77 80.96 64.62

Left 58.75 88.46 70.61
Right 56.70 85.38 68.15
Overlap 62.20 93.65 74.75

molecule + subunit + complex Exact 54.15 76.40 63.38
Left 62.58 88.29 73.24
Right 57.34 80.90 67.12
Overlap 67.05 94.59 78.47

Table 2: Experimental results of the AIMed corpus plus the annotations of three GENIA protein subcategories.

Training data Criterion Recall Precision F-score
AIMed Exact 74.33 79.18 76.68

Left 78.93 84.08 81.42
Right 76.63 81.63 79.05
Overlap 81.48 86.80 84.06

AIMed + GENIA Protein Exact 56.19 61.20 58.59
Left 66.79 72.74 69.64
Right 59.90 65.23 62.45
Overlap 72.80 79.28 75.54

Table 3: Experimental results of the AIMed corpus and the AIMed corpus plus the GENIA protein annotations.

hypothesis. In addition to the exact, left bound-
ary and right boundary matching criteria, we also
tested an overlap matching criterion (Franzén et
al., 2002), namely, if any part of a protein men-
tion is identified, it will be considered as a correct
answer. The experimental results show that when
we collectively use the GENIA annotations of
the three protein subclasses, the recall improved
significantly while minimizing decrease in preci-
sion. For fair comparison, we also applied the left
boundary, right boundary and overlap matching
criteria to the results gained by using the AIMed
corpus, and the AIMed corpus plus the GENIA
protein annotations, respectively. The results are
shown in Table 3.

Since our goal is to find a way to make the
learning curve go back to an increasing state, we
set the performance induced from the pure AIMed
corpus as the minimum goal. Then, the potential
(maximum) reduction rate of incompatibility can
be calculated by Formula (1):

Re =
Fe − FA+G

FA − FA+G
%, (1)

where Re denotes the corpus incompatibility
reduction rate of a given experiment, Fe denotes
the F-score of the given experiment, FA and
FA+G denote the F-score of the training with the
AIMed corpus, and with the AIMed corpus plus

the GENIA protein annotations, respectively.
We can say that, by combining the GE-

NIA Protein molecule, Protein subunit and Pro-
tein complex annotations with the AIMed corpus,
we reduced the corpus incompatibility by 30.56%
(the left boundary matching criterion3). So, when
we want to introduce the annotations from the
GENIA corpus, we can use the annotations of the
three protein subclasses. It further indicates that
the annotations of these three protein subclasses
in both corpora are compatible to some extent.

We found sentences including Protein subunit
or Protein complex annotations, which will not
cause the incompatibility during corpus combina-
tion4. That is, in both corpora, these entities are
regarded as proteins, so we can introduce most
of the GENIA annotations of these entities into
AIMed, without negative influence. Some exam-
ples are shown in Figure 2. For comparison, all
the entity annotations are shown in the figure.

4.3 Ambiguity between DNAs and genes

The protein annotations in the AIMed corpus in-
clude not only proteins, but also genes, with-
out differentiating them. In the case of the GE-
NIA corpus, the protein annotation is applied

3To avoid underestimation, we adopted a looser criterion.
4Protein molecule has already been annotated in both

corpora.
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Disruption of the Jak1 binding proline-rich Box1 region
Protein domain or region of IL-4Ralpha

Protein subunit abolished signaling by this
chimeric receptor

Protein family or group . (GENIA PMID 9159166)

Only weak IL-13 binding activity was found in cells transfected with only IL-13Ralpha; however, the
combination of both IL-13Ralpha and IL-4Ralpha resulted in substantial binding activity, with a Kd of
approximately 400 pM, indicating that both chains are essential components of the IL-13 receptor. (AIMed
PMID 8910586)

Triflusal and HTB may exert beneficial effects in processes in which de novo COX-2
Protein molecule expression

is involved and, in a broader sense, in pathological situations in which genes under nuclear factor-kappaB
Protein complex

control are up-regulated. (GENIA PMID 10101034)

In this review, we summarize these and other TNF receptor-associated proteins and their potential roles
in regulating the activation of nuclear factor-kappaB and apoptosis, two major responses activated by
engagement of TNF receptors by the ligand. (AIMed PMID 9129204)

Figure 2: Sentences including the same annotated entities. (The boldface represents an annotated entity and in
the GENIA examples the word under the line represents the class used to annotate the entity.)

only to proteins, while genes are annotated in the
scope of DNA annotations. This suggests that it
would improve the consistency if we treat gene
annotations in the GENIA corpus in the same
way as done in the AIMed corpus. However,
the GENIA annotation does not include an ex-
plicit gene annotation. Instead, genes are an-
notated as instances of DNA domain or region
which is also applied to other DNA regions; e.g.
binding sites and c-terminals. We assume that
if the DNA domain or region annotations that
are not pure genes can be filtered out from all
the DNA domain or region annotations, we can
find some examples from the remaining GENIA
DNA domain or region annotations that will pos-
itively affect the corpus combination. Therefore,
if we assume that the performance of the rec-
ognizer trained with the AIMed corpus is good
enough,5 it will find most of the gene mentions in
the GENIA corpus. The true positives, which are
annotated as DNA domain or region in the GE-
NIA corpus and are also recognized by the rec-
ognizer, will include DNA domain or region in-
stances which are genes.

To examine the performance of the filtering, we
added all the DNA domain or region annotations
to the training set in one experiment, and only the
“true positive” classified “genes” in another ex-
periment. The results shown in Table 4 indicate

5Of course, the filtering would only work perfectly, on
the premise that the performance of the recognizer is perfect,
so it will be a rough filtering.

that the disambiguation between DNAs and genes
works, although the improvement degree result-
ing from the filtering is not big.

As mentioned in section 4.2, adding only
the Protein molecule, Protein subunit and Pro-
tein complex annotations gives the best perfor-
mance on the AIMed test part. Next, besides these
three annotation types, we also added the filtered
DNA domain or region annotations to train our
protein mention recognizer. The experimental re-
sults are shown in Table 5. Compared with Table
3, the corpus incompatibility is reduced 40.58%
by adding the filtered DNA domain or region an-
notations (the left boundary matching criterion).

AIMed + Subcategory Recall Precision F-score
DNA 29.76 80.62 43.47
DNA which is a gene 30.27 84.95 44.63

Table 4: Experimental results of the disambiguation
between DNA domain or region and gene based on
the exact matching criterion.

Criterion Recall Precision F-score
Exact 56.58 74.70 64.39
Left 65.39 86.34 74.42
Right 60.28 79.60 68.60
Overlap 70.63 93.25 80.38

Table 5: Experimental results of adding the Pro-
tein molecule, Protein subunit and Protein complex,
and the filtered DNA domain or region annotations.
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5 Text preprocessing

In the AIMed corpus, a pre-tokenization policy
is taken, which is the Penn Tree Bank style to-
kenization. Hence, we also pre-tokenized the
GENIA corpus according to the Penn Tree Bank
style, and retrained our recognizer by combin-
ing the Protein molecule subunit complex anno-
tations, and the filtered DNA domain or region
annotations, with the AIMed corpus. The exper-
imental results are shown in Table 6. Compared
with the results from Table 3, we reduce the in-
compatibility of the two corpora by 44.57% (the
left boundary matching criterion).

Criterion Recall Precision F-score
Exact 58.75 75.29 66.00
Left 66.67 85.43 74.89
Right 61.56 78.89 69.15
Overlap 70.88 90.83 79.62

Table 6: Experimental results of taking Penn Tree
Bank style pre-tokenization.

6 Boundary of protein mentions

Even though the scope of the proteins to be an-
notated is standardized, the boundary of the pro-
tein mentions is still ambiguous. In general, the
boundary ambiguity often arises in two ways.
One ambiguity exists in making general guide-
lines for which part of a text expression is in
charge of mentioning a protein. The other am-
biguity exists regarding the confusion concerning
the application of these guidelines. The confusion
can be measured by entropy, as described below.

6.1 Determining which part is in charge of
protein mentions

For example, when the text expression “p21ras
protein” is given, it is not obvious whether to an-
notate the word “protein” as a part of the protein
mentioning expression or not. We found that GE-
NIA includes the word “protein” in the protein
mentioning expressions, while AIMed excludes
it. If a Bio-NER system is trained with AIMed,
and we evaluate this system on GENIA, we can
see a boundary matching error in “p21ras” , where
“protein” is not included in the tag. However,
for a text mining system, this error may be ac-
ceptable, since the system has correctly identified
“p21ras” as a protein, and this information is ad-
equate to mine the relationship between “p21ras”

and another protein. Similarly, “the p21ras pro-
tein” or “the p21ras” could also be considered
correct.

This also affects the average length of the pro-
tein mentions in the two corpora. The average
length per protein mention is 1.9 tokens in the
AIMed corpus, and 2.9 in the GENIA corpus. The
percentages of protein mentions over 3 tokens in
AIMed and GENIA are 12.65% and 50.29%, re-
spectively. Many long protein mentions are intro-
duced when we add the GENIA annotations into
AIMed; this is another source of the performance
degradation of recognizing shorter protein men-
tions in the AIMed corpus.

6.2 Annotation entropy for boundary words
In a given corpus, some words are annotated as
inside of protein mentions, while other words are
not. The annotation entropy of boundary words is
calculated by Formula (2). For the sake of brevity,
the (boundary) “word” discussed in this subsec-
tion describes the word that appears at the begin-
ning or end of an annotated entity, or that abuts an
annotated entity. When the annotation entropy of
a boundary word is 0, this word is perfectly anno-
tated and keeps the annotation consistency in the
entire corpus. On the contrary, when the annota-
tion entropy of a boundary word is 1, this word
is so disorderly annotated that we can hardly find
any rules about whether to regard it as a part of
protein mentions or not. The value of Eb ranges
from 0 (consistent) to 1 (inconsistent).

Eb = −(Pa log2 Pa + Pa log2 Pa), (2)

where, Eb denotes the annotation entropy of a
given word, Pa denotes the percent of the anno-
tated occurrences of this word, and Pa denotes
the percent of the occurrences of this word that
are not annotated.

In general, there are two types of boundary
words: descriptive adjectives (such as “normal”
or “activated”), and nouns, denoting the seman-
tic category, occurring either before (as modi-
fiers, such as “human”) or after (as heads, such
as “protein” or “molecule” ) The GENIA tagger6

was used to determine the words Part-Of-Speech.
Some boundary words appearing in each corpus
are listed in Table 7. In order to characterize the
differences between the two corpora in terms of

6http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/
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Category Word AIMed GENIA
Na Nn Eb Na Nn Eb

Adjective recombinant 1 7 0.54 36 24 0.97
soluble 1 9 0.48 14 15 1.00
inducible 0 0 0.00 18 18 1.00
putative 0 0 0.00 15 15 1.00
constitutive 0 0 0.00 12 11 1.00
low 0 0 0.00 14 11 0.99
major 0 0 0.00 25 15 0.95

Noun before protein 12 29 0.73 164 18 0.47
Noun after protein 36 17 0.96 749 45 0.31

site 0 0 0.00 21 12 0.95

Table 7: List of boundary words. Here, Noun before indicates the noun occurring before an entity as a modifier,
Noun after indicates the noun occurring after an entity as a head. Na is the number of the annotated occurrences,
and Nn is the number of not annotated occurrences.

annotation entropy of boundary words, the words
with annotation entropy close to 1 in one of the
two corpora were included in Table 7.

From the table, we can see that the boundary
annotation problem appears for various words.
The distribution of these words is diverse, espe-
cially for the case of adjectives. Since as few
extra characters as possible were tagged in the
AIMed corpus, only the names of protein men-
tions are annotated, and most of the adjectives are
not annotated. However, in the GENIA corpus,
the adjectives before protein mentions are anno-
tated only if they are required for the meaning of
protein mentions (e.g. in the protein mention of
“inducible cAMP early repressor”, “inducible” is
annotated, because it is needed for the compre-
hension of the meaning.).

In this situation, we need an alternative match-
ing criterion other than the exact matching. To
provide alternative evaluation perspectives, re-
searchers have developed a variety of evaluation
criteria that relax the matching to different de-
grees. Here, as previously shown, in addition
to exact matching, left boundary, right boundary,
and overlap matching are considered. Thus, if we
assume that the expected minimal performance of
the F-score of this work is near 84.06% (no corpus
integration), it can be said that the possible max-
imum reduction of the incompatibility between
the two corpora by the methods in this paper is
56.81% (the overlap matching criterion in Table
5).

7 Experiments performed on the
non-overlapped data

From our current best results shown in section 6,
there are still remaining incompatibilities respon-
sible for more than half of the total incompatibil-
ities. Since the abstracts in the two corpora are
collected in different ways, it is supposed that the
proteins mainly mentioned in the two corpora are
heterogeneous, resulting in the incompatibility.

To quantify this assumption, we counted the
number of identical names between the training
and the testing part of AIMed, and between the
AIMed training part and the GENIA protein an-
notations. In order to find the unique proteins, we
normalized the protein mentions; for example, we
changed uppercases to lowercases, and removed
punctuation marks, spaces, and the appositions
in parentheses. There are 766 unique entities in
the AIMed training part, 250 in the AIMed test
part and 7,759 in the GENIA corpus. Between
the AIMed training part and the GENIA protein
annotations, there are merely 270 unique entities
that are overlapped. Further, between the train-
ing and the test parts of AIMed, the number of
the overlapped unique entities is just 91. Due to
the low overlapping coefficient, we divided the
AIMed test part into two parts: one includes the
annotations overlapped with the AIMed training
part, and another includes the annotations that are
not overlapped with the AIMed training part. We
re-evaluated our recognizer on the latter part. The
experimental results are shown in Table 8. From
the table, even though the performance on the
non-overlapped part did not improve by adding
the three GENIA protein subcategories and the
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filtered DNA domain or region annotations, and
by taking pre-tokenization, the result is very close
to the result gained by using only the AIMed cor-
pus for training. It implies that the heterogene-
ity of the proteins in the two corpora is another
major source of the incompatibility, and suggests
that we need find an appropriate way to properly
consider the heterogeneity.

Training data Recall Precision F-score
AIMed 71.46 40.54 51.73
AIMed+GENIA 63.31 43.21 51.36

Table 8: Experimental results of the non-overlapped
part based on the overlap matching criterion.
The last row shows the result of adding the
three GENIA protein subcategories and the filtered
DNA domain or region annotations, and taking pre-
tokenization.

8 Conclusions

Incompatibility of protein annotations in different
corpora is a well known, but less studied, prob-
lem. In order to measure the effect of the in-
compatibility on protein mention recognition, we
performed an experiment of corpus integration,
which showed a significant degradation of perfor-
mance due to the incompatibility.

Motivated by the result of the preliminary ex-
periment, we investigated the source of incom-
patibility through a series of experiments. The
results were encouraging. We found three main
sources of incompatibility: the scope of the en-
tities of interest, text preprocessing, and bound-
ary of protein mentions, thus suggesting ways of
reducing or avoiding the incompatibility. Mean-
while, we could improve our understanding of the
difference of the two corpora, leading to a better
understanding about the performance of protein
recognizers based on them.

Some future works will follow from two per-
spectives. In order to achieve an actual improve-
ment of protein recognition by integrating differ-
ent corpora, we will further investigate the re-
maining source of incompatibility, finding a suit-
able model to integrate heterogeneous annota-
tions. In order to better understand the difference
of protein annotations, we will extend the com-
parison work to other corpora, e.g. GENETAG,
toward a better consensus of protein annotations.
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Abstract

The extraction of protein-protein interac-
tions (PPI) from text requires a formal PPI
representation. We use the BioInfer and
GENIA corpora to study two such repre-
sentations: a “binary” interaction model
consisting of pairs of proteins and a “com-
plex” model where interactions are defined
as a network of proteins and their relations.
As both of these formats can be seen as
graphs, we contrast them with syntactic de-
pendency graphs, a common tool for PPI
extraction. We find that unlike binary in-
teractions, complex interactions closely re-
semble dependency parses, especially those
in the Stanford scheme. We therefore ar-
gue that despite appearances, complex in-
teractions might be easier to extract. We
also notice the similarity between the inde-
pendently developed BioInfer and GENIA
interaction representations and the Stan-
ford dependency scheme. This suggests an
emerging consensus on the representation
for complex PPI, supporting the value of
these tools and resources for PPI extraction.

1 Introduction

Protein-protein interaction (PPI) extraction is a
central, widely studied task in biomedical natu-
ral language processing. The simplest model of
PPI, used in most corpora and extraction stud-
ies, represents each interaction as a pair of protein
names. Several systems have been introduced for
extracting such binary interactions, but consider-
able challenges remain (Krallinger et al., 2007).

Recently, two corpora with more detailed in-
teraction annotation have been introduced: the
BioInfer (Pyysalo et al., 2007) and GENIA Event
corpora (Kim et al., 2008) annotate complex

structured relations (Figures 1 and 2). These
“complex interactions” differ from binary inter-
actions in that they can have more than two argu-
ments, and allow interactions as arguments, thus
enabling annotation of complex nested relations
such as in “A causes B to bind C”. Complex inter-
actions can also be thought of in terms of seman-
tic frames, with the edges of the complex inter-
action corresponding to the arguments of a verb
frame (Cohen and Hunter, 2006).

For BioInfer, this annotation has also been
translated into binary interactions (Heimonen et
al., 2008), providing an opportunity to compare
complex and binary interactions. In addition to
PPI annotation, both BioInfer and GENIA include
syntactic annotation that can be accessed in vari-
ous dependency representations. Dependency has
been argued to be well suited for applications
such as information extraction, and dependency
parsing is both well studied and frequently ap-
plied in the biomedical domain (de Marneffe et
al., 2006; Clegg and Shepherd, 2007).

We are not aware of methods that would aim to
extract the complex interactions annotated in the
BioInfer and GENIA Event corpora. Neither has
the relationship between simple and complex PPI
annotation been studied in detail. Our aim here
is to explore this relationship and thus take a first
step towards complex PPI extraction.

2 Analysis and Discussion

2.1 Complex vs. Binary Interactions

We first observe that both the “binary” and “com-
plex” representations can be viewed as forms of
semantic networks (graphs). In the former case
protein nodes are connected by edges expressing
interactions, in the latter, both proteins and words
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Binary Interaction: profilin affects the mechanical properties of nonfilamentous actin

<AFFECT>

Complex Interaction: profilin affects the mechanical properties of nonfilamentous actin

<agent patient> possessor>

Collapsed Stanford: profilin affects the mechanical properties of nonfilamentous actin

<nsubj <amod <amod
<det prep_of>

dobj>

Stanford: profilin affects the mechanical properties of nonfilamentous actin

<nsubj <amod prep> <amod
<det pobj>

dobj>

Link Grammar: profilin affects the mechanical properties of nonfilamentous actin

Ss A/AN Mp A/AN
Dmc Js

Op

Figure 1: Example from the BioInfer corpus, with the interaction annotation and the three parse schemes

Complex Interaction: This induction of CAT activity was sensitive to dexamethasone

theme> cause>
<theme

Collapsed Stanford: This induction of CAT activity was sensitive to dexamethasone

<det <nn <cop prep_to>
prep_of>

<nsubj

Stanford: This induction of CAT activity was sensitive to dexamethasone

<det prep> <nn <cop prep> pobj>
pobj>

<nsubj

Figure 2: Example from the GENIA corpus, with an annotated interaction and two parse schemes.

stating their relations act as nodes and edges ex-
press their roles. Syntactic dependency parses are
also graphs where words (nodes) are linked with
dependencies (edges). Thus, as syntax and the bi-
nary and complex interactions have a graph rep-
resentation, their relationships can be studied as a
mapping between these graphs.

Figures 1 and 2 illustrate sentences from the
BioInfer and GENIA corpora with their PPI an-
notation and dependency syntax, showing all the
available graph representations (see Section 2.2
for descriptions of the syntactic annotations). Fig-
ure 1 shows a binary interaction between words
which are several dependencies away from each
other in the syntactic parses. On the other hand
the graph of the complex interaction corresponds
more closely to the dependency parse. This is
typical: the words annotated as expressing in-
teractions frequently fall on the shortest depen-
dency path between the proteins. By providing in-
termediate nodes along the dependency path that
connects the proteins involved in binary interac-
tions, complex interactions subdivide the concept
of “interaction” into smaller parts. As these sim-
ple relations can correspond better to syntactic

features in a sentence, they could be easier to ex-
tract than the diverse binary interactions.

To study the feasibility of extracting complex
interactions, we compared the dependency parse
representations with both binary and complex in-
teractions from the BioInfer corpus, and complex
interactions from the GENIA corpus.

2.2 Processing the Corpora

The BioInfer and GENIA annotation schemes are
designed to capture complex biological interac-
tions in detail. The BioInfer format annotates
e.g. entities and interactions with predicates ap-
propriate for these tasks. The BioInfer annota-
tion can be converted to several derived formats
more suited for different uses. For these experi-
ments, we transformed BioInfer into a semantic
network representation in which the entire anno-
tation of a sentence is defined as a directed graph
(Heimonen et al., 2008). The edge labels define
the semantic roles between entities and relations
(e.g.agent, patient) and between different entities
(e.g. sub/superfor part/whole relations). Predi-
cates not bound to text in the original annotation,
such as most occurrences ofEQUAL (an identity
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relationship between entities), were converted to
edges. To compare the complex interactions with
the binary ones, we also used a binarised version
of the annotation, where interactions are simple
pairs of named entities. BioInfer has manually
annotated dependency parses in the Link Gram-
mar (Sleator and Temperley, 1991) and Stanford
formats.

For GENIA, we used the recently published
event annotation. This annotation has manu-
ally annotated complex interactions for 9372 sen-
tences. This was interpreted as a semantic net-
work with the edges labeledthemeandcauseas
defined in the event annotation; no edges were
derived from the entity annotation. From these,
we selected the subset of 1968 sentences which
had manually annotated parses in the beta version
of GENIA Treebank (GTB) (Tateisi et al., 2005).
The GTB annotation was converted into depen-
dency which was collapsed with the software in-
troduced by de Marneffe et al. (2006); we refer
to this study for a description of the representa-
tion. We used the manually annotated gold stan-
dard parses for all evaluations.

2.3 Connecting interactions to parses

To compare semantic interaction annotation to de-
pendency parses we have to map the interactions
to the sentence text. This is done based on the
text bindings, which connect the annotations to
the words expressing them. However, in both
BioInfer and GENIA these text bindings can con-
sist of multiple words. For example when the en-
tity Acanthamoeba profilintakes part in an inter-
action, the edge that links to it connects to this
pair of words. By contrast, in a dependency parse,
all edges connect to single words. Thus, for com-
parison with dependency parses, interaction edges
connecting to multi-word entities are mapped to a
single word. We used the Stanford parse to map
these edges to syntactic head tokens.

2.4 Comparing interactions to parses

To see how closely complex interactions resem-
ble a dependency parse, we measured the short-
est path in the dependency graph between two
tokens connected by an edge in the interaction
graph. We compared the lengths of these short-
est paths between the available three parses for
BioInfer and the two for GENIA (Figure 3). We
notice that complex interaction edges most likely

Figure 3: Percentage of interaction edges plotted
against the length of the shortest path of dependencies
between them. Over 60 % of BioInfer and GENIA
complex interaction edges correspond to a single col-
lapsed Stanford dependency. Longer paths are more
common for the other parses. The paths for binary in-
teractions are longer than for complex interactions.

have a corresponding dependency in the collapsed
Stanford parse. With uncollapsed Stanford and
Link Grammar parses, the shortest path more of-
ten consists of multiple edges. This supports the
design choices of the collapsed Stanford scheme,
which was developed to facilitate applications
such as information extraction. It is very interest-
ing that the complex interactions of both BioIn-
fer and GENIA correspond so closely to this syn-
tactic representation. The annotators of BioInfer
and GENIA were biologists with no formal ex-
pertise on the syntactic structure of the sentences
they were annotating. Yet the Stanford syntac-
tic parse and the semantic annotations of BioInfer
and GENIA, developed independently and with
somewhat different aims, result in very similar
graph structures.

For the BioInfer corpus, we also compared the
complex interactions to the pairwise binary anno-
tation for the same sentences. The shortest depen-
dency paths corresponding to interaction edges
were shorter for the complex interactions than the
binary ones. In the case of the collapsed Stan-
ford annotation, over 60 % of complex interac-
tion edges linked neighbouring nodes in the de-
pendency graph. For binary interactions the short-
est path most commonly consisted of three depen-
dencies.

For paths of length one, we also measured
which dependency types correlated best with each
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interaction graph edge type (Table 1). Certain
edge types correspond very strongly to a specific
dependency type. For example, an interaction
edge of typeEQUALhas most often a correspond-
ing edge of typeapposin the collapsed Stanford
parse. This is promising for the development of
systems for detection of interaction type.

[%] appos nn nsubj prepof
EQUAL 73.45

MEMBER 27.27 59.60
agent 0.45 2.91 22.6 5.82

possessor 31.96 48.45
sub 45.52 2.76

super 22.35 47.06

Table 1: Selected BioInfer complex interaction edges
(vertical) of which over 20 % have a one-to-one corre-
lation to a collapsed Stanford format dependency (hor-
izontal). The percentages are of all interaction edges,
including those not corresponding to a single depen-
dency. Values> 20 % are emphasized with bold text.

3 Conclusions and future work

Comparison of the interaction annotation to dif-
ferent parse schemes showed that the complex in-
teractions of both BioInfer and GENIA are closer
to the collapsed Stanford parse than to the other
considered parse representations, supporting its
value in extracting complex interactions.

The independently developed complex inter-
action formats of BioInfer and GENIA and the
collapsed Stanford dependency parse are strik-
ingly similar. We assume this indicates that these
schemes succeed in capturing the essential struc-
ture and information of the annotated text. Our
analysis is the first comparison of the relative
complexity of BioInfer and GENIA interactions
and our results suggest that they are of roughly
similar complexity in this regard.

Comparison of complex and binary interac-
tions indicates that while complex interactions
can correspond closely to a syntactic dependency
parse, binary interactions often link syntactically
distant words. Therefore, despite appearances,
complex interactions may prove to be easier to
extract than binary ones. As previous studies
have shown (Pyysalo et al., 2008), with binary
interactions the definition of “interaction” also
varies substantially, leading easily to ambiguous
data. We hope that complex annotation will al-
low a more precise definition of the various con-

cepts falling under the term “interaction”, allow-
ing both the development of better extraction sys-
tems and more consistent evaluation of the re-
sults.

These findings will be useful when we attempt
to use the studied parses and annotations in the
development of an automated system for the ex-
traction of complex interactions. Our preliminary
study indicates that the resources we evaluated
can provide a consistent basis for future work.
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Abstract

We present MPL (Metapattern Language),
a new formalism for defining patterns over
dependency-parsed text, and GraphSpider,
a matching engine for extracting depen-
dency subgraphs which match against MPL
patterns. Using a regexp-like syntax, MPL
allows the definition of subgraphs matching
user-specified patterns which can be con-
strained by word or word class, part-of-
speech tag, dependency type and direction,
and presence of named variables in partic-
ular locations. Although MPL and Graph-
Spider are general-purpose, we developed
a set of patterns to capture biomolecular
interactions which achieved very high pre-
cision results (92.6% at 31.2% recall) on
the LLL Challenge corpus. MPL specifi-
cations and pattern sets, and the GraphSpi-
der software, are available on SourceForge:
http://graphspider.sf.net/

1 Introduction

Various syntactic parsing methods have been used
to provide input data for natural-language pro-
cessing (NLP) tasks in the biomedical domain.
The rich grammatical information provided by
different kinds of parsers can be useful in rela-
tionship extraction (Riedel and Klein, 2005) and
classification (Rosario and Hearst, 2004), event
extraction (Yakushiji et al., 2001), semantic in-
terpretation (Grover et al., 2005), named-entity
recognition (Finkel et al., 2004), term extraction
(Aronson, 2001), and information retrieval (Shi
et al., 2005). This diversity of usage scenarios
for syntax data, coupled with the growing avail-
ability of syntactically-annotated biomedical text
(Tateisi et al., 2005; Kulick et al., 2004; Pyysalo
et al., 2007a), suggests that general-purpose tools
for querying and manipulating syntactic struc-
tures may be useful to researchers in this field.

In order to facilitate our experiments with de-
pendency parsing of biomedical sentences, we de-
veloped a language for defining patterns over de-
pendency graphs, plus a tool for matching pat-

terns to sentences and extracting graph nodes of
interest. Although this work was carried out in the
context of a research project in gene/protein in-
teraction extraction, there is nothing in either the
language specification or software which is spe-
cific to this task or indeed to biological applica-
tions in general.

Several tools already exist for searching con-
stituent tree representations of parsed sentences.
The best-known of these is TGrep21 which is it-
self a successor to the original tgrep2 that was de-
veloped alongside the Penn Treebank (Marcus et
al., 1994). Both allow the construction of patterns
of arbitrary complexity resembling hierarchical
regular expressions, which constrain searches by
words, part-of-speech (POS) tags and constituent
labels, along with the positions in a subtree these
elements must hold relative to each other. Similar
features are provided by Tregex (Levy and An-
drew, 2006). All of these tools were designed
to operate on Penn Treebank-style trees; equiv-
alents for other annotation schemas are provided
by JAPE, part of the GATE package (Cunningham
et al., 2007), CQP, part of the IMS Corpus Work-
bench (Christ, 1994), and Mother of Perl (Doran
et al., 1996). NetGraph (Mı́rovský, 2008) is de-
signed specifically for dependency graphs but is
rather a complex client-server system. The Onto-
Gene project at the University of Zurich has de-
veloped a system very similar to ours (Rinaldi et
al., 2006), but it is available only via a web inter-
face, with no source or binaries, making it much
less useful for other researchers. None of these
tools can perform noun phrase chunking on-the-
fly (see below), and none provide native support
for the Stanford dependency grammar (de Marn-
effe et al., 2006), which our own systems use, and
which has been proposed as a convenient com-
mon schema for syntactic annotation and process-
ing of biomedical text (Pyysalo et al., 2007b).

1http://tedlab.mit.edu/˜dr/TGrep2/
2http://www.ldc.upenn.edu/ldc/online/

treebank/
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2 Metapattern Language (MPL)

An MPL file is composed of three kinds of rules,
which taken together, specify a set of patterns to
search for. Match rules define variables which
hold either plain text strings or regular expres-
sions, designed to match words, POS tags or de-
pendency types in a graph. For example, the
following rule declares a variable @VERB which
matches any two or three-character string starting
with the letters VB, and is designed to match POS
tags like VBN, VBZ etc.:
match @VERB = ˆVB.?$

Pattern rules are composed of variables, lit-
eral strings and connectors, and describe the sub-
graphs which the matching engine must attempt
to find in the input sentences. Subgraphs are de-
fined in terms of nodes (words with POS tags)
connected by directional, labeled dependencies,
although of course wildcard variables can be
used in order to leave any of these elements un-
specified. The simplest possible pattern simply
matches a single node by tag and word, for exam-
ple NN˜˜regulation. The following pattern
matches fragments of the form 〈agent〉 inhibits
〈target〉; inhibits is specified literally, as are the
POS tags (VBZ and NN ) and the dobj direct ob-
ject dependency, while the agent and target enti-
ties and the subject dependency refer to variables:
pattern
VBZ˜˜inhibits

( @NSUBJ NN˜˜@AGENT )
( dobj NN˜˜@TARGET )

end

Finally, replacement rules allow variations on
explicitly-defined patterns to be generated auto-
matically, to capture known wording alternatives
or common variations on simple structures. They
take the form of string replacement rules that are
applied in turn to each of the patterns in the MPL
file. They can operate on any part of a pattern rule
(from a single word, POS tag or dependency to an
entire subgraph) as long as the resulting pattern
is well-formed. The following rule shows how a
node matching a single string can be replaced by
one matching a simple prepositional phrase:
replace @TARGET = expression

( prep_of NN˜˜@TARGET )

Applying this replacement rule to the example
pattern given above results in the following pat-
tern:

VBZ˜˜inhibits
( @NSUBJ NN˜˜@AGENT )
( dobj NN˜˜expression

( prep_of NN˜˜@TARGET ) )

This automatically-generated pattern will match
sentence fragments like 〈agent〉 inhibits expres-
sion of 〈target〉. Note that since the pattern is
defined over syntactic dependencies rather than
linear strings of text, additional words interven-
ing between any of the words covered by the pat-
tern will not stop it matching, provided the gram-
matical relations between the matched words are
correct. In other words, a sentence like 〈agent〉
inhibits 〈entity〉-mediated expression of 〈target〉
will still be matched.

Although one could attempt to define match
rules to recognize named entities using regular ex-
pressions or lists of entity names, this is not likely
to be successful except in very specific circum-
stances. Instead, we suggest that the user pre-
processes the text with a named entity recognizer,
then replaces all the entities found with place-
holders (e.g. Entityaa . . . Entityzz) that can be
easily and unambiguously found by match rules
using regular expressions. If a record of place-
holder substitutions is kept, the original entity
name behind each placeholder can be recovered
trivially. Alternatively, if the variables such as
@AGENT and @TARGET are defined with unre-
stricted wildcard expressions, then any word—or
chunked phrase, see below—playing the appro-
priate syntactic role in a pattern will be identi-
fied. This approach turns the problem of named-
entity recognition on its head, by assuming that
any names found in expressions like X inhibits
expression of Y represent biologically-interesting
entities.

MPL offers several features beyond those de-
scribed here, but does not yet support cycles or
multiple parentage, meaning that its patterns are
strictly trees rather than graphs. However, in eval-
uation (see below) we found no occasions when
this was problematic.

3 GraphSpider

GraphSpider is a Java-based tool for performing
MPL searches. It requires the Stanford parser
distribution3 to be installed, although it can ac-
cept the output of any constituent parser that uses

3http://nlp.stanford.edu/software/
lex-parser.shtml
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standard bracketed tree notation and Penn Tree-
bank labels, or pre-generated Stanford-style de-
pendency graphs in its own file format. If the text
is supplied in trees, the conversion algorithm sup-
plied with the Stanford parser is used to generate
the dependency graphs (de Marneffe et al., 2006).

GraphSpider consists of two major compo-
nents, an MPL parser and a matching engine. The
MPL parser is responsible for reading in a pat-
tern file supplied by the user, applying all replace-
ment rules where possible in order to generate
variant patterns, and compiling the patterns into
in-memory representations. The matching engine
then iterates over the sentences supplied, and for
each one, finds every location where any pattern
matches against the dependency graph of the sen-
tence, including overlapping matches and loca-
tions where multiple patterns can match. It can
then output the results for the sentence in one of
several user-specified formats, ranging in scope
from the entire sentence to just the nodes (words)
that have matched against variables in the pattern.

Optionally, GraphSpider can apply a noun-
phrase chunking algorithm to all constituent trees
before converting them into dependency graphs.
This simply identifies noun phrases with inter-
nal structure and flattens them into single words
with the spaces replaced by underscores. The
resulting graphs will tend to be much simpler,
with single nodes encapsulating entire compound
noun phrases (including adjectives, determiners
and participles). However, MPL patterns must
be written specifically to target chunked graphs,
as pattern rules designed to match against tra-
ditional word-per-node graphs will not work on
them. There is also a mechanism for plugging in
Java classes for ad-hoc post-processing of the re-
sults, which we used to implement negation filter-
ing.

4 Applications

Given a set of patterns capturing syntactic repre-
sentations of biological events or interactions, and
a corpus of parsed sentences, GraphSpider can be
used to extract the entities, the keywords describ-
ing their relationships, and optionally any other
words of interest. To a certain extent, phrasing
variations and parse errors can be accounted for
by the use of replacement rules to generate vari-
ant patterns automatically.

To test this approach, we developed a pat-

tern set based on the training set from the LLL
Challenge gene interaction task (Nédellec, 2005),
and ran it against the test set, after replacing all
gene/protein names in the sentences with place-
holders. Although its coverage of the test set was
comparatively low (31.2% recall), the predictions
it did make were very accurate indeed (92.6%
precision), suggesting that this method would be
well-suited to unsupervised applications which
require as little noise as possible in the results.
We determined that these scores were achievable
with as few as 29 hand-crafted patterns and 49
replacement rules, giving rise to 228 patterns in
total (Clegg, 2008). Part of the reason for the low
recall is that this method is sensitive to small parse
errors which are not foreseen during the pattern
engineering stage.

Another usage scenario is in exploratory corpus
analysis and interactive text mining. By design-
ing appropriate patterns, one can use GraphSpi-
der to answer questions like “what entities bind
to protein A?”, “what temporal/locative modi-
fiers are applied to expression of gene B?” (i.e.
when/where does expression take place?), and
“what verbs take a gene/protein phrase as their
subject or object?”. We have used this last tech-
nique to automatically extract keyword lists for
the creation of further patterns.

The input/output and processing options sup-
ported by GraphSpider enable it to be used in a
variety of alternative modes as well. For example,
it can act simply as a noun phrase chunker, by by-
passing the pattern matching engine completely
in order to turn traditional constituent trees into
chunked graphs. Similarly, it can strip the tree or
graph annotation from a sentence and return just
the plain text. And its ability to save and load
dependency graphs in a human- and machine-
readable format provides valuable functionality
missing from the Stanford parsing toolkit.

We present MPL and GraphSpider in the hope
that the NLP community finds them useful, and
not just in the biological context where they were
developed. All feedback, code or pattern contri-
butions, and suggestions for future developments,
are of course welcomed.
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Abstract

We present a conversion from the depen-
dency scheme employed by the Pro3Gres
parser to the Stanford scheme, as a fur-
ther step towards unification of dependency
schemes. An evaluation of the conversion
shows that it is highly reliable, resulting
in less than one percentage point perfor-
mance penalty on the actual parser output.
This supports the suitability of the Stanford
scheme as a unifying representation and
the applicability of our conversion formal-
ism to parser scheme conversions. We fur-
ther provide an evaluation of the Pro3Gres
parser, thus adding it to the growing set of
parsers evaluated under comparable condi-
tions using the Stanford scheme.

1 Introduction

The development of parsing technologies has re-
cently made it feasible to apply full parsers to
many tasks where partial parsing was previously
the approach of choice, such as information ex-
traction (IE). In particular in biomedical IE, there
has been substantial interest in the application of
full dependency parsers in response to the relative
complexity of the domain language and also due
to the advantages of the immediate representation
that dependency formalisms give to grammatical
functions (e.g.subjectandobject).

Parsing technologies, however, differ substan-
tially in the syntactic schemes employed. This
has a number of unfortunate consequences: cor-
pora tend to be formalism-specific, reducing the
amount of data available, evaluations of parsers
yield results that cannot be directly compared,
and methods that apply parsers tend to become

bound to a particular scheme. Both parser devel-
opers and those who apply parsers would benefit
from a reduction of this fragmentation.

In this study, we consider a full dependency
parser, Pro3Gres (Schneider et al., 2004), which
has been developed with particular attention to the
challenges of biomedical domain text and applied
in numerous domain studies. Pro3Gres has been
evaluated by its authors on a small dependency
treebank in its native syntactic representation as
well as in one of the CoNLL shared tasks on de-
pendency parsing (Schneider et al., 2007); how-
ever, due to differences in syntactic representa-
tions it is difficult to directly relate these results to
evaluations of other parsers in the domain. Here,
we study the feasibility of translating the unique
syntactic scheme of Pro3Gres into a more com-
monly used shared representation.

2 Related work

There has recently been a significant amount of
work narrowing the gap between different parser
output representations. Three prominent ap-
proaches are dependency-based: the Grammati-
cal Relations (GR) dependency scheme, proposed
by Carroll et al. (1998) for parser evaluation, the
Stanford dependency scheme (SD) of de Marn-
effe et al. (2006), oriented towards applications
such as IE, and the scheme that was introduced
in the CoNLL shared dependency parsing tasks
(Nivre et al., 2007). In this paper, we consider
unification under the Stanford scheme.

The GR and SD schemes have been applied in a
number of parser evaluation studies in which the
native parser output was converted into the tar-
get dependency scheme. Table 1 summarizes es-
timated performance of the various conversions as
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In this study , we show the distribution to be concentrated , whereas the staining was diffuse .

<icdep <subj <icdep <icdep predadj> <icdep <subj predadj>
<prep <subj<pobj <compl

sentobj>
sentobj>

In this study , we show the distribution to be concentrated , whereas the staining was diffuse .

<det <nsubj <det <cop <det <cop
pobj> <aux <nsubj

<nsubj <mark<prep
xcomp>

advcl>

Figure 1: An example of the differences between the Pro3Gres scheme (top) and the Stanford scheme (bottom).
Note the technical intra-chunk dependencies,icdep, in the Pro3Gres parse.

study from to F
Clark and Curran (2007) CCG GR 84.8%
Pyysalo et al. (2007b) LG SD 97.1%
Sagae et al. (2008) HPSG GR 87.1%
Sagae et al. (2008) SD GR 74.5%
Sagae et al. (2008) HPSG PTB98.1%

Table 1: Previously reported conversions with conver-
sion quality estimates, given as F-scores.

reported by their authors.
There is a surprisingly large amount of varia-

tion in these results. While the results would ap-
pear to suggest that conversions into GR are par-
ticularly difficult, there are differences in conver-
sion methodology that prevent clear conclusions
from being drawn. Additionally, the schemes are
different in the sense that some of them, including
GR, are deep, whereas others are more surface-
oriented. The development and evaluation of a
conversion from the Pro3Gres native scheme to
SD is thus an important point towards establish-
ing whether highly accurate conversions into SD
can be achieved in general.

3 Methods

We now briefly describe the Pro3Gres and SD
schemes and the Pro3Gres→SD conversion. For
details of the two schemes, see the papers by
Schneider et al. (2004) and de Marneffe et
al. (2006), respectively.

3.1 Pro3Gres parser and its dependency
scheme

Pro3Gres is a dependency-based parser created by
Schneider et al. (2004). A notable property of the
parser is that it uses a chunker to extract noun and
verb groups as a separate pre-parsing step.

The Pro3Gres scheme has a total of 23 depen-
dency types, excluding the so calledintra-chunk
dependenciesthat are fully contained within

chunks. As intra-chunk dependencies are not a
primary output of the parser, and as they form a
relatively flat structure, our conversion does not
target them. However, in order to be able to rec-
ognize certain structures, such as passives, we
introduce technical dependenciesicdep from the
chunk head to each token in the chunk. Figure 1
is an illustration of the Pro3Gres scheme as com-
pared to the Stanford scheme.

3.2 Stanford dependency scheme

The Stanford dependency scheme (SD) is
an application-oriented scheme introduced by
de Marneffe et al. (2006). The scheme defines
48 dependency types that are arranged in a hierar-
chy. De Marneffe et al. also provide a method for
converting parse trees from the PTB scheme into
the SD scheme.

3.3 Pro3Gres→SD conversion

The Pro3Gres→SD conversion was carried out
using 176 hand-written rules in the lp2lp de-
pendency parse conversion formalism (see, e.g.,
Pyysalo et al. (2007b)).

One-to-one correspondences of dependency
types are rare in the conversion. An example of
a particularly difficult dependency type to trans-
late is the Pro3Gres typesentobj. In SD, it corre-
sponds to five different dependency types:xcomp,
partmod, infmod, ccompandadvcl. In Figure 1
we illustrate two different uses of thesentobj
type. Another issue that complicates the trans-
formation rules is that some dependency types in
SD, the most common example being the copula,
cause substantial changes to the structure of the
parse, as the head is chosen differently in the two
schemes. This is, again, illustrated in Figure 1.

4 Results and discussion

We estimate the conversion performance in two
separate ways: on an actual output of the
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gold standard
present absent

system
output

present 461 77 (73+4)
absent 161 (156+5) —

Table 2: Results of the manual analysis of the conver-
sion quality. Parsing errors are divided between errors
attributed to the Pro3Gres parser and errors attributed
to the conversion. This division is shown in parenthe-
ses asparser errors+conversion errors. All numbers
are dependency counts.

err. P R F
incl. 85.7% (461/538) 74.1% (461/622) 79.5%
excl. 86.3% (461/534) 74.9% (466/622) 80.2%

Table 3: (P)recision, (R)ecall and F-score figures in-
cluding and excluding conversion errors (based on the
manual analysis reported in Table 2).

Pro3Gres parser and on a separate set of gold-
standard Pro3Gres parses. The former evaluation
is performed on the BioInfer corpus (Pyysalo et
al., 2007a) which has gold-standard SD annota-
tion. As performance measures, we use preci-
sion, recall, andF . The rules have been devel-
oped using 200 sentences from BioInfer as refer-
ence, we thus perform all BioInfer measurements
on an evaluation set consisting of the remaining
900 sentences.

4.1 Evaluation of the Pro3Gres→SD
conversion

To estimate the quality of the conversion, we
manually analyse the converted Pro3Gres output
on 30 sentences (622 dependencies) randomly
drawn from the evaluation set of BioInfer sen-
tences. We attribute each parsing error as caused
either by the parser or by the conversion. The re-
sult of this analysis is presented in Table 2. We
find that the conversion accounts for 4/77=5.2%
of all precision errors and 5/161=3.1% of all re-
call errors. The conversion thus accounts for only
a small percentage of the errors found in the con-
verted parser output. In fact, the absolute penalty
on the overall F-score of the parser is only 0.7
percentage points, as shown in Table 3.

The manual analysis estimates the performance
of the rules on the actual parser output and is
thus most relevant from the applied point of view
and for parser evaluation. As seen in Table 3,
Pro3Gres trades higher precision for lower recall.
This often means that rare and exceptionally com-

plex structures are not given any analysis. This, in
turn, has the effect that also the conversion rules
are not applied for these sections of the sentence
and therefore cannot fail. In order to estimate the
performance of the conversion in the ideal case of
the parser producing a perfect analysis, we have
annotated in both the Pro3Gres scheme and the
SD scheme a set of 50 sentences (715 SD depen-
dencies) randomly drawn from the GENIA cor-
pus. On this set, we find that the conversion re-
sults in a 96.1% F-score (96.9% precision and
95.4% recall). The difference in conversion ac-
curacy of the actual parser output as compared to
the gold-standard output shows that as the parser
coverage is increased in the future, corresponding
conversion rules will need to be added.

4.2 Evaluation of the Pro3Gres parser

The Pro3Gres→SD conversion allows an eval-
uation of Pro3Gres performance on the SD-
annotated BioInfer corpus, thus complementing
the results previously reported by Clegg and
Shepherd (2007) and Pyysalo et al. (2007b). This
evaluation, however, is complicated by the fact
that Pro3Gres chunks noun and verb groups and
does not aim to generate sufficiently detailed
chunk-internal analysis. To address this differ-
ence in resolution detail, we chunk the gold-
standard data using the existing gold-standard an-
notation and only consider chunk-external depen-
dencies in the evaluation (see Figure 2).

In Table 4 we report the performance of
Pro3Gres on the 900 BioInfer evaluation sen-
tences. The parser was used together with
the GENIA tagger (Tsuruoka et al., 2005) and
LTChunk chunker (Mikheev, 1997). As a point
of comparison, we also report the performance of
the Charniak-Lease parser (Lease and Charniak,
2005), a state-of-the-art, domain-adapted statisti-
cal parser. The Charniak-Lease output was trans-
formed to the SD scheme using the Stanford con-
version tools (de Marneffe et al., 2006). To assess
the numerical comparability of the chunk-based
evaluation strategy, we include the result reported
by Pyysalo et al. (2007b) for the Charniak-Lease
parser on full, unchunked BioInfer.

We observe that Pro3Gres achieves state-of-
the-art performance, only slightly lower than that
of the Charniak-Lease parser. Further, we note
that the chunked evaluation strategy results in 3.5
percentage point performance penalty.

135



Pro3Gres Charniak-Lease
chunked P R F P R F ∆F

yes78.5 70.5 74.374.4 77.5 75.91.6
no - - - 78.4 79.9 79.4 -

Table 4: Performance of the Pro3Gres and Charniak-
Lease parsers on the BioInfer corpus. The result for
the Charniak-Lease parser on the unchunked BioInfer
was reported by Pyysalo et al. (2007b).

panels of six to 31 MABs were employed

prep> cc> <auxpass
conj>

<num
pobj>

<nsubjpass

panels of six to 31 MABs were employed

prep> <icdep <auxpass
<icdep

<icdep
pobj>

<nsubjpass

Figure 2: Original gold-standard structure (top) com-
pared to chunked gold standard (bottom) with the
intra-chunk structure flattened intoicdep dependen-
cies. The parser is only evaluated on the chunk-
external dependencies, displayed in bold.

5 Conclusions

The main practical contribution of this paper
is the set of rules for a very accurate conver-
sion from the Pro3Gres scheme to the Stanford
scheme (SD). In particular, on actual parser out-
put, the conversion results in less than one per-
centage point penalty on the parser F-score per-
formance. The conversion increases the applica-
bility of Pro3Gres, as it enables it to produce out-
put in a commonly used scheme.

Moreover, the ability to produce an accurate
conversion into the SD scheme, already a third
such conversion — the other two being the con-
versions from PTB (de Marneffe et al., 2006) and
from LG (Pyysalo et al., 2007b) — suggests that
the SD scheme does not pose significant problems
as a conversion target. The SD scheme is also de-
signed to be oriented towards applications, such
as IE (de Marneffe et al., 2006). This study thus
further strengthens the case for the adoption of the
SD scheme as a unifying representation for full
parsers in the applied domain, previously argued
for by de Marneffe et al. (2006), Clegg and Shep-
herd (2007), and Pyysalo et al. (2007b).

The evaluation data, the conversion rules, and
our modified version of the lp2lp implementa-
tion are available under an open-source license at
http://www.it.utu.fi/BioInfer .
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Abstract

A protein-protein interaction in a biomed-
ical text is often described using a wide
range of verbs, e.g. activate, bind, interact.
In order to determine the specific type of in-
teraction described, we must first determine
the meaning of the verb used. In biomed-
ical context, however, some verbs can be
considered synonyms, yet may not be so
in standard lexical databases, like WordNet.
Furthermore, some verbs will not be men-
tioned at all in such a dictionary, since they
are too area specific. We propose a simple
classification scheme to predict the correct
class (meaning) of the verb. With this, one
can identify the types of protein-protein in-
teractions described in subject-verb-object
constructions in PubMed abstracts.

1 Introduction

Since scientific journals are still the most impor-
tant means of documenting biological findings,
biomedical articles are the best source of informa-
tion we have on protein-protein interactions. The
mining of this information will provide us with
specific knowledge of the presence and types of
interactions, and the circumstances in which they
occur.

There are various linguistic constructions that
can describe a protein-protein interaction. (Tateisi
et al., 2004) use predicate-argument structures in
the mining of protein-protein interactions. These
are used to identify the specific roles of encoun-
tered proteins in an interaction, but not to de-
termine the biomedical meaning of the verb it-
self. In (Wattarujeekrit et al., 2004), an extended
model based on PropBank (Palmer et al., 2005)
is used to group verbs according to their differ-

ences and similarities in sense, structure and num-
ber of arguments between their use in biomedi-
cal and regular text. Their main focus is domain-
specific verbs that are used to describe molecu-
lar events in biology. We share their considera-
tions about the fact that verbs are used in a dif-
ferent way in biomedical text compared to reg-
ular text. Our goal, however, is to group gen-
eral verbs according to their meanings in biomed-
ical text. This will allow us to identify the type
of interaction indicated by any possible verb en-
countered, instead of having to rely on a limited
number of predefined domain-specific verbs. Fol-
lowing (Jensen et al., 2006), we focus on causal-
ity to create a biologically meaningful distinction.
We use two classes of verbs, making the distinc-
tion between relations that describe proteins af-
fecting other proteins (causal relation) and any
other relation (non-causal relation). Future work
will incorporate more classes in order to be able
to make a more specific distinction between dif-
ferent meanings of verbs.

2 Preprocessing

The protein-protein interactions we are interested
in are described in the subject, the object and the
interlinking verb phrase of a sentence. To deter-
mine which parts of the sentence make up this
construction, we need to preprocess the sentence.
For this, we use the Genia Chunker1 to break the
sentence into different chunks (in particular we
are interested in noun phrases and verb phrases).
We combine this information with the result of the
Stanford Dependency Parser2 to determine how
these different chunks (phrases) are connected to

1http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/
2http://nlp.stanford.edu/downloads/lex-parser.shtml
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each other.
Using WordNet (Fellbaum, 1998), we can in-

crease the number of verbs for which we know
(or can reasonably assume) the right class. Word-
Net identifies synonyms for each verb, grouped
by different senses (meanings) that are ordered by
frequency (most common meaning first). We can
choose how many senses we use (at least one),
and how many recursive levels of synonyms we
want (synonyms, synonyms of those synonyms,
etc). However, this can create noise, since Word-
Net is a lexicon for the general use of words, and
not specifically for biomedical context (Poprat et
al., 2008). Lacking a proper biomedical lexicon,
we will make limited use of WordNet in order to
test our approach.

3 Classification

The subject-verb-object construction can be
schematically represented as follows:

[(state of) protein] [verb] [(state of) protein]

We assume the interaction between the two
proteins to be determined by the combination of
the states in the noun phrases and the relevant
verb in the verb phrase. Such states can be de-
scribed by single words (e.g. activation, suppres-
sion, overexpression) or far more complicated de-
scriptions. However, detection of these descrip-
tions of states of proteins can be difficult and is
a separate research topic. Since the focus of this
paper is on the meanings of verbs, we will leave
this detection of protein states for future work.

We make a distinction between two classes of
verbs. One class describes a strict causal relation
and the other covers all other types of meanings
(non-causal). Table 1 shows some example verbs
for the two classes.

Class Examples
causal activate, inhibit, cause
non-causal interact, require, bind

Table 1: Two classes of verbs.

The second class includes not just verbs that
describe a correlation (e.g. interact), but also
verbs such as require and bind. One could argue
that these latter verbs also describe a directed ac-
tion from agent to target, like a strict causal re-
lation does. However, they do not describe a di-
rect change of the state of the target protein, and

therefore we choose not to put them in the first
class. The three verbs in the causal class repre-
sent the positive, negative and general causal re-
lations. The three verbs in the non-causal class
represent three different types of relations that oc-
cur very often in the text. Since these relations are
not synonymous to each other, each of them has
to be represented by a separate verb. Having la-
beled these six verbs manually, we will use this to
attempt to automatically predict the right class for
the possibly many unknown verbs that can occur
in subject-verb-object constructions in biomedi-
cal text.

3.1 Naive Bayesian Classifier
Using a Naive Bayesian Classifier, we estimate
the probability that a given verb belongs to a cer-
tain class. Bayes’ Theorem describes this proba-
bility.

�������
	����� �����������������	 ���������� (1)

In the retrieved subject-verb-object construc-
tions, a verb

�
will occur a number of times, each

time in combination with a specific ordered pair
of proteins ����� , one in the subject and one in the
object. ����� ���! #"��$�&%'"#()()()"��$�+*&,

These pairs of proteins are the different features
of this verb. In Naive Bayesian Classification,
these features are assumed to independently con-
tribute to the estimate of the posterior probability.

�������-	��./� �������-	 �$�  "���� % "#()()()"��$� * 
� 02143�57698 :<;=?>A@ 021 B
B =#C 3�5D6021 B
B @FE B
B�G E�H�H�H�E B
B ; 6

(2)

Given a test set of instances (in Section 4 we
elaborate on how we get those instances), we de-
fine the following variables:I � E � number of occurrences of

protein pair J�J$K around verbs
of class L-M (frequency)N �O�QP � I � E � number of protein pairs around
verbs of class L MN � P � N �
total number of protein pairs
encounteredR
number of unique protein pairs
encountered in the training set
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With these, we can estimate the necessary
probabilities:

��������TS�VU 5U prior probability of class L M��� �$�W� 	 ����TS�VX =?Y 5DZ  U 5DZ![ conditional probability of
pair J�J K given class L-M

For the conditional probability, we use Laplace
estimates. That is, we add 1 to the numera-
tor and U to the denominator, in order to com-
pensate for pairs for which

I � E � � \
. If we

would use
��� �$��� 	 ����QS� X =?Y 5U 5 instead, the con-

ditional probability would become equal to 0 ifI � E � �]\
. This would cause the posterior probabil-

ity
�������
	 �$�  "��$� % "#()()()"���� *  to be equal to 0 as well

(Equation 2), leaving us without a reasonable esti-
mate of this posterior probability. The probability������

is the factor with which we normalize the
numerator of Equation 2 for each class

� �
. This

gives us
�����^�
	���

for each class. A verb
�

is then
classified to be in the class

� �
for which the poste-

rior probability
�����^�
	���

is highest.

_ ������]`ba
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4 Experiments

4.1 Setup

In order to test our approach, we retrieved a
set of subject-verb-object relations from abstracts
stored in PubMed. We chose to test our approach
on yeast proteins rather than e.g. human proteins
to avoid Named Entity Recognition problems. We
used a predefined data set of names to detect yeast
proteins in text.

To remove any excess information, the verb
phrases are normalized. We assume the last verb
in the phrase to be the relevant verb and check the
direction of the relation (active or passive form of
that verb). Finally, the verb is stemmed using the
Porter stemmer (Porter, 1980). For those verbs
that are in the passive form, the order of the pro-
tein pairs around it was reversed, and, for simplifi-
cation, verb phrases that describe a negation were
removed. More than one protein can occur in the
subject and/or object, so we count each possible
pair as an occurrence around the particular verb.

We used the 6 verbs as shown in Table 1 as a
starting set to test the classifier. The training set
is then augmented using WordNet. For the result-
ing verbs in the classes, we run a leave-one-out

cross validation. That means, we classify each of
these verbs by training the Naive Bayesian Clas-
sifier on the frequencies of the occurring pairs of
proteins around the other known verbs. Some
verbs we retrieved from WordNet may not oc-
cur at all in the subject-verb-object instances we
have. These verbs are ignored in the leave-one-
out cross-validation.

4.2 Results

V C A P
no WN 6 3 0.50 0.66
l1/s1 13 7 0.54 0.50
l1/s2 18 13 0.72 0.05
l1/sa 19 14 0.74 0.03
l2/s1 19 12 0.63 0.18
l2/s2 27 21 0.78 2.96E-3
l2/sa 55 32 0.58 0.14
l3/s1 26 20 0.77 4.68E-3
l3/s2 42 35 0.83 7.55E-6
l3/sa 73 43 0.59 0.08

Table 2: Leave-one-out cross-validation results.

Table 2 shows the results of the different tests,
using different parameter settings in WordNet to
augment the training set. They contain the num-
ber of verbs classified in the leave-one-out cross-
validation (V), the number of verbs that were
correctly classified (C), the accuracy ( f � gh )
and the probability

�
that a random classifier

would perform as good or better than this clas-
sifier, given by

��� hi�)j g
k � l&m � � ���onqp �  hTr �

in which � �  % (determined by the number of
classes). We have run the program with different
settings for WordNet (‘l1’ means recursive level
1, ‘s2’ means WordNet senses 1 to 2, ‘sa’ means
all WordNet senses are taken).

From the cross-validations, we can see that the
algorithm performs reasonably well. There are
multiple settings that obtain an accuracy higher
than 0.70, and one setting in particular (‘l3/s2’)
reached an accuracy of 0.83. The probability that
a random classifier would perform as good or bet-
ter than this is st(vuwu ��n#\ r+x . In Table 3, the results
of the cross-validation for this setting are shown
for each of the 42 verbs, highest

�  first (
�  is
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verb 0 @ error verb 0 @ error
suppress 1.00 0 turn 0.68 0
have 1.00 0 position 0.67 1
lead 1.00 0 perform 0.59 0
activate 1.00 0 make 0.52 0
stimulate 1.00 0 comprise 0.51 0
reduce 1.00 0 investigate 0.49 0
cause 1.00 0 see 0.49 0
contain 1.00 0 incorporate 0.49 1
induce 1.00 0 do 0.49 1
repress 1.00 0 impact 0.49 0
allow 0.99 0 pull 0.49 0
control 0.99 0 situate 0.49 0
inhibit 0.97 0 displace 0.49 1
trigger 0.95 0 hold 0.49 1
give 0.85 0 attach 0.35 0
carry 0.81 0 occupy 0.32 0
keep 0.80 0 need 0.18 0
expect 0.79 1 involve 0.06 0
maintain 0.78 0 bind 2.64E-15 0
bear 0.75 0 interact 5.74E-30 0
affect 0.75 1 require 1.12E-54 0

Table 3: Cross-validation of 42 verbs.

the posterior probability that a verb belongs to
class 1, the causal class). Figure 1 visualizes the
distances of the classifications from the decision
boundary. The crosses indicate the errors made.
The confidence of the classification is defined by
distance of the posterior probability to the deci-
sion boundary. This confidence clearly differs for
each verb. We can see that there is a group of 11
verbs for which the confidence is very low (make
to hold). This group accounts for four of the er-
rors made, out of a total of seven. For these 11
verbs it is unclear, even for humans, which class
they belong to. Some of these verbs, however,
may not describe any interaction at all. One could
use a confidence threshold to discard the verbs of
which the classifications are very uncertain.

5 Conclusions and Future Work

Given an appropriate set of known verbs, we can
predict the meanings of unknown verbs with rea-
sonable confidence. This automatic prediction
is very useful, since it is infeasible to manu-
ally determine the meanings of all possible verbs.
We chose to use a two-way distinction as a first
step. Verbs like require and bind describe biologi-
cally distinct interactions however, and preferably
should be put into classes separate from general
correlations. In order to create a more detailed
network of interacting proteins, one can take these
other types into account as well.

Furthermore, it would be useful to separate the
causal relationship into positive and negative rela-
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Figure 1: Results of leave-one-out cross-validation.

tions. This specific distinction however is not just
described in the connecting verb, but also in pos-
sible state descriptions in the noun phrases. Fur-
ther research is necessary to extract these descrip-
tions from the text. Finally, it would be useful
to look at different syntactic constructions, other
than just subject and object.
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Abstract

The research described in this paper ad-
dresses the following question: How well do 
generic protein/gene name taggers perform 
when they are applied to full-text articles 
from the sub-domain of immunology (a sub-
domain with its own distinctive protein no-
menclature)? To answer this question we 
have created a new corpus – ImmunoTome 
– consisting of ten full-text immunological 
articles in which the names of proteins have 
been manually annotated. Our results show 
that a single tagger – ABNER trained on the 
BioCreAtivE corpus – performs signifi-
cantly better than the other taggers we 
evaluated when applied to ImmunoTome. 
ImmunoTome is available from                
immunominer.cryst.bbk.ac.uk/tome.html.

1 Introduction

Large amounts of useful immunological data are 
to be found exclusively in full-text journal arti-
cles. Much of these data concern the key proteins 
involved in the immune response, notably anti-
bodies, antigenic proteins, and cytokines. For our 
research as members of the ImmunoGrid Consor-
tium1, our ultimate aim is to devise methods ca-
pable of automatically extracting this information
from the literature. As a crucial first step, we 
need to identify the protein entities themselves. 

Some of the key protein entities of the im-
mune system (or the genes that encode them) 
have their own, distinctive nomenclature, notably 
the CD nomenclature for leukocyte surface 
molecules (e.g. CD4, CD8) and the HLA nomen-
clature for the human leukocyte antigen system 
(e.g. B40, DR14, Dw25). Other important classes 
of immune system proteins have names that typi-
cally start with three upper-case letters, e.g. TCR
(T cell receptors). Names containing a mixture of 
upper-case letters and digits are likely to be par-

                                                          
1 www.immunogrid.eu

ticularly easy for taggers to identify, as relatively 
few non-protein words have this form. 

There are a number of freely-available 
named-entity taggers for proteins and other bio-
medical entities. These taggers have typically 
been trained on one or more of three widely-used 
biomedical corpora – GENIA, BioCreAtivE and 
Yapex. All three corpora consist of manually 
annotated abstracts (or sentences from abstracts) 
taken almost exclusively from non-
immunological papers. 

This raises an important question: How well 
do taggers trained on such corpora perform when 
they are applied to a specific sub-domain such as 
immunology characterized by its own distinctive 
protein nomenclature? This question is the start-
ing point for the research described in this paper.
Here we compare the performance of four freely-
available taggers designed to annotate the names 
of proteins and other biomedical entities in natu-
ral language texts. The four taggers are: Ling-
Pipe2, trained on GENIA (Kim et al., 2003);
NLProt (Mika & Rost, 2004), trained on Yapex 
(Franzén et al., 2002); Gapscore (Chang et al., 
2004), a rule-based tagger; and ABNER (Settles, 
2005). ABNER can be run in two modes: one 
trained on a simplified version of GENIA known
as the JNLPBA corpus (Kim et al., 2004), and 
the other trained on BioCreAtivE (Yeh et al., 
2005).

2 Methods

2.1 The ImmunoTome corpus

In order to assess the performance of generic 
protein taggers on full-text immunological arti-
cles, we created a new corpus – ImmunoTome. 
ImmunoTome consists of ten full-text articles 
from the Journal of Immunology, each containing 
at least one reference to the proteins CD4 or 
CD8. (The latter criterion was adopted because 
we are particularly interested in the molecular 
aspects of the adaptive immune system.)
                                                          
2 www.alias-i.com/lingpipe/index.html
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In ImmunoTome, protein names are anno-
tated regardless of their context. For example, in 
the phrase “CD4+CD8- cells” both “CD4” and 
“CD8” are annotated as proteins. We have anno-
tated both the names of proteins and the names of 
the genes that code for those proteins, but not 
non-coding entities such as promoters and en-
hancers. We believe this approach is a reasonable 
compromise for many biomedical text-mining 
applications, as a clear distinction between pro-
tein and gene names is often impossible. 

In designing ImmunoTome, we have aimed to 
adopt good practices relevant to the development 
of biomedical corpora, including the provision of 
explicit annotation guidelines. ImmunoTome 
was created by two annotators with prior experi-
ence of developing the ProSpecTome corpus
(Kabiljo et al., 2007). Inter-annotator agreement 
was calculated using a single article after an it-
erative process of guideline and annotation re-
finement using the other nine. When the 
annotations of the second annotator were scored 
against the annotations of the first, an F-score of 
82% was achieved. When credit was given for 
overlapping annotations, this rose to 96%. 

Note that, although of sufficient size for 
evaluation purposes, ImmunoTome is much 
smaller than standard training corpora. It is there-
fore not large enough to facilitate the retraining 
of existing tagging tools. 

2.2 Tagger evaluation

To calculate approximate upper and lower
bounds on the performance of different taggers, 
we assessed their performance using both “strict” 
and “sloppy” matching criteria. When strict crite-
ria are applied, a tagger is required to match a 
given protein name exactly to score a “hit”. 
When sloppy criteria are applied, the tagger 
scores a “hit” provided part of the protein name 
is matched. 

The extent to which exact matching is re-
quired in practice is application-dependent. 
However, in terms of the fair evaluation of tagger 
performance, the use of strict matching criteria 
has a clear disadvantage; the performance of a 
tool will vary significantly depending on essen-
tially arbitrary choices made by the annotators of 
the evaluation corpus (e.g. is the word “mouse” 
part of the protein name in the phrase “mouse 
oxytocin”?). With sloppy matching criteria, on 
the other hand, there is a risk that a tool will gain 
credit even when it has missed the core part of a 
protein name (e.g. if it exclusively annotated ei-

ther the word “activated” or “protein” in the 
phrase “activated ras-1 protein”).     

We investigated a random set of 100 tagged
protein names that count as hits with sloppy cri-
teria, but as misses with strict criteria. In every 
case the core of the protein name was contained 
within the annotation. In 18 cases an erroneous 
word had been incorporated (e.g. the word 
“namely” in “namely IFN-gamma”), in 21 cases 
the discrepancies were associated with the con-
junction “and” (e.g. “CD4 and CD8 coreceptors” 
is annotated as a single name in ImmunoTome, 
but as two proteins by the tagger), and the re-
mainder involved more-or-less legitimate exten-
sions to, or contractions of, the name as 
annotated in ImmunoTome (e.g. “Ag antivenin” 
instead of “antivenin”). 

3 Results

3.1 Comparative performance of taggers

The performance of our chosen taggers on four 
corpora is given in table 1. These results show 
that ABNER is the best-performing tagger on all 
corpora, with the BioCreAtivE version of 
ABNER registering the best scores on Immu-
noTome using both strict and sloppy matching 
criteria. All the other taggers show a significant 
drop in performance when evaluated on Immu-
noTome.

Y J P I
Sloppy matching criteria

ABNER (B) 80.3 76.0 85.3 78.3
ABNER (G) 73.9 84.1 80.1 69.5
NLProt N/A 70.8 81.2 66.1
LingPipe 65.3 79.1 67.4 53.7
Gapscore 80.5 68.6 81.3 56.6

Strict matching criteria
ABNER (B) 54.2 60.8 59.4 54.0
ABNER (G) 48.4 67.9 62.0 47.8
NLProt N/A 45.8 59.7 43.8
LingPipe 43.4 62.8 47.0 33.6
Gapscore 57.4 38.3 52.9 30.7

Table 1. The F-scores produced by five taggers when ap-
plied to four corpora. Abbreviations are as follows: Y = 
Yapex; J = JNLPBA evaluation corpus; P = ProSpecTome 
(Kabiljo et al., 2007); I = ImmunoTome; B = BioCreAtivE; 
G = GENIA. As NLProt was trained on the Yapex corpus, 
no fair test score can be provided for this combination.

ImmunoTome differs from the other corpora 
in two important respects: it contains texts from a 
distinctive sub-domain; and it comprises full-text 
articles rather than abstracts. In order to shed 
light on the relative impact of these differences, 
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we independently evaluated the taggers that were 
not trained on GENIA using the subset of 
GENIA abstracts containing the annotations CD4
or CD8 (86 abstracts from a total of 2,000). The 
results are shown in table 2.

Full GENIA 
corpus

Subset of 
GENIA

Sloppy matching criteria
ABNER (B) 79.7 83.5
NLProt 74.2 77.1
Gapscore 73.8 77.0

Strict matching criteria
ABNER (B) 64.3 66.8
NLProt 49.7 54.8
Gapscore 40.8 48.1

Table 2. The F-scores of three taggers – none of which were 
trained using the GENIA corpus – applied to GENIA and to 
an immunological subset of GENIA. 

These results suggest that taggers find it eas-
ier to correctly identify protein names from the 
immunological sub-domain than from general
biomedical texts. To explore possible reasons for 
this, we analyzed the most frequently-occurring 
protein names in three corpora (table 3). Note 
that the top ten protein names in ImmunoTome 
account for 43% of the total annotations in that 
corpus – much higher than the equivalent figures 
for Yapex and GENIA (6% and 9% respec-
tively). This is to be expected given the repeti-
tious use of protein names in full-text articles. 

Yapex GENIA ImmunoTome
NF-kappa B 
(28)

NF-kappa B 
(862)

CD4  (518)

Tat (27) NF-kappaB 
(542)

CD8  (348)

CD4 (26) IL-2 (535) TCR (156)
p53 (26) transcription 

factors (332)
TRX1 (143)

NF-kappaB 
(23)

AP-1 (322) TCR-αß (74) 

GM-CSF (22) IL-4 (314) CD40 (59)
IL-2 (22) transcription 

factor (283)
TNF (58)

SMN (22) TNF-α (245) IFN-γ (53)
IL-6 (22) IFN- γ (227) CD40L (52)
SUMO-1 (21) cytokines (200) 2C TCR (51)

Table 3. The top ten occurring protein names in three cor-
pora. The number of occurrences of each name is recorded 
in parentheses. Different forms of the same name (e.g. “NF-
kappa B” and “NF-kappaB”) are recorded separately. 

From table 3 it appears that names of forms 
that are likely to prove comparatively easy for 
taggers to identify are more prevalent in Immu-

noTome. In particular, names made from a com-
bination of upper-case letters and digits account 
for six out of ten names on the ImmunoTome 
list, compared with four for Yapex and three for 
GENIA. On the other hand, names in lower case 
(easily confused with general vocabulary) or title 
case (easily confused with generic proper names) 
are more prevalent in Yapex and GENIA. (Note 
that the appearance of general references to pro-
teins – e.g. “cytokines” – exclusively on the 
GENIA list is attributable to the annotation 
guidelines associated with that corpus.)

3.2 Information content of ImmunoTome

The distribution of protein names across the dif-
ferent sections of the full-text articles in Immu-
noTome are summarized in table 4. Of the total 
number of protein names, less than 5% are found 
in the abstracts. When the same calculation is 
performed for distinct protein names, less than 
10% are found in the abstracts. Unsurprisingly, 
the number of protein names uniquely found in 
the abstracts of ImmunoTome is very low 
(though, perhaps surprisingly, non-zero).

TA I M RD
total words 2262 6331 7418 33786
total 
annotated 

171 484 397 2437

total distinct 84 212 275 518
total distinct 
& exclusive 

14 111 189 359

annotated / 
words (%)

7.6 7.6 5.4 7.2

distinct /  
words (%)

3.7 3.4 3.7 1.5

exclusive / 
words (%)

0.6 1.8 2.5 1.1

Table 4. The information content of the ImmunoTome cor-
pus broken down by section. Abbreviations are as follows: 
TA = Title + Abstract; I = Introduction; M = Materials and 
Methods; RD = Results + Discussion. The “distinct & ex-
clusive” total records the number of distinct protein names 
that are exclusively found within a given section.

With respect to the density of information, the 
results are less clear-cut. Ultimately it makes 
sense to select the most relevant sections for a 
given application, and relevance is not something 
that can be assessed by a simple analysis of name 
density (Shah et al., 2003). 

Whatever the application, it is certainly worth 
taking into account the variable performance of 
protein taggers on the different sections of full-
text articles. This is summarized for Immu-
noTome in table 5.
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There are two notable features of these re-
sults. Firstly, all taggers except Gapscore per-
form best on the Introduction section, in spite of 
the fact that all the taggers except Gapscore were 
trained on abstracts. This is a surprising result 
and one that warrants further investigation.

TA I M RD
ABNER (B) 79.4 83.1 72.4 78.2
ABNER (G) 74.2 75.3 63.2 69.2
NLProt 67.4 75.9 48.0 67.4
LingPipe 60.4 61.1 52.1 52.1
Gapscore 63.2 54.6 46.4 46.4

Table 5. The F-scores of five taggers on different sections 
within the ImmunoTome corpus evaluated using sloppy 
matching criteria. Abbreviations are the same as for table 4.

Secondly, all tools perform worst on the Ma-
terials and Methods section. A common problem 
here is the relatively high density of proper 
names such as Pharmingen and Sweden.

4 Conclusion

That ABNER (BioCreAtivE) proves to be the 
best single tagger when applied to ImmunoTome 
reinforces the conclusion we reached elsewhere 
(Kabiljo et al., 2007). It may be significant that 
this version of ABNER did much better than the 
version trained on GENIA. Further investigation 
is needed to decide whether this is attributable to 
the content of the BioCreAtivE corpus, to its an-
notation guidelines, or to other factors. 

This is, we believe, an important finding. The 
construction of new training corpora is very time 
consuming, hence it is highly unlikely that mul-
tiple training corpora focusing on specific bio-
medical sub-domains will become available in 
the foreseeable future. In these circumstances, 
researchers wishing to perform named entity rec-
ognition in a biomedical sub–domain have little 
option but to use one or more existing taggers. 
Our results show that, at least for the sub-domain 
of immunology, this does not lead to a large drop 
in performance – provided that the chosen tagger 
is ABNER (BioCreAtivE).
    Our results also show that taggers have par-
ticular problems when annotating the Materials 
and Methods sections in ImmunoTome. This is 
likely to be true more generally, and suggests 
that for some applications it is sensible to ex-
clude Materials and Methods sections altogether.

Finally, using multiple corpora to evaluate the
performance of different protein taggers poten-
tially gives us deeper insights into their relative 

performance. From this perspective, Immu-
noTome complements existing corpora, and will 
offer a new dimension to future analyses. In this 
role, the usefulness of ImmunoTome is enhanced 
by the provision of explicit annotation guide-
lines, and the assessment of inter-annotator 
agreement reported above.
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Abstract 

Field experts in biology and medicine 
search the literature for state-of-the-art re-
sults and occasionally discover knowledge 
through manual inference on published 
causal relations. However, the results of 
such inference cannot be sufficiently accu-
rate and/or complete, as the domain of pub-
lished relations is rather huge. In this paper, 
we introduce an automatic inference system, 
BioDetective, which works on literature-
mined qualitative causal information in bi-
ology and medicine. BioDetective provides 
proofs for such qualitative causal informa-
tion, and predicts the existence of new caus-
al information, if there is any. The system is 
tested with a case study, where literature-
mined information about protein regulation 
is utilized to come up with new knowledge. 

1 Introduction 

Field experts in biology and medicine search the 
literature for state-of-the-art results and occasio-
nally discover knowledge through manual infe-
rence on published causal relations. For example, 
a biomedical scientist who seeks new treatments 
for a disease may search the literature for infor-
mation about biological or medical entities al-
ready known to be related to the particular 
disease, as well as about causal relations that are 
known to involve these entities. By inferring 
over the combined effect of such causal relations, 
she may be able to discover novel (and possibly 
indirect) causal relations between the disease and 
some molecules and/or biological conditions. 
She may also use such novel causal information 
towards finding effective drugs for the disease. 
Such an approach to knowledge discovery 

through manual inference on literature-mined 
information would be a good way to reduce the 
number of repeated experiments that are based 
purely on intuition, which  may turn out to be not 
only time-consuming but also literally quite ex-
pensive. 

However, the fraction of information that can 
be manually examined this way is much limited. 
For one, the experts may not be able to locate the 
connecting information that would have been 
easily identified if the available body of know-
ledge were larger. Even when a larger body of 
knowledge is taken into account, manual infe-
rence is susceptible to mistakes due to the com-
plexity of the involved inference. Automated 
inference on a dataset of literature-mined infor-
mation will certainly help the field experts to 
cover more information with fewer mistakes.  

In this paper, we introduce an automatic infe-
rence system, BioDetective, for literature-mined 
qualitative causal information in biology and 
medicine. Given a collection of causal informa-
tion and other related literature-mined informa-
tion as the input dataset, BioDetective can check 
if the input dataset supports a new, hypothetical 
causal relation between known biological (or 
medical) entities. We believe that this helps field 
experts to discover new knowledge from litera-
ture-mined information. In order to assess the 
performance, we tested the system with a case 
study, where literature-mined information about 
protein regulation is employed. 

We review other inference systems in Section 
2, introduce BioDetective in Section 3, describe 
our case study in Section 4, and show concluding 
remarks in Section 5. 

2 Related Work 
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Notation Types Description Flow of effects x y z 
   SE Biological Process  
   SEM Molecule  
   SE External control or disease  
  M SEM Modification to molecule  
 M M SEM Binding  
 S E E Inhibition  
 S E E Induction  
 S E  Necessary condition  
 S S E Degradation  

Table 1. Symbols used in DPL. S is for states, E for events, and M for molecules. 

BioDetective handles high level concepts togeth-
er with molecular level concepts, as the informa-
tion in the literature is often at a level higher than 
the molecular level. The system can also ac-
commodate new kinds of concepts, unknown to 
the system beforehand. These two characteristics, 
unavailable from current systems, of which some 
are reviewed below, facilitate the system to pro-
duce new information from literature-mined in-
formation, by enabling the system to connect 
information which would be considered other-
wise unrelated. 

BioSigNet-RR is a system for representing and 
reasoning about signaling networks (Baral et al., 
2004), and can deal with four kinds of queries on 
the cellular signaling network, but does not seem 
to be easily adaptable to other sub-domains of 
biology. BIOCHAM is a software tool for mod-
eling biochemical systems (Calzone et al., 2006), 
and can conduct analysis and simulation of bio-
logical models, but requires data to be only at the 
molecular level. Pathway Logic is an approach to 
modeling biological entities/processes based on 
rewriting logic (Eker et al., 2005), for the analy-
sis of models of signal transduction networks, 
but does not appear applicable to literature-
mined information with higher level concepts.  

3 BioDetective 

Given a database of biological causal informa-
tion and a query describing a causal relation, 
BioDetective checks if the input dataset supports 
the causal relation1. The structure of BioDetec-
tive is shown schematically in Figure 1.  

The input database should contain a dataset 
that forms a causal network, to be defined in Sec-
tion 3.1. The information in the input database is 
used by the model generator to generate a model  

                                                           
1 The system is based on the abstract description of a qua-

litative formalization framework by Park and Park (2005), 
implemented here with extensions for automated execution. 

 
Figure 1. Structure of BioDetective 

of a concurrent system, which follows rules in 
Section 3.2. The generated model is provided to 
NuSMV (Cimatti et al., 2002), an open source 
model checker. A causal relation stated as a tem-
poral query as explained in Section 3.3 is pro-
vided to NuSMV for verification.  

3.1 Causal network as input 

To describe the datasets that can be used as input 
to BioDetective, we define Diagrammatic Path-
way Language (DPL) (cf. Park and Park, 2005). 

DPL is a set of pathways, where a pathway is 
defined as a set of connected symbols, which are 
any of the symbols of 9 types shown in Table 1, 
where positions marked by x and y are instan-
tiated by other connected symbols. DPL follows 
the style as proposed by Kohn and others (2006). 

A collection of biological or medical informa-
tion forms a causal network when each piece of 
such information is represented with a corres-
ponding symbol in DPL. We assume that the 
body of information comprising the input dataset 
forms a causal network.  

Notice that the information in a causal network 
includes higher level concepts such as causal 
relations, and non-causal concepts such as dis-
eases and biological processes.  

3.2 Rules for concurrent systems 

The concurrent system of a causal network gen-
erated by the model generator consists of biolog-
ical or medical entities represented each with a 
symbol in the pathway of the causal network. 
Each entity of the concurrent system can either 
be present or absent. The status of entities may 
change simultaneously over time according to
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Rule name Description 
Environment  

Assumption 
1. When a non-external molecule A is not the target of any induction or inhibition, the molecule is considered
initially present. 
2. When a disease or external control or a molecule is the target of any induction or inhibition, it is considered
initially not present. 
3. Otherwise, the status of the biological entity is considered not initially determined.  

Implicit Necessary  
Condition 

The presence of participants of a biological entity is a necessary condition for the biological entity. 

Dynamic Inference - Biological entity X will be present if  
1. for some A that induces X, A is present, and 
2. for all B that inhibits X, B is absent, and 
3. for all necessary conditions C for X, C is present. 
- Biological entity X will be absent, otherwise. 

Inertia Once a biological entity becomes present by the Dynamic Inference rule, it remains present unless it is inter-
fered. 

Table 2. Rules for concurrent systems. 

the causal relations involving the entities. Rules 
for such status changes are summarized in Table 
2. The status changes of all the entities in a con-
current system reflect the combined effect of all 
the causal relations in the causal network.  

Note that the rules are not specific to the kind 
of entities involved in the chain of causal rela-
tions, and that the inference system can easily 
accommodate new types of biological entities.2 

3.3 Causal relations as queries for NuSMV 

We use NuSMV to compute the temporal proper-
ties of a concurrent system to verify causal rela-
tions of interest. A causal relation between two 
biological or medical entities is stated as tempor-
al properties in Linear Temporal Logic (LTL), 
using two LTL operators ‘in the future (F)’ and 
‘globally (G)’. Given a formula in LTL as a 
query, NuSMV returns true if the concurrent sys-
tem of the input causal network has the queried 
temporal property, which means that the queried 
causal relation is supported by the input dataset. 
Inducing and inhibiting relations between entities 
A and X are stated respectively as follows.   

 
• Induction of X by A: A -> F G X 
• Inhibition of X by A: A -> F G !X 
 

If the causal relation is not shown explicitly with 
a symbol in the pathway of the causal network, 
the relation is considered indirect. An indirect 
causal relation verified by BioDetective would 
work as a novel piece of information, obtained 
by connecting pieces of known information. 

                                                           
2 We believe that the 9 types of biological entities currently 
handled by the system form a complete set of types, but new 
types such as ‘phenotypes’ may still be introduced if needed. 
Existing types such as ‘induction’ may also be split into 
lower level types, such as ‘induction by transcription’. 
However, the rules themselves remain unchanged. 

 
Figure 2. The causal network constructed as in Sec-

tion 4. Every entity is marked with its ID number. 

4 Using BioDetective: A case study 

In this section, we demonstrate possible uses of 
BioDetective with a case study, where the system 
takes literature-mined information as input and 
produces new knowledge, if there is any.  

Construction of a causal network: We con-
structed a causal network semi-automatically so 
that it can be used as input for our case study, as 
shown in Figure 2. Using BioIE (Kim and Park, 
2004), an information extraction system specia-
lized for biology and medicine, we extracted 109 
descriptions of interactions and causal relations 
between ATM, Mdm2, Chk2, c-Abl, p300 and 
p53, from MEDLINE. We then manually ex-
amined the extracted pieces of information to 
construct a causal network and manually stored 
the network in an SQLite database.3 

Phase 1 – Resolving multiple representa-
tions: There are cases where a causal relation is 
represented explicitly in a causal network, but is 
also represented by paths of other causal rela-
tions and interactions in the same network. These 
cases possibly result from the mixed nature of 

                                                           
3 The causal network contains 34 biological entities; We did 
not use all the extracted information.  
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natural language descriptions, each describing 
the same event with a different level of detail.  

We utilized BioDetective to detect these cases. 
Given causal relation I, where A is a direct cause 
for B to change, we collected all the causal rela-
tions and interactions that transfer the status of A 
to B, to construct a subnetwork. This is done by 
using the information in the last column of Table 
1. We then used BioDetective to see if the sub-
network supports I. If BioDetective returns true, 
the subnetwork is interpreted as representing the 
same event as I, but at a level more detailed than 
the one suitable for representing I.  

We applied the procedure above to the input 
causal network as shown in Figure 3. We found 
five explicit causal relations having a subnetwork 
of the same effect. One of them is the inducing 
relation 42, 42 being the ID number in Figure 3, 
where the corresponding subnetwork consists of 
biological entities 1, 63, 64, 13, 43, 2, and 3. 
This multiplicity was evidenced by the following 
sentence found manually from the literature.  

 
• Phosphorylation of Mdm2 by c-Abl impairs 

the inhibition of p53 by Mdm2, hence defin-
ing a novel mechanism by which c-Abl acti-
vates p53. [PMID: 12110584] 

 
We removed all the five explicit causal rela-

tions to use the modified network in phase 2. 
Phase 2 – Finding sufficient conditions for 

events to happen: If we consider a causal net-
work of literature-mined information as a qua-
litative model of a biological system, and use a 
closed world assumption, we can find a sufficient 
condition for a biological or medical event to 
happen, using BioDetective. 

The sufficient condition for a biological or 
medical entity X to be present can be found by 
searching for the initial configuration A of the 
input causal network that supports the query ‘A -
> F G X’. For this purpose, the causal network in 
Figure 3, cleaned up at the first phase of the case 
study, was used. One of the sufficient conditions 
found by the system is shown below.  
 
• Absence of Mdm2 at the initial time is a suf-

ficient condition for p53 to be present.  
 
We plan to improve the system performance 

further by selecting a subset of the configurations 
of the initial status of the input network.  

 
 

5 Concluding Remarks 

We introduced BioDetective, an automatic infe-
rence system that deals with qualitative causal 
information in biology and medicine. The system 
is suitable for producing new information by 
meaningfully connecting existing pieces of in-
formation in the literature. 

The system is utilized in a case study, where 
literature-mined information is collected and 
processed to obtain new knowledge. The case 
study showed the possibility that the system is 
applicable for various tasks for integration and 
utilization of the literature-mined information. 
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Abstract

A large number of biomedical relation
extraction methods, targeting for exam-
ple protein-protein interactions (PPI), have
been introduced in the preceding decade.
However, the performance figures reported
for these methods vary enormously, and re-
sults are largely incomparable across differ-
ent studies. In this paper we study reasons
leading to this situation and propose a solu-
tion to resolving them.

1 Introduction

Evaluation results for biomedical relation extrac-
tion methods vary greatly and are largely incom-
parable across different studies. This makes it dif-
ficult to assess what are the best tools, methods,
techniques and general approaches to the task. A
number of recent studies have brought to light
several issues leading to this incomparability. In
this paper we collect together these findings and
discuss several other aspects of relation extraction
experiments that may introduce unwanted vari-
ance into evaluation results. After reviewing the
problems, we propose a solution to the known is-
sues.

We assume throughout the paper the common
task setting where relations are to be extracted
by identifying entity pairs for which the relation
holds, e.g. two proteins that are stated to interact.
While a machine-learning perspective is involved
in some parts of the discussion, most of the prob-
lems can occur for any extraction approach. We
assume that evaluation aims to be able to establish
differences in the performance of compared meth-
ods on the order of a few percentage units or less,
a level of accuracy at least implicitly assumed in

many comparisons of domain extraction methods
but, as we shall discuss next, far from systemati-
cally achieved at present.

2 The problems

2.1 Different corpora

In a recent study of biomedical relation ex-
traction performance across five corpora,
Pyysalo et al. (2008) demonstrated that evalu-
ation results for a single method on different
corpora may vary up to 30%, and found a 19%
average performance difference on the corpora.
These differences stem in part from different
definitions of what should or should not be
extracted as a protein-protein interaction, which
leads to differing positive/negative distributions
of candidate relations: for example, the LLL
corpus (Ńedellec, 2005) contains 164 “true”
(positive) relations out of 330 possible entity
pairs, giving an “all-true” baseline performance
of 66% F-score1, while for the AIMed corpus
(Bunescu et al., 2005) these figures are approx.
1000 positive out of 5800 candidate pairs for a
baseline performance of 29% F-score.

While differing extraction targets are, in gen-
eral, a benefit for evaluation—extraction ap-
proaches should be able to learn different
targets—these differences render (unqualified)
evaluation results from different corpora incom-
parable. Below, we will only consider factors
complicating evaluation on a shared corpus.

1Assigning all candidates into the positive class gives
a r(ecall) of 100% and ap(recision) of cp

cp+cn
, wherecp

andcn are the number of positive and negative candidates
(resp.); F-score is2pr

p+r
.
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2.2 Corpus processing

Biomedical corpus annotation is rarely, if ever,
distributed in a form that would explicitly spec-
ify the set of candidate relations. Instead, can-
didates must be generated, often from annotation
that only specifies entities and positive relations.
Negative relations are typically generated under
the closed-world assumption. Along with various
other details of annotation schemes, this opens the
door to varying interpretations of single corpora.

2.2.1 Number of generated examples

With complex annotations including for ex-
ample nested or noncontinuous entities, cor-
pus annotation can allow for strikingly differ-
ent numbers of positive and negative relations:
Sætre et al. (2008) note that the AIMed corpus has
been variously interpreted as containing between
951 and 1071 positive relations with 4026–5631
negative ones. For the most favorable combina-
tion (1071 positive, 4026 negative) the all-true
baseline would stand at 35% and for the least fa-
vorable (951/5631) at 25% F-score. Thus, differ-
ent preprocessings of the corpus can give a very
large absolute difference even for a trivial base-
line, rendering results for different preprocessings
of the corpus incomparable.

A particular difficulty is presented by the ex-
istence of self-interactions, where an annotated
(positive) relation involves only a single entity.
While the AIMed corpus contains 54 such inter-
actions, most studies on AIMed simply ignore
their existence, since generating candidate rela-
tions involving only single entities would increase
the number of negative candidates by thousands
and lead to a considerably more difficult positive-
negative ratio. A similar situation occurs when
extracting directed relations: if each pair of en-
tities is used to generate two directed candidate
relations, the number of negative examples will
more than double.

2.2.2 Entity name blinding

Biomedical corpora often focus on limited sub-
domains, either by design or due to bias intro-
duced from document selection procedure (e.g.
documents cited as evidence in an interaction
database). Consequently, corpora can contain a
disproportionate amount of relations between par-
ticular entities, which can be “memorized” by a
learner if it is allowed to see their names. For ex-
ample, in an experiment on the AIMed corpus we

got an F-score of 33% whenonly the names of
the candidates were used as features. As the all-
true baseline is 30% for our version of the corpus,
this suggests that memorizing names can provide
a small but non-negligible benefit, again leading
to diverging results. Extraction methods should
be able to detect relations between entities whose
names have not occurred in their training data—
indeed, such novel interactions are more interest-
ing than those already annotated. Thus, perfor-
mance increments based on knowing the names
of the entities involved do not reflect real benefits
of extraction methods.

A related issue arises on corpora involving
nested entities. For example on the AIMed cor-
pus, the dataset applied in (Giuliano et al., 2006)
appears to have been preprocessed so that nested
entity names were treated differently depending
on whether the inside entity was part of a true
relation or not. For example, in the sentence
Cloning and functional analysis of [1BAG-1] :
a novel [2[3Bcl-2]-binding protein] with anti-cell
death activitythere are three potential pairs (1,2),
(1,3) and (2,3), but in the Giuliano dataset only
two pairs for this sentence are given, one false
pair, (1,3), and one true pair, (1,2), where the rep-
resentation of the latter does not involve marking
the tokens-binding proteinas belonging to a pro-
tein name (and thus blinding). The negative can-
didate pair (2,3) is excluded in this case. Remov-
ing negative nested protein names raises evaluated
performance in terms of F-score by increasing the
positive/negative ratio. However, this way of pre-
processing the data should not be performed un-
less there is a way to know in advance whether a
nested entity is involved in a relation or not before
running the extraction method. Comparison of
evaluations where one employs such information
and the other does not may not yield meaning-
fully comparable results: Airola et al. (2008) ran
the method published by Giuliano et al. (2006)
on a differently blinded version of AIMed and
reported a 52.4% F-score, over 6% points lower
than the 59.0% reported by Giuliano et al.

2.3 Experimental setup

There are numerous potential pitfalls in setting
up a relation extraction experiment, in particu-
lar when it involves machine learning. Two fre-
quently encountered issues relate to the role of
training and test sets in evaluation.
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2.3.1 Isolating training and test data

To establish a meaningful estimate of gener-
alization performance, the training and test sets
must represent independent samples: test data
that resembles the training data more than the
overall distribution benefits overfit learners and
leads to overestimation of performance.

Sætre et al. (2008) observed that a number of
biomedical relation extraction studies performed
cross-validation by first preprocessing the data to
form all the possible candidate pairs of related en-
tities, which were then randomly split into differ-
ent sets for training and evaluation. In this pro-
cedure, pairs from the same sentence ended up
being used both for training and testing within a
single fold. Since the features from two neigh-
boring pairs in a sentence are practically identi-
cal, this was shown to lead to an 18% points over-
estimation of the F-score performance compared
to a more realistic setting. In the realistic test set-
ting, all the data from a single abstract is kept to-
gether through the whole processing pipeline, to
avoid using it both for training and testing in the
same fold.

2.3.2 Parameter selection

The data on which methods are tested should,
ideally, represent completely new, unseen data.
While this ideal is rarely achieved, a small num-
ber of tests on the whole dataset is unlikely to
cause much bias. However, experiments are of-
ten set up to include repeated, systematic tests
on the entire dataset, of which the best result is
reported. Perhaps the most frequent such setup
arises from parameter selection, e.g. using cross-
validation on the entire corpus. Especially when
the parameter space is multi-dimensional and the
data set is small, this approach can find consider-
able benefit from identifying “spikes” in the pa-
rameter space. Evaluation necessarily involves
some random variation for different parameter
settings, and a parameter selection protocol that
allows the test set to be seen will yield an over-
estimate of performance relative to the magnitude
of that variation. On smaller corpora (e.g. LLL),
random effects changing the assignment of just a
few examples can already make a percentage unit
difference in results.

A related issue arises from picking the best
point (e.g. in terms of F-score) from a precision-
recall curve generated for a single extraction

method with fixed overt parameters. This cor-
responds to implicitly optimizing a classification
threshold parameter, again with reference to the
whole dataset. When comparing methods with
otherwise similar performance, these differences
can cause misleading results: Using the method
of Airola et al. (2008) on AIMed, picking the op-
timum threshold was estimated to provide at least
a 2% overestimate over the more realistic setting
of selecting the threshold on the training data.2

2.4 Metrics

Even when the same corpus, preprocessing, ex-
perimental setup, and metric are applied, differ-
ences arising from the details of how the metric is
calculated can cause results to deviate.

2.4.1 Extracting Identical Relations

A relation is typically taken to be correctly ex-
tracted if the (unordered) pair of related entities is
identified. However, this definition leaves open a
question relating to entity identity: are two men-
tions of the same name one or two entities, and
consequently, should two relations annotated be-
tween the same two names both be extracted, or
does it suffice to find either one?

Giuliano et al. (2006) termed two answers to
these questions One Answer per Occurrence in
a Document (OAOD) and One Answer per Re-
lation in a Document (OARD): here the OAOD
criterion requires each mention to be extracted,
while OARD only demands that each unique pair
of names is identified. They found that an oth-
erwise identical evaluation yielded an F-score of
59% under the OAOD criterion and 64% under
OARD, indicating that results evaluated using dif-
ferent criteria cannot be directly compared.

The two alternatives studied by Giuliano et al.
are not the only ones possible: we might propose
One Answer per Sentence, One Answer per Cor-
pus, One Answer per (cross-validation) Fold, or
One Answer per Journal. While one might ar-
gue that extracting each relation from the corpus
once suffices for some practical applications, we
take the view that from the evaluation perspective
the specific names (between which relations are
stated) are of secondary importance and suggest
that each relation be considered. That is, One An-
swer per Occurrence; from this perspective, the
“D” in “OAOD” is superfluous.

2Thanks to Antti Airola for running this number for us.
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2.4.2 Averages

How averages are calculated is a lesser, but
not negligible, issue. This question often arises
from cross-validation, where two basic alterna-
tives are available: either calculate performance
for each fold separately and average the results
(macroaveraging), or pool the answers and calcu-
late one result for the entire dataset (microaver-
aging). Different choices might cause non-trivial
differences in otherwise identical setups for small
corpora: for example, when examples are care-
fully divided into cross-validation folds on the
document level, some test sets can contain doc-
uments with unusually high numbers of entities
and thus of candidate relations. With macroaver-
aging, folds with a large number of relations will
contribute equally to the final result as folds with
fewer, whereas if results are pooled the contribu-
tions of folds will be inequal, but each relation
will contribute equally. As the number of candi-
date relations grows quadratically with the num-
ber of entities in a given context and the growth of
positive relations is likely to be slower, we would
expect folds with more relations to represent more
difficult problems in terms of metrics sensitive
to the positive/negative distribution (e.g. F-score)
and thus macroaveraged results to be higher.

3 A proposal for a solution

The problems discussed above highlight a need
for standardization to establish meaningful com-
parisons between different relation extraction
method evaluations. Before these issues are ad-
dressed to some extent, the only direct compar-
isons between methods that can be meaningfully
performed are those done within a single study
(or at least by the same authors) and those from
shared tasks. The incomparability comes at a
great cost to the community, as reimplementation
is often the only way to reliably determine the rel-
ative merits of proposed methods.

We do not expect that specific choices to the
many alternatives discussed could be enforced
by fiat. Instead, we propose a positive solution:
we have constructed a standard dataset contain-
ing data derived from different corpora, building
on the unification of five corpora under a com-
mon format by Pyysalo et al. (2008). We have
extended this work by including explicit candi-
date pairs with blinded protein names, thus ad-
dressing the issues in corpus processing. Further,

predefined train/test splits are provided, and the
distribution of the dataset is accompanied with
evaluation scripts that implement the basic met-
rics in a standardized way, thus eliminating pos-
sible differences arising from metric application.
The data and software is freely available from
http://mars.cs.utu.fi/PPICorpora .

4 Conclusion

We have discussed a number of issues in biomed-
ical relation extraction system evaluation that
complicate, or even prevent, meaningful compar-
ison of reported results, and we proposed a so-
lution to address these issues. We believe that
the proposed dataset and evaluation approach can
serve as a step toward stable, reliable evaluation
of biomedical relation extraction methods.
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Abstract 

Motivation: The identification of events such 
as protein-protein interactions (PPIs) from the 
scientific literature is a complex task.  One of 
the reasons is that there is no formal definition 
for the syntactical-semantic representation of 
the relations with which authors of manu-
scripts have to comply.  In this study, we as-
sess the distribution of verbs denoting binary 
relations between proteins using different cor-
pora (AIMed, BioInfer, BioCreAtIve II) for 
protein-protein interactions and measure their 
performance for the identification of PPI 
events (in the BioCreAtIve II corpus) based on 
syntactical patterns.  We distinguish modifying 
interactions (MIs) such as post-translational 
modifications (PTMs) from non-modifying in-
teractions.  We found that MIs are less fre-
quent in the corpus but can be extracted at the 
same precision levels as PPIs.       
Programmatic access to the text processing 
modules is available online (www.ebi.ac.uk/ 
webservices/whatizit/info.jsf, 
http://www.ebi.ac.uk/Rebholz-srv/pcorral/). 

1 Introduction 

Since the innovative approach of (Blaschke et al., 
1999), a number of solutions for the identification 
of binary relations such as protein-protein interac-
tions (PPIs) have been proposed.  Until today, no 
solution is yet publicly available that at the same 
time identifies from the scientific literature the pro-
tein and gene names (PGNs), links them to the con-
cept id (CID) in the biomedical data resources (e.g., 
to the accession number in UniProtKb) and reads 
out the relation between two PGNs at a high preci-
sion rate (precision = # correctly identified results / 
all identified results).  Several solutions have been 
proposed (see related work), including the one that 
is best-known and called iHOP (Hoffmann et al., 
2005), but none of them offers a comprehensive 
approach. 

In this research work we explore on the use of 
language in the scientific literature, in particular in 
annotated corpora for protein-protein interactions to 
better understand the use of verbs in this context.  
We follow the hypothesis that language representa-
tions for PPIs fall into different categories: (a) inte-
ractions with chemical modifications to one 
interaction partner (“modifying interaction”, MI), 
and (b) interactions without such changes (“non-
modifying interactions”, NMI).  The distinction 
between these types is motivated by the assumption 
that strong experimental proof for the MIs leads to 
explicit statements in the scientific literature report-
ing on the interaction (e.g., explicit mention of the 
interaction partners) and thus information extrac-
tion techniques will achieve better performances. 

The evidence for the modifying interactions is 
any reporting of chemical changes linked to the 
interaction partners of the PPI.  For example, me-
thylation and demethylation and similarly phospho-
rylation and dephosphorylation as well as other 
types of chemical changes (e.g., acetylation, bioti-
nylation) have to be considered here (see table 1).  
These modifications can be subsumed as posttran-
slational modifications (PTMs), which are a subca-
tegory of PPIs. (Saric et al., 2006) have integrated 
these types of interactions into their work.  Since 
the experimental evidence for the reporting of an 
interaction is linked to chemical changes which 
require modifying contact between the two pro-
teins, it can be expected that the reported results is 
a proven protein-protein interaction.   

The second group of reported protein-protein in-
teractions forms the largest set and has been com-
monly used for the identification of PPIs (Temkin 
et al., 2003; Friedman et al., 2001; Blaschke et al., 
1999).  This group contains all reported results, 
where for example one protein activates or binds 
another protein.  This set of interactions is relevant 
to molecular biologists searching for clues to re-
construct regulatory and signaling pathways in the 
cell. 

The proposed categorization meets the demands 
from members of curation teams at the EBI that 
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require integration of different interaction types 
(modifying and non-modifying interactions) into 
public services (Protein Corral, unpublished).  
These services will now be properly assessed, after 
an appropriate evaluation corpus has been made 
available: the evaluation corpus for protein-protein 
interactions as part of the BioCreAtIve II challenge 
(Krallinger et al., 2007).   

2 Methods 

The identification of protein-protein interactions 
from the literature is a complex task, which is com-
posed of named entity recognition for proteins, pro-
tein name normalization (i.e. identification of the 
correct CID) and the extraction of the relation be-
tween both entities.  For the assessment we relied 
on the BioCreAtIve II corpus for the IPS task 
(347,749 sentences from 740 full-text documents), 
on the AIMed corpus (1,942 sentences from 255 
abstracts) and on BioInfer (1,100 sentences from 
full-text) (Krallinger et al., 2007; Bunescu et al., 
2005; Pyysalo et al., 2007).  Only the BioCreAtIve 
corpus delivers a set of CID pairs for every con-
tained document where the CID pair represents a 
protein-protein interaction.   

2.1 Named entity recognition for pro-
teins/genes 

The identification of PGNs has been studied exten-
sively (Morgan et al., 2007; Hakenberg et al., 2005; 
Hirschman et al., 2005). The identification of gene 
mentions has been solved to a precision close to 
90% whereas the gene normalization is still ongo-
ing work. In this work, the applied tagger (SP-
tagger) delivers CIDs as part of the NER task and is 
part of several TM solutions at the EBI (EbiMed, 
PCorral, MedEvi; Rebholz-Schuhmann et al., 
2007a).  It incorporates all protein names from Un-
iProtKb/SwissProt and named entity recognition is 
mainly done by dictionary lookup under considera-
tion of morphological variability, acronym resolu-
tion and basic disambituation (Tsuruoka et al., 
2007; Gaudan et al., 2005; for SOAP Web services 
access see Rebholz-Schuhmann et al., 2007b). 

2.2 Identification of protein-protein interac-
tions 

The identification of protein-protein interactions 
from the text is based on the modules of the Whati-

zit infrastructure (Rebholz-Schuhmann et al., 
2007b) and through Protein Corral.  Public access 
is granted to all modules that are used in this study.  
Most modules are implemented as Finite state au-
tomata (Kirsch et al., 2006). The basic NLP mod-
ules of the infrastructure comprise the sentenciser 
and a part-of-speech (PoS) tagger. The PoS tagger 
was trained on the British national corpus, but con-
tains lexicon extensions for the biomedical con-
cepts. Noun phrases (NPs) are identified with 
syntax patterns equivalent to “DET (ADJ|ADV) 
N+”.  

For our study we assessed tri-cooccurrence (3-
CO) against syntactical patterns denoting a protein-
protein interaction (SynP).  3-CO is performed on 
the stretch of a sentence.  Any triplet of two pro-
teins in combination with a verb mention in the fol-
lowing combinations is accepted: (1) “PGN VP 
PGN”, (2) “nomVP PGN PGN”, and (3) “PGN 
PGN nomVP”, where nomVP is a nominalization 
of a verb phrase. 

The module that identifies and highlights pro-
tein-protein interactions searches for phrases that 
contain a verb or a nominal form describing an in-
teraction like bind or dimerization.   The first set 
comprises all verbal expressions that report on 
chemical modifications of a protein: acetylate, acy-
late, amidate, brominate, biotinylate, carboxylate, 
cysteinylate, farnesylate, formylate, "hy-
drox[iy]late", methylate, demethylate, "myris-
to?ylate", "palmito?ylate", phosphorylate, 
dephosphorylate, pyruvate, nitrosylate, sumoylate, 
"ubiquitin(yl)?ate".  The second set of verbs con-
sists of forms that report on interaction and regula-
tion events: associate, dissociate, assemble, attach, 
bind, complex, contact, couple, "(mul-
ti|di)meri[zs]e", link, interact, precipitate, regulate, 
inhibit, activate, "down[-]regulate", express, sup-
press, "up[-]regulate", block, contain, inactivate, 
induce, modify, overexpress, promote, stimulate, 
substitute, catalyze, cleave, conjugate, disassemble, 
discharge, mediate, modulate, repress, transacti-
vate.  “Associate” does not denote any specific 
binding or transformation event. 

The identification of noun phrases (NP) selects 
nouns in combination with adjective modifiers, in-
cluding coordination of ADJ elements in front of a 
sequence of nouns.  PGNs are treated as nouns.  
NPs do not include determiners (e.g., “novel orphan 
receptor TAK1”).  Finally the protein-protein inte-
raction patterns (PPI) are identified.  They are basi-
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cally combinations of the previously identified in-
formation, such as NP_P VP det? NP_P and NP_P 
VP det? NP of NP_P, where NP_P is an NP that 
contains the identified protein and VP denotes ver-
bal phrases including modal verbs.  These construc-
tion rules for syntactical patterns lead to the 
selection of structures that are similar to tri-
cooccurrence representations but generate higher 
precision.  Similar structures have been proposed 
by (Huang et al., 2004). Nominalizations increase 
the recall for the identification of PPIs and follow 
the representation VP_NP "(of | with | between | 
through | from)" det? NP_P "(and | with | within | 
via | through | by)" det? NP_P, where VP_NP is 
the nominalization of the verb form.  

3 RESULTS 

In the first step we analyzed all three available cor-
pora, i.e. AIMed, BioInfer and BioCreAtIve, and 
extracted all verbs that co-occur with two mentions 
of a PGN.  This resulted to the identification of 967 
verbs for the BioCreAtIve corpus, 165 for AIMed 
and 162 for BioInfer.  90 were shared in all three 
corpora.  Modal verbs (e.g., do, have) were only 
considered if they did not appear in combination 
with other verb forms.  Apart from the domain-
specific verbs (see method sections), a large list of 
general English verbs were extracted: encode, sug-
gest, use, show, test.  They are part of idiomatic 
phrases such as “we have shown that” or the “en-
coded protein“.  The first type is covered by our 
syntactical patterns if used as part of the textual 
protein interaction description. 

From the list of NMI verbs 5 were not contained 
in AIMed (attach, catalyze, disassemble, modify, 
overexpress), 5 not in BioInfer (dimerize, down[-
]?regulate, repress, substitute, transactivate) and 3 
only in BioCreAtIve (conjugate, multimerize, up[-
]?regulate).  This shows that the BioCreAtIve cor-
pus already by the number of provided sentences 
has the biggest coverage.  It is a small surprise that 
“up-regulate” is not more commonly used. 

Regarding the verbs categorized as MI only 
“phosphorylate” appeared in all three corpora and 
“acylate” in two corpora (i.e. not in AIMed).  4 
verbs appeared only in the BioCreAtIve corpus 
(biotinylate, dephosphorylate, methylate, pyruvate).  
This leads to the result that MIs are preferrably re-
ported in the full text document and at a low fre-
quency.  A complete Medline analysis has lead to 

the result that only a few verbs for MIs (biotinylate, 
dophosphorylate, hydroxylate, methylate, phospho-
rylate, pyruvate) are applied in conjunction with 
mentions of PGNs, whereas all verbs for NMIs are 
in use. 

The following analysis focuses on the BioCreA-
tIve corpus only, since it is the largest corpus and 
the previous figures demonstrate that it provides the 
largest coverage of relevant verbs. 

3.1 Comparison of NER tagging results 

In our assessment, we considered the result of 
the protein-tagger as correct, if the right concept id 
(CIDs) was contained in the list of attributed CIDs.  
The resulting number is similar to the frequency of 
the identified named entities in the text and enables 
better comparison of results between the different 
methods (3-CO vs. SynP). 

Table 2.  (Processing full-text documents, One-CID) The table 
shows the results for the identification of CID pairs from the BioCreA-
tIve full text corpus for 3-CO and SynP.   
SP (SwissProt-tagger), cs (case-sensitive), ci (case-insensitive), 3-CO 
(tri-cooccurrence), SynP (syntactical language patterns for PPIs) 

 PredictionsCorrect pre-
dictions 

Precision Recall F-
measure

SP-cs, 3-CO 12,771 408 3.2% 19.3% 5.5% 
SP-cs, SynP 1,539 211 13.7% 10.0% 11.6% 
SP-ci, 3-CO 15,823 609 3.8% 28.8% 6.8% 
Sp-ci, SynP 2,078 358 17.2% 17.0% 17.1% 
 
The evidence extracted with SynP is a true subset 
of the evidence from the 3-CO method leading to 
the result that about 50% (49.9%-58.8%) of the 
evidence from 3-CO can be confirmed by the ap-
proach using syntactical language patterns.  This 
can be explained by the fact that the predictions are 
counts of unique CID pairs, which again can be 
represented by a number of instances in the docu-
ment.  The redundancy in the document counter-
balances lower recall of the SynP methods over the 
3-CO methods.  In the next step we investigated 
into the distribution of the verb forms that were part 
of our two approaches.  

According to our categorization, we find the fol-
lowing numbers for events representing MIs and 
NMIs (see table 3).  The most correct predictions 
are reported in the set of NMIs (325) and the smal-
lest number in the set of MIs (23).  Altogether, MIs 
have a small contribution to all protein-protein inte-
ractions in the BioCreAtIve II corpus.  The preci-
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sion is for both types of events in the same range 
(18.5% and 17.2%, respectively).  Similar results 
are gained when only processing the abstracts (MI: 
7 agreements for 18 predictions; NMI: 64 agree-
ments for 241 predictions).   

To our surprise, the association of proteins has a 
significant contribution to the correct identification 
of relations between proteins.  This result is unex-
pected, since the association of two proteins does 
not give any clues on the underlying relatedness of 
the proteins, i.e. a relation based on binding, regula-
tory or transformational effects.   

Table 3.  (Processing full-text documents, One-CID, SP-ci) The 
table shows the predictions from the full-text documents from BioCre-
AtIve II based on the case-insensitive use of the SP-tagger.  All find-
ings are categorized according to the category of the verb form that has 
been used in the text in conjunction with the mentioned proteins (see 
methods section). (for use of acronyms see table 2) 

 Pre-
dictions 

Correct pre-
dictions 

Precision Recall F-
measure

All, 3-CO 15,823 609 3.8% 28.8% 6.8% 
All, SynP 2,078 358 17.2% 17.0% 17.1% 
Associate, 3-CO 1,203 180 15.0% 8.5% 10.9% 
Associate, SynP 171 66 38.6% 3.1% 5.8% 
MI, 3-CO 1,092 71 6.5% 3.4% 4.4% 
MI, SynP 124 23 18.5% 1.1% 2.1% 
NMI, 3-CO 14,833 596 4.0% 28.2% 7.0% 
NMI, SynP 1,893 325 17.2% 15.4% 16.2% 

4 DISCUSSION 

In the presented work, we defined the classes of 
modifying interactions containing all verb forms 
that report on a chemical transformation of one in-
teraction partner (posttranslational modifications, 
e.g., methylation, acetylation, phosphorylation), 
and non-modifying interactions (e.g., interaction, 
binding, regulatory events).  The last class is com-
posed of the undefined interactions (e.g., associa-
tions, functions).  Much to our surprise the single 
entry from the class of undefined interactions (“as-
sociate”) contributed significantly to the correct 
predictions in our analysis.  A significant portion of 
the “association” of protein pairs could be con-
firmed by a more informative relation between the 
proteins from the same document.   

(Friedman et al., 2001) proposed a categorization 
of verbs into semantic classes for actions, process 
and other relations.  It is more fine-grained and dis-
tinguishes positive regulation (“activate”) from 
negative regulation (“inactivate”) and proposes se-
mantic classes related to bond formation (“create-

bond”, “breakbond”) and general modification ac-
tions, reaction actions and others.  This approach 
shows foresight, but could be too detailed to deliver 
conclusive results from information extraction.   

For the ongoing work in the extraction of gene 
regulatory events, we will analyze how MI and 
NMI events contribute to the event extraction. 
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Abstract

This paper is concerned about one aspect
in the extraction of key terms that describe
various types of information about a given
gene. Our method for key term extraction is
based on a comparison of term occurrences
in documents associated with the gene ver-
sus a broader set of documents. We in-
vestigate the influence on the type of key
terms extracted by the type of documents
retrieved for the given gene. We provide
analysis on five genes to draw our conclu-
sions and hypotheses for future investiga-
tions.

1 Introduction

Researchers spend a tremendous amount of time
searching the biomedical literature for informa-
tion they need. A simple PubMed query for a
specific gene can sometimes return several thou-
sands of articles, which could be time consuming
to read. Instead, we allow researchers to consult
a list of most important gene-related information
(key terms) gathered automatically from these ar-
ticles. By consulting key terms and by reading
sentences containing a particular key term, the re-
searchers can find quickly information of interest.

For example, searching PubMed for abstracts
containing gene Groucho returns a list of 269 ref-
erences to articles. We identify key terms and
present users with relevant information: tran-
scriptional corepressor, segmentation, neurogen-
esis and WD40. This immediately informs a user
that Groucho is a transcriptional corepressor, that
it might be involved in the processes of segmenta-
tion and neurogenesis and that it might contain the
WD40 domain. From these key terms, researchers

can choose to learn more by reading sentences
and abstracts containing the terms of interest.

We determine such key terms by comparing the
set of documents retrieved for the specific gene
(the query set) against a background set of docu-
ments with information about genes in general.
The type of documents retrieved may influence
the type of information captured by the extracted
key terms. We investigate how different kinds of
key terms can be obtained based on changing the
query set. We report our findings about the type
of key terms we extracted for five genes when us-
ing different query sets. We believe these findings
about the influence of the different query sets are
not limited to our method for key term extraction,
but also to all key term extraction systems that
consider term distributions between a background
set and a set associated with a given gene.

2 Related Work

One of the earliest works on mining key terms
from text is due to Andrade and Valencia (1998).
They proposed to automatically mine keywords
for families of proteins, by comparing each fam-
ily’s literature against the other families’ com-
bined literature. Other systems which also mine
key terms from the biomedical literature are built:
e-LiSe (Gladki et al., 2008), MedEvi (Kim et al.,
2008), and Anne O’Tate (Smalheiser et al., 2008).
Our system, eGIFT, Extracting Gene Information
From Text (Tudor et al., 2008), differs from these
systems in its intended use only for genes; the
construction of background information; the fil-
tering of irrelevant documents; the extension of
words to multi-word key terms; the grouping of
morphologically related terms; and the division
of key terms into categories.
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3 Retrieving key terms using eGIFT

We compare the distribution of terms in the ab-
stracts about the gene from some background
set. We look for situations where the differ-
ent frequencies of appearance of a term in two
sets of the literature are statistically interesting.
For the Background Set, we downloaded from
PubMed all abstracts for the search on gene(s) or
protein(s). For the gene-specific documents, we
download abstracts from PubMed which mention
a given gene name and its synonyms, and call it
the Query Set. Using these sets of documents we
compute the score st for a term t as follows:

st = (
dctq

Nq
− dctb

Nb
) ∗ ln

(
Nb

dctb

)
where dctb and dctq are the background and query
document counts of t, and Nb and Nq are the total
number of documents from the two sets.

The difference between the normalized docu-
ment frequencies (dctq

Nq
− dctb

Nb
) is giving preference

to terms that appear more frequently in the Query
Set than in the Background Set, while the second
part of the equation (ln

(
Nb
dctb

)
) further penalizes

common terms in general. We rank the key terms
based on their scores, in decreasing order.

4 Research Methods

We have applied our method on 60 genes selected
by annotators for a public resource. A set of 5
genes was chosen for our analysis by one of the
co-authors expert in Biology and familiar with the
selected genes. Their symbols and Entrez Gene
IDs are: BMP2 650, GRO 43162, LMO2 4005,
OPN 6696, and TERT 7015. Together, we deter-
mined the category of each key term, and for each
gene we compared the results returned by the dif-
ferent query sets, as described below. For each
set, we looked at the top 150 key terms only.

Since the primary goal of this work is to deter-
mine how the choice of gene-specific set of docu-
ments influences the quality and type of informa-
tion extracted, we consider for a given gene many
different query sets, as will be defined next.

We observed that not all the abstracts from the
Query Set are relevant to the given gene. When
we search for a specific gene, we obtain two
types of abstracts: (1) which talk mainly about
the gene, and (2) which are focused primarily on
some other topic but happen to mention our gene.

Given this observation, we have decided to divide
the entire set of retrieved documents for a gene
(Full Set) into two distinct sets: About Set and
Extra Set. By considering the About Set, instead
of the Full Set, we hope to filter out information
which is not core to the given gene. We check if
an abstract mentions the given gene at least three
times, or once in the title, the first or last sentence
of the abstract, before assigning it to About Set.

While we expect to obtain more “core” key
terms by using About Set as the query set, we
also want to see what kind of key terms are found
when we use Extra as the query set. However,
since Extra documents are supposed to be about
some other topic and might just mention our gene,
we can focus on the sentences, in the Extra ab-
stracts, that contain our gene, as this might give us
gene-related information when mentioned in con-
text of some other topic. So we build a new possi-
ble query set, ExtraSent Set, that is obtained by
taking each document in the Extra Set and only
retaining sentences that mention our gene. We
similarly obtain AboutSent and FullSent sets.

Since the title, first and last sentences of the
abstracts generally give a high level summary of
the work they discuss, we create AboutTiFL by
only retaining the title, first and last sentences. By
using AboutTiFL as the query set, we expect to do
well on extraction of high level key terms, but not
more detail level key terms 1 , for the gene.

5 Discussion of Results

5.1 About Set vs. Full/Extra Set
As we expected, the use of About as the query set
led to better extraction of information that is core
to the given gene. For example, processes like
segmentation, neurogenesis, embryonic develop-
ment, and sex determination are ranked much
higher in the About Set than in the Extra Set
for gene Groucho. Groucho is involved in all of
these processes, and since many abstracts “about
Groucho” will discuss its functions and processes,
these terms are highly ranked in contrast to the
use of Full Set or Extra Set as the query set.
Since the Extra Set abstracts aren’t necessarily
about Groucho, these key terms are ranked much
lower and some other key terms take their place
in the Extra Set ranking. We found that the highly
ranked key terms for the Full Set include terms

1By high level we mean process/functional terms, and by
detail level terms we mean other genes and domains/motifs
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from both About and Extra and the four pro-
cesses drop in rank, particularly embryonic de-
velopment and sex determination. We see several
such cases. For example, consider the associa-
tion of Lmo2 with erythropoiesis. Lmo2 was orig-
inally identified as an oncogenic protein in human
t-cell leukemia and later determined to be essen-
tial for erythropoiesis (PMID 9520463). Chro-
mosomal translocations, erythropoiesis, tumori-
genesis, and t-cell development are ranked higher
in About than in Full, and, in fact, with the Ex-
tra Set the rank dropped considerably. For the
gene Opn, secretion, cell adhesion, and metasta-
sis ranked very high in the About Set, while only
one of these terms ranked in the top 150 key terms
for Extra Set.

In contrast, the use of Extra Set as the query
set reveals some highly interesting and potentially
useful information about the genes which get
ranked much lower in the About Set. Rather than
high level process/function oriented key terms,
with Extra ranking we are able to extract informa-
tion that is often “lower level”, such as other re-
lated genes and domains/motifs. Although some
of the key terms obtained by using Extra Set are
relevant to the given gene, many are “false posi-
tives” (i.e. highly ranked terms that were not as-
sociated with the gene).

5.2 Sentence-based Document Sets

ExtraSent Set. Extra Set contains many terms
that are extraneous to our gene. Hence, we pro-
pose to investigate the use of ExtraSent Set as this
might filter out terms less relevant to our gene.
We notice that this is exactly the situation. Genes
and motifs retrieved by using the Extra Set get
ranked even better with ExtraSent Set. For ex-
ample, eh1 and bhlh, which are highly ranked
in ExtraSent as compared to About, are domains
that are contained in other genes which interact
with Groucho. Abstracts that focus on other top-
ics/genes but which also mention Groucho (and
hence make it into Extra Set of Groucho) discuss
eh1 and bhlh frequently.

Also, some genes are highly ranked with Ex-
traSent Set when they co-occur frequently with
our gene. This might happen when several genes
are mentioned together because they form a com-
plex, participate in some pathway, contain a com-
mon motif, are expressed in some disease, etc.
For example, the gene Lyl1, is mentioned by En-

trez Gene for interacting with Lmo2. ExtraSent is
the only set which includes Lyl1 in the first 150
key terms and ranks it at the top of its list.

Another example is activin to be discussed in
the context of Bmp2. Activin is in many ways sim-
ilar to Bmp2, and somebody interested in Bmp2
would want to know this information. But in par-
ticular we believe that the relevance of activin can
be noted in that some sentences not only discuss
similarities, but go on to point out some small
but significant differences: “... human CHL2
(hCHL2) protein is secreted and binds activin A,
but not BMP-2 ...” (PMID 15094188) and “...
BMP-2 and activin A induce PC12 cell neuron
differentiation ...” (PMID 8663261). So in some
sense, activin, while not central to Bmp2, may be
important to researchers interested in Bmp2. Ac-
tivin does not rank highly in the About Set (rank
157), nor in FullSent Set (rank 106), but gets a
much higher rank of 25 in ExtraSent Set (while in
Extra Set it has rank 90).

A similar example can be noticed with the gene
Opn. Two genes were boosted in the ExtraSent
Set (DMP-1 and DSPP) which were otherwise
not present in any of the top 150 key terms for
the other sets. Opn, DMP-1 and DSPP are SIB-
LING proteins (small integrin-binding ligand, N-
linked glycoproteins) (PMID 16776771). Inter-
estingly, the descriptive terms, like Glycoprotein,
integrin-binding, and ligand are all ranked high in
the About Set and not present in the Full or Ex-
tra sets. Hence we might learn from the About Set
that osteopontin is a SIBLING protein, but we can
learn about other SIBLING proteins, like DSPP
and DMP-1 only from ExtraSent Set.

Despite a careful examination, we were not
able to find any examples of key terms that were
ranked significantly higher in Extra Set as com-
pared to ExtraSent Set. More importantly, Ex-
tra Set gave several “false positives” (i.e. several
highly ranked terms that were not associated with
the gene) as compared to ExtraSent Set. This is in
line with our original motivation for considering
ExtraSent Set.

AboutSent Set. While ExtraSent was no-
ticeably better than Extra Set, we found that this
situation was not replicated when we compared
About with AboutSent. In fact, when we com-
pared the ranking of different types of key terms
and across genes, the rankings of key terms given
by About and AboutSent sets were very similar.

159



While there are some minor differences in the
rankings by About Set and AboutSent Set, there
was no noticeable pattern and our conclusion was
that these provided very similar quality and type
of information. In examining the differences be-
tween AboutSent and ExtraSent our observations
suggested that there is a parallel to the situation
we observed when comparing About with Extra.

FullSent Set. The documents in FullSent
Set contain all sentences from the AboutSent and
the ExtraSent sets. As we noted earlier, we felt
that the About Set and AboutSent were not dis-
tinguishable, but the ExtraSent did provide better
quality than Extra, as well as a useful but differ-
ent kind of information from About. Preliminary
analysis of the rankings of FullSent does indeed
suggest that the advantages of these two sentence
based documents were captured.

AboutTiFL Set. The reasons we considered
the AboutTiFL Set are as follows: the title usu-
ally contains a short, yet concise, summary of the
abstract, while the first sentence, as an introduc-
tion, together with the last sentence, as a conclu-
sion, contain high level informative terms about
the studies reported on the given gene. Thus,
as we expected, we obtained most of the high
level information related to the gene (such as
corepressor for Groucho, chromosomal translo-
cation for Lmo2, and phosphoprotein for Opn) but
not highly relevant and detail oriented key terms.
For example, alkaline phosphatase activity was
ranked very low in the AboutTiFL for gene Bmp2
while it ranked considerably high in the About
Set. Similarly, other gene names, such as osteo-
calcin and alp which score highly in the About
Set, do not appear in the top 150 key terms for the
AboutTiFL Set. WRPW and WD40 which are do-
mains related to Groucho and extracted from the
About Set are ranked low in AboutTiFL.

5.3 Conclusions

We have talked about differences among the Full,
About, Extra, ExtraSent and AboutSent sets. We
have seen how the Full Set does not distinguish
extraneous information from important. By divid-
ing the entire document set into About and Extra
sets, we helped separate the two relevant types of
information. More importantly, we have shown
we can filter highly irrelevant information by con-
sidering the ExtraSent Set, which boosts ranks
for potential interacting genes, similar or different

genes, as well as domains and motifs relevant to
the gene in question. We believe further investiga-
tion of FullSent versus About and ExtraSent sets
is needed in order to determine if the About and
ExtraSent sets give the most relevant key terms
when used together, or if the FullSent set itself
captures the information given by the two sets.
On the other hand, if only high-level information
is required, then we could restrict our query set to
sentences in AboutTiFL.

One of key results of this work is that impor-
tant concepts/key terms, to be associated with a
given gene, can be extracted if we look in the right
places for the particular type of concept. And
hence, in our opinion, the Full Set (i.e. all ab-
stracts retrieved by searching for a gene) is not the
right place to extract key terms, whichever type of
key term it is. In this context, we wish to point out
that other systems appear to be using Full Set and
not distinguish between different ways the gene is
mentioned in an abstract.

Evaluating key terms is a challenging task, one
of the many reasons being due to the lack of a gold
set of terms relevant to specific genes. We are cur-
rently conducting an evaluation of key terms re-
trieved by eGIFT, based on ratings received from
biologists, as well as by consulting manually cre-
ated knowledge bases for genes to identify infor-
mation which is captured/missed by eGIFT.
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Abstract

Today’s information retrieval (IR) techniques

are mostly text-based. As a consequence,

some types of information are beyond the

reach of text-based IR systems, which fail in

situations where textual information can not

be easily accessed, e.g. textual information

in biomedical images and figures. To tackle

such situations, we propose to augment IR

systems with the ability to perform optical

character recognition (OCR). A principal ob-

stacle is the accuracy of the OCR procedure,

which is often error-prone. In our work, we in-

troduce some preprocessing and postprocess-

ing techniques for improving the OCR per-

formance. Our preprocessing stage is con-

cerned with separating texts from graphical

elements in an image so that the graphics in

the image would not affect the performance of

OCR, as today’s OCR engines are optimized

for dealing with documents without graphical

elements. Our postprocessing stage is con-

cerned with a context-based OCR result cor-

rection. Experimental results show that these

preprocessing and postprocessing techniques

can consistently improve the performance of

biomedical image OCR in terms of either pre-

cision or recall.

1 Introduction

In biomedical publications, figures and images

often concisely summarize a paper’s experimental

findings and results. Recent studies have therefore

explored the use of images to assist in information

retrieval (IR) in biomedicine, mostly based on

mining the image caption content. We extend

this approach by mining the image text, which

refers to the text inside biomedical figures and

images. To study the potential of using image

text for information retrieval over the biomedi-

cal literature, we developed a prototype search

engine based on image text search called Yale

Image Finder, which is publicly available at

(http://kauthammerlab.med.yale.edu/imagefinder).

In a high-level evaluation of image search perfor-

mance, we demonstrated that the search engine is

capable of retrieving a higher number of relevant

images compared to querying against the image

caption alone (Xu et al., 2008).

An obstacle to the development of a text-based

search engine is the accuracy of the OCR procedure,

which is often error-prone. In our work, we intro-

duce some preprocessing and postprocessing tech-

niques for improving the OCR performance. Our

preprocessing step involves layout analysis to de-

tect and extract text from surrounding graphical el-

ements. As a result, graphical elements do not de-

grade the performance of the OCR engine, which

is optimized for dealing with documents without

graphical elements. Our postprocessing step is con-

cerned with performing a context-based OCR re-

sult correction. The key idea is to capture the tex-

tual context for each biomedical image. We assume

that texts within biomedical images are discussed

in their textual context, i.e. in the image caption,

in the paragraph that discusses the image, or in the

paper that features the image. We thus correct the

raw image OCR result by matching it to the terms

found in its context. Experimental results show that

these preprocessing and postprocessing techniques
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consistently improve the performance of biomedical

image OCR in terms of either precision or recall.

2 A Prototype Biomedical Literature

Search Engine Based on Image Text

Prior studies have proposed to use image informa-

tion, mostly image caption, to assist in biomedical

IR (see for example (Hearst et al., 2007)). We ex-

tend this idea and propose to facilitate the retrieval

of biomedical articles by making the image content

accessible to IR systems. This offers several ad-

vantages over searching over image captions alone.

First, captions may not contain all the textual infor-

mation that is contained in the images. Second, im-

age texts are usually very specific, allowing for pre-

cise matching of images with related images. We

implemented a prototype system for image and lit-

erature retrieval based on image text. We extract

image text through image segmentation and Opti-

cal Character Recognition (OCR) in biomedical im-

ages. For OCR, we used the Image Analysis tool-

box (Document Imaging) that is part of Microsoft

Office 2003 Professional. Our system has indexed

over 100,000 images from public-access biomedi-

cal journal papers. A user can compose an im-

age query by specifying the word(s) he expects to

appear inside an image, and optionally in the im-

age caption, or in the associate paper title and ab-

stract. Once the query is submitted, he is pre-

sented with images that are relevant to his query (see

http://krauthammerlab.med.yale.edu/imagefinder).

We have investigated several aspects of our sys-

tem, including the image text extraction perfor-

mance (Xu et al., 2008). Our results indicate that on

average, only about 30% of image text is contained

in the caption of images, and that for queries that

contained two ore more search strings, we were able

to retrieve 30% to 175% more images compared to

searching over caption alone.

3 Preprocessing and Postprocessing

Techniques for Improving OCR

Performance

Since our new biomedical literature search engine

functions through searching image texts, the OCR

performance will critically affect the performance of

our search engine. Therefore, we introduce a set of

preprocessing and postprocessing techniques for im-

proving OCR performance.

The key idea behind our preprocessing step is

to provide customized layout analysis over images

published in academic journals, using histogram-

based image processing techniques (Lienhart and

Wernicke, 2002; Wu et al., 1999). The analysis

identifies image text elements, and subjects them to

OCR. The text extraction is repeated after turning an

image 90 degrees, to allow for the capture of vertical

image labels.

The key operation in our postprocessing step is

to cross-check extracted image text against the con-

text of the images, and to retain image text which is

mentioned in its context. Such context-based cor-

rection can effectively minimize false positive re-

sults, as intensively discussed in prior studies (Ku-

kich, 1992; Ringlstetter et al., 2007). In our current

implementation, we work with two types of image

context: one is constituted by all the words from the

article that features the image, and the other is con-

stituted by the words in the public accessible articles

from PubMed Central. We call image text correction

based on the former context “article-based correc-

tion”, and image text correction based on the latter

context “corpus-based correction”.

In this study, we evaluate these preprocessing and

postprocessing steps, either alone or in combina-

tion. The goal is to determine the optimal processing

pipeline to extract text from biomedical images. We

evaluate the following processing options:

Plain-uncorrected option This option uses raw

OCR output without any preprocessing or post-

processing.

Plain-corrected option This option uses article-

based correction in the postprocessing stage.

Layout-uncorrected option This option uses lay-

out analysis in the preprocessing stage.

Layout-corrected option This option uses layout

analysis in the preprocessing stage and article-

based correction in the postprocessing stage.

Corpus-plain-corrected option This option uses

corpus-based correction in the postprocessing

stage.
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Corpus-layout-corrected option This option uses

layout analysis in the preprocessing stage and

corpus-based correction in the postprocessing

stage.

High-recall option This option combines the plain-

uncorrected option and layout-uncorrected op-

tion.

High-precision option This option combines the

results from the plain-corrected option, layout-

corrected option, corpus-plain-corrected op-

tion, and corpus-layout-corrected option.

The latter two options combine the best preprocess-

ing and postprocessing procedures to either retrieve

most of the image text content (high-recall option)

or to retrieve image text context with the highest

amount of precision (high-precision option).

4 Evaluation

To evaluate the effectiveness of our OCR correction

techniques, we conducted two evaluations, where

we compared OCR-extracted and corrected image

text against manually extracted image text. The first

evaluation focused on 343 random images whose

captions contain the word “survival”; the other eval-

uation focused on 362 random images whose cap-

tions contain the word “apoptosis”. Both evaluations

covered typical biomedical images, such as graphs,

diagrams and experimental results.

In Figure 1, we report the results for all the pre-

and postprocessing correction options, and combi-

nations thereof, as discussed in Section 3. We ana-

lyze the performance with respect to different word

lengths. One reason for doing so is that in the

postprocessing stage, our context-based correction

methods are less efficient for shorter words. This

can be intuitively understood as short text strings,

which have been erroneously extracted from im-

ages, are more likely to be coincidentally mentioned

in the image context. According to these results,

we find that context-based image text postprocess-

ing improves precision significantly. We also ob-

serve that layout-analysis based preprocessing im-

proves recall, specifically when combined with plain

(raw) OCR processing. This can be seen in our

high-precision option, where we pool the results of

layout-analysis based preprocessing with plain (raw)

processing, and apply various context-based post-

processing steps. Using this option, we achieve

the best overall performance in terms of F-rate.

Our high-recall option offers the best performance

for retrieving terms that are actually mentioned in

biomedical images.

5 Conclusion

In this paper, we introduce preprocessing and post-

processing techniques for improving OCR-based

image text extraction. We show that a combination

of image layout analysis and context-based image

text correction is most beneficial for boosting OCR

performance over biomedical images.
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Precision, survival Precision, apoptosis

Recall, survival Recall, apoptosis

F-rate, survival F-rate, apoptosis

Figure 1: Performance of our method over the survival and apoptosis image sets. Here we show the precision, recall

and F-rates (y-axis) for the survival and apoptosis image sets for different pre- and postprocessing methods with

respect to different word lengths (x-axis). Results for word length 1 correspond to the overall performance, as we

include all words of length 1 and more. From these results, we can see that our high-precision option achieves the best

overall performance in terms of F-rate and our high-recall option offers the best performance for retrieving terms that

are actually mentioned in biomedical images, i.e. the highest recall.
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1 Motivation

Text mining in biomedicine can be used for
several tasks relating both to the extraction of
domain-specific knowledge and the management
of ontologies. These tasks include the identifica-
tion of associations between biomedical entities,
the extraction of relationships between biomedi-
cal entities, the alignment of ontologies and the
generation of ontologies from text. Most of the
methods used in text mining to perform these
tasks are based on statistical measures, algo-
rithms from natural language processing or ma-
chine learning. We believe that the overall perfor-
mance of these methods remains limited as long
as no semantic or ontological layer is added in the
generation and analysis of text mining data. An
ontological layer will allow to interpret the results
of a text mining analysis with respect to formal-
ized ontological background knowledge, and can
be used to generate an ontological interpretation
of the results of the analysis. In such an onto-
logical interpretation, categories and individuals
stand in well-defined ontological relations. The
ontological interpretation of text mining results
would present several advantages, of which the
most important include consistency checks, auto-
mated belief revision (ontology curation) and on-
tologically founded data and information integra-
tion.

The generation and analysis of an ontolog-
ical interpretation of text mining results are
not straight forward, as it is necessary to deal
both with inconsistent and incomplete knowl-
edge. Classical logics will prove to be insufficient

for such a task. Therefore, a non-classical, non-
monotonic logic together with non-classical infer-
ences such as abduction and induction is required.

2 Method

For our purpose, text mining identifies references
to four kinds of ontological entities in text: cate-
gories C, individuals I, relations R and instances
of relations T . A category is an intensional en-
tity that can have instances. Instances of cate-
gories can be both individuals or other categories.
Individuals cannot be instantiated (Herre et al.,
2006). A relation such as instance-of or part-of
is an ontological entity that specifies a kind of
interaction between multiple entities. Relations
have instances that are part of the world. The in-
stances of relations are “the glue that holds things
together, the primary constituents of the facts that
go to make up reality” (Barwise, 1988). With-
out loss of generality, we restrict our discussion
to binary relations and R ⊆ (C∪ I)× (C∪ I). We
call the structure T M =< C, I,R,T > resulting
from a text mining analysis a text mining struc-
ture (TMS).

The global aim of the research proposed herein
is to provide an ontological interpretation of such
a TMS. We apply this interpretation for the refine-
ment of the TMS using the axioms of an ontology.
In order to deal with inconsistent and incomplete
knowledge, we use a non-monotonic form of logi-
cal deduction as a method to consistently generate
explanations for facts resulting from this ontolog-
ical interpretation.

In our work, an ontology is a structure O =<
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C′,R′, ::, isa,Ax > of categories C′ and relations R′

together with a set of axioms Ax.

Definition 1. An ontological interpretation I of
a TMS T M =< C, I,R,T > with respect to the
ontology O =< C′,R′, ::, isa,Ax > satisfies:

• for each c ∈C, cI = c′ such that c′ ∈C′ and
either c :: c′ or isa(c,c′),

• for each i ∈ I, iI = i′ such that there exists a
c′ ∈C′ and i :: c′,

• for each r ∈ R, rI = r′ such that r′ ∈ R′ and
isa(r,r′),

• for each t ∈ T , tI = t ′ such that there exists
a r′ ∈ R′ and t ′ :: r′.

An ontological interpretation performs the fol-
lowing functions: for each category identified in
the text, it identifies at least one category in the
ontology O of which the category found in the
text is either a sub-category or an instance; for
each individual in the text, it identifies at least one
category of which this individual is an instance;
and similarly for relations and their instances.

Two major difficulties arise when trying to find
an ontological interpretation of a TMS. First, it
may occur that no ontological interpretation exists
due to an inconsistency. In this case, we call the
TMS T M classically inconsistent with the ontol-
ogy O. Second, there may be many possible onto-
logical interpretations for a TMS, and some mea-
sure of preference should be established to select
the most appropriate ontological interpretation.

In order to deal with inconsistencies, we at-
tempt to establish classical consistency by extend-
ing the ontological interpretation such that identi-
fied categories (or instances) are subclasses (or in-
stances) of more general categories. For example,
consider a TMS containing the following three re-
lation instances:

IsA(Arsenic,Poison) (1)

PlaysRole(Arsenic,Poison) (2)

HasFunction(Arsenic,Poison) (3)

Here, poison is used in three mutually exclusive
meanings: as a substance, a role and a function;
any ontological interpretation interpreting Poison,
IsA, PlaysRole and HasFunction in their usual un-
derstanding will be classically inconsistent. In-
terpreting Poison as a subclass of Entity avoids

the inconsistency, but does not permit inferences
based on axioms pertaining to more specific cat-
egories. Abductive reasoning can be used to fill
the gap: abduction is a non-classical form of in-
ference that generates a minimal explanation for
an observation. The general schema for abduc-
tion is: B, A→ B ` A. As an assumption, we use
the following formula, where Ci ranges over all
categories from O:

isa(Poison,C1)∨ . . .

∨isa(Poison,Cn)→ isa(Poison,Entity)
(4)

Abduction can then generate the desired and con-
sistent minimal explanation for (4)

isa(Poison,Substance)∨ isa(Poison,Role)∨
isa(Poison,Function)

(5)

3 Conclusion

We suggest that ontological interpretations can
improve text mining results by providing an ad-
ditional semantic structuring layer. This layer can
be used to disambiguate the kind of relations and
categories identified through text mining, and to
identify categories of which recognized named
entities are instances. Formal ontologies play a
crucial role in this step. The use of abductive rea-
soning can lead to rich and consistent ontological
interpretations that contain explanations for the
facts identified through text mining. These expla-
nations can be used subsequently for the identi-
fication of novel hypotheses or the integration of
knowledge. Ultimately, using ontological inter-
pretations provides a starting point for elevating
the results of text mining analyses from data to
knowledge.
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Summary

The main aim of this proposal is to revisit and in
the best case re-launch an initiative that would
provide harmonised ways for representing and
tagging named entities in the life science litera-
ture. We are proposing to establish common doc-
ument formats that facilitate the exchange of an-
notation results contained in the literature as a
complementary approach to the development of
interoperabletools. We want to work towards (a)
recommendations for a common syntax to em-
body entity mentions in publishers’ document for-
mats (e.g., into PMC), and (b) provision of a
common way to reference semantic types. The
main stakeholders (text mining users, researchers,
service providers and publishers) would need to
build an infrastructure that integrates literature re-
sources with entity databases. The main bene-
fits result from better integration of literature re-
sources and text-mining results with data from
other biomedical research groups and from the
identification of the next generation challenges
for novel text mining research.

1 Motivation, aims and stakeholders

Identification and annotation of entities of dif-
ferent semantic types is the key factor for ac-
cessing biomedical literature. While there have
been numerous solutions proposed to identify en-
tities in text (see BioCreAtIve initiative), there
are very few community-wide efforts to provide
harmonised annotations both for the syntactic
and semantic levels, which would facilitate in-
teroperability and re-use of processed documents
(Krallinger et al., 2007). This is in contrast to
widespread attempts to standardise semantic de-
scriptions and exchange of non-textual biomedi-

cal data. Instead, text mining solutions are typ-
ically based on their own annotation schemas,
making it difficult for the community to easily
combine and expand different solutions. This also
hinders further developments in the area, as many
user and research groups need to allocate signif-
icant resources in re-developing and re-aligning
existing solutions.

We would therefore like to re-launch an ini-
tiative that would result in a community-agreed
way for representing and tagging named entities
(NEs) in biomedical documents. A harmonised
approach would provide the stakeholders with the
following:

• the users would be able to use annotated re-
sults from different sites (i.e., repositories) to
have efficient knowledge acquisition and ex-
ploitation (e.g., semantics-based browsing,
visualisation, integration);

• the text mining research and service provi-
sion communities would profit from docu-
ment annotations originated from different
applications to improve the state of the art
in NER, and motivate progress in other text
mining tasks;

• publishers and industry would be able to pro-
vide an added value to their products, and
thus facilitate data sharing, availability and
interoperability.

2 Harmonising annotation of named
entities: needs and obstacles

Informal discussions within the bio-text mining
community (Kevin Cohen, BioNLP) have con-
cluded that more efforts are needed to provide in-
teroperability of tools and data, and — in partic-
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ular — that named entities would make an opti-
mal level for text annotations that would facili-
tate the exchange of text mining results. Recent
initiatives from publishers (e.g. Elsevier, FEBS
Letter experiment) have re- affirmed these conclu-
sions: both users and data providers are interested
in “changing the ways science is published” (the
Elsevier Grand challenge1 2008), and it seems
that annotating and linking NEs to databases is
a minimal requirement to support this aim. Pub-
lishers already consider requesting authors to an-
notate key entities in their articles (at least at the
document level). Although there are still issues
in bio-NER, it would be useful to enable users
and developers alike to move beyond named en-
tity recognition by providing documents with pre-
annotated NEs in a common format, so that they
can use pre-calculated NE annotations for visu-
alisation, browsing, indexing or further process-
ing. Many applications need NEs recognised be-
fore any further processing, and a common way
of their annotation would only improve the possi-
bility for using and sharing results, as well as for
improving research that depends on NE annota-
tions.

The main obstacles in this process are that sev-
eral research and service provision groups have
already developed and used numerous in-house
formats and that there is no theoretical consen-
sus on certain annotation issues (e.g. represen-
tation of ambiguities). There have been several
attempts to address representation of NEs in the
community (e.g. IeXML, SciXML, Genia, TXM,
Termino, etc.), but to the best of our knowledge,
so far there is not a comprehensive compara-
tive analysis between different (text-mining de-
rived) annotation schemas. Furthermore, there
have been very few attempts to integrate pub-
lisher/archiving annotation formats with text min-
ing results (e.g. IeXML, partly SciXML, Genia)
(Rebholz-Schuhmann et al., 2006; Copestake et
al., 2006; Kim et al., 2003; Harkema et al., 2005)

Data representation that supports interaction
with end users (both experts and non-experts) has
also been identified as one of the key objectives of
the recently launched EU Elixir project2, which
aims to examine the status of literature reposito-
ries throughout Europe and provide recommenda-
tions for a future information-sharing infrastruc-

1http://www.elseviergrandchallenge.com/
2http://www.elixir-europe.org

ture platform that would integrate databases and
literature.

3 Proposed approach

We would like to design a minimal tag set that
would beintegratedinto publishers’ formats and
be part of meta-data used to annotate NE men-
tions in text and point to their semantic types and
their referent IDs (if available). We would like
to develop an industry-wide solution that would
make interoperability much more realistic. In ad-
dition to syntactic harmonisation, we would also
like to discuss semantic “normalisation” and a
common way to point to (external) semantic re-
sources. More precisely, we would like to initiate
further discussions on the harmonisation of repre-
sentations of bio-NEs in documents, including:

• at the syntactic level, the identification of a
minimal set of NE tags and features (inline
and stand-off) to be included in publishers’
formats, including representation of ambigu-
ities and multiple annotations (e.g. annota-
tions from different groups/services);

• at the semantic level: the integration of a
basic semantic type system into document
formats, including the provisions for using
references/pointers to external type systems
(e.g. existing ontologies or purposely-built
type systems3).

A solution would be to (a) implement a common
basic/minimal syntax to annotate entity mentions
in documents, and (b) provide a common way
to point to (potentially external) semantic types.
This way we would provide data exchange and
interoperability on the level of data (in addition to
potential interoperability of tools).

4 Road map

One of the results from previous discussions
was a minimal annotation framework that in-
cluded a single tag and number of mandatory
(semantic) attributes describing entities (Rebholz-
Schuhmann et al., 2006). Building on that as well
as other contributions, we suggest the following
road map:

1. Discuss and identify during the discussion at
the SMBM 2008 the potential benefits and

3E.g. a UIMA complaint type system at: http://www.u-
compare.org/typesystem.html
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obstacles as well as issues of shared and dis-
joint interest.

2. Identify a working group to prepare a set
of recommendations, following the con-
sultations with interested research groups,
publishers, service provides (e.g. EBI,
NaCTeM, BioCreative Meta-server, etc.)
and organisers of text mining challenges
(e.g. BioCreative). The group will rec-
ommend a minimal annotation type system
and invite for comments from the commu-
nity and stakeholders.
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