
Regular Approximation of Link Grammar

Filip Ginter, Sampo Pyysalo, Jorma Boberg, and Tapio Salakoski

Turku Centre for Computer Science (TUCS)
and Department of IT, University of Turku

Lemminkäisenkatu 14 A
20520 Turku, Finland
first.last@it.utu.fi

Abstract. We present a regular approximation of Link Grammar, a
dependency-type formalism with context-free expressive power, as a first
step toward a finite-state joint inference system. The approximation is
implemented by limiting the maximum nesting depth of links, and oth-
erwise retains the features of the original formalism. We present a string
encoding of Link Grammar parses and describe finite-state machines im-
plementing the grammar rules as well as the planarity, connectivity, or-
dering and exclusion axioms constraining grammatical Link Grammar
parses. The regular approximation is then defined as the intersection
of these machines. Finally, we implement two approaches to finite-state
parsing using the approximation and discuss their feasibility. We find
that parsing in the intersection grammars framework using the approxi-
mation is feasible, although inefficient, and we discuss several approaches
to improve the efficiency.

1 Introduction

Finite-state techniques provide simple and efficient models in natural language
processing. They have been successfully applied to many basic problems such
as tokenization, phonological and morphological analysis, parsing, and language
modeling [1]. With the well-studied mathematical apparatus for combining and
transforming finite-state machines, including the standard algorithms for inter-
section, composition, determinization and minimization, it is possible to build
large efficient systems by combining many simple, small machines. Moreover,
weighted formulations of finite-state machines allow for probabilistic models.

In natural language parsing, context-free parsing algorithms currently form
the basis for almost all full parsing approaches producing either a hierarchical
phrase structure or a full dependency structure, while finite-state techniques are
most commonly applied in shallow parsing which produces no, or very limited,
hierarchical structure [2]. There is, however, a growing interest in the applica-
tion of finite-state techniques to full parsing. Although finite-state models are
weaker in terms of expressive power, they are applicable in practical cases, for
example as approximations of context-free grammars. Such an approximation
recognizes a regular subset or superset of the original context-free language. Ap-
proximation approaches have primarily been developed in the context of phrase

T. Salakoski et al. (Eds.): FinTAL 2006, LNAI 4139, pp. 564–575, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Regular Approximation of Link Grammar 565

structure grammars (see Nederhof [3] for a detailed discussion). For instance,
Grimley Evans [4] obtains a finite-state approximation in an intersection frame-
work, where finite-state representation of the dotted rules in phrase structure
parsing is intersected with regular languages expressing constraints on their us-
age. The result is a finite-state automaton that recognizes the language as se-
quence of terminals, but does not encode the parse trees. Further, Johnson [5]
implements the approximation through left-corner grammar transforms, allowing
unlimited left and right recursion without increasing stack depth. By contrast
with these phrase-structure based approaches, we focus on dependency gram-
mars. We also have the additional requirement of obtaining a representation of
the full dependency analysis.

Several approaches have been introduced for finite-state dependency parsing.
Oflazer [6] has developed a robust finite-state full dependency parser as a trans-
ducer that is iteratively applied to the input string, each time producing one level
of analysis. Elworthy [7] presents a parser with dependency output based on de-
terministic finite-state transducers. In the framework of finite-state intersection
grammars [8], parsing is treated as an intersection problem. For each sentence, a
finite-state automaton (FSA) is built that generates the sentence together with
all syntactic hypotheses allowed by the grammar for the individual words. This
FSA is then intersected with automata that implement the grammatical con-
straints. The result of the intersection is an FSA that describes all grammatical
analyses of the sentence. Yli-Jyrä has recently advanced the finite-state intersec-
tion grammars to allow full tree structures and resolve all structural ambiguities.
This paper is mainly related to Yli-Jyrä [9], where a finite-state approximation
of Hays and Gaifman dependency grammars [10,11] is introduced.

In this paper, we present a finite-state approximation of Link Grammar (LG)
[12], a dependency-type formalism with context-free expressive power. LG and
its parser1 represent one of the major computational dependency grammar im-
plementations with a wide coverage of general English. Recently, there has been
an increased interest in applications of LG in NLP tasks such as information
extraction.

One of the key motivations for introducing a finite-state approximation of link
grammar is to facilitate the integration of the parser into a finite-state system
which identifies the globally optimal solution through joint inference across all
different levels of linguistic analysis in Information Extraction [13]. In such an
integrated model, each level of analysis produces a set of alternate hypotheses
encoded as a finite-state automaton, and the intersection of these automata then
encodes the set of all possible analyses structurally compatible with all levels in
the system. Subsequently, the globally optimal solution can be identified by a
search through this unified automaton, taking into account the local preferences
of the individual levels of analysis [14]. The finite-state approximation of LG
presented in this paper is a first step toward a finite-state joint inference system.

For the purpose of integration into a unified model, each component must
be developed in the context of the whole system. Most importantly, each of the

1 Available at http://link.cs.cmu.edu

566 F. Ginter et al.

colorless green ideas sleep furiously

A
A S MV

Fig. 1. Example LG linkage

components must share a representation that allows intersection, in this case,
that of finite-state machines. Thus, the representation constrains the implemen-
tation, and, at least initially, takes priority over considerations of the efficiency
and expressive power of the parser.

Additionally, a finite-state formulation of LG could, for example, in combina-
tion with FSA weighting and unsupervised FSA weight estimation algorithms,
provide means for developing a statistical model of LG in terms of weighted
finite-state machines.

2 Link Grammar

The LG formalism is closely related to dependency grammars. An LG parse of a
sentence, termed a linkage, consists of a set of undirected, typed links connecting
pairs of words of the sentence (see Figure 1). The links connecting each word to
others must fulfill the linking requirements given to the word in the grammar:
for example, verbs could require a S link to the left to connect to their subject.

LG is highly lexical: the grammar rules are only expressed through the link-
ing requirements assigned to individual words. LG differs from traditional de-
pendency grammars in that linkages are unrooted and links do not explicitly
identify which word is the governor and which the dependent.

Linkages must further fulfill a set of axioms (termed meta-rules by Sleator and
Temperley) which, together with the linking requirements of the words, specify
the set of grammatical sentences and their analyses. The following sections de-
scribe the specification of the linking requirements and the linkage axioms.

2.1 Linking Requirements

The linking requirements of each word in the grammar are specified by a formula
of connectors, each of which has a type and a direction. The type of a connector
is specified by a string of characters, and the direction is either - for left or + for
right. LG linking requirement formulas are built of connectors joined by the and
and or operators (written & and or). Parentheses are used to specify precedence
in formulas. Connectors or larger parts of linking requirement formulas can be
made optional by enclosing them in curly brackets (e.g. {MV+}), and connectors
can be allowed to repeat one or more times by prepending the @ character. In
parsing, links must be formed by connecting left and right connectors of matching
types so that all non-optional connectors participate in a link.

As an example, consider the following grammar:
colorless red green: A+

ideas theories proofs: {@A-} & (O- or S+)

Regular Approximation of Link Grammar 567

sleep dream rest: S- & {O+} & {MV+}
furiously symbolically: MV-

The language specified by this grammar requires that the adjectives take an A
connector to the right, the nouns take any number of A connectors to the left
and either an O connector further to the left or an S connector to the right, the
verbs take an S connector to the left and optionally O and MV connectors to the
right, and the adverbs require an MV connector to the left. This language thus
includes linkages such as that shown in Figure 1.

2.2 Connector Matching

LG connector type strings can consist of any sequence of capital letters, followed
by a subscript containing any sequence of lowercase letters and a wild-card char-
acter. When comparing connectors, shorter subscripts are (conceptually) padded
with wild-cards. Two connectors are defined to match if they are equal when
wild-cards are considered equal to any lowercase character.

2.3 Linkage Axioms

The following four axioms constrain the set of grammatical LG linkages. The
planarity axiom states that the links of a linkage must not cross when drawn
above the sentence. This axiom is closely related to projectivity constraints of
dependency grammars. The connectivity axiom requires that, when considered
as an undirected graph with the words as nodes and the links as edges, the
linkage must be connected. The ordering axiom specifies that when traversing
the connectors of the linking requirement formula of a word from left to right,
the words which the connectors link to proceed from near to far. The exclusion
axiom states that any two words are directly connected by at most one link.

3 The Approximation

We now present the components of the regular LG approximation. Note that we
approximate the LG grammar, and grammar-external LG features implemented
in the parser code, such as the special treatment of coordination, the post-
processing mechanism and the robust parsing algorithm [15], are not considered.

3.1 String Encoding

We define a string encoding of linkages as follows. The words of the sentence are
preceded by a word boundary marker #. Each word is followed by a ⇓ character
separating it from the links closing at the word, i.e. links connecting to the word
from the left. These are in turn separated by a ⇑ character from the links opening
at the word. Opening links are represented by an opening angle bracket character
(<) followed by the connector type string, and closing links are represented by
the type string followed by a closing angle bracket (>). Finally, the sentence is
terminated by a # character. An example is given in Figure 2.

568 F. Ginter et al.

green ideas sleep
A S

#green⇓⇑<A#ideas⇓A>⇑<S#sleep⇓S>⇑ #

Fig. 2. Example linkage with string encoding

3.2 Lexicon Language

The linking requirement formulas of words can be expressed in equivalent dis-
junctive forms. For example, the formula {@A-} & (O- or S+) has the
disjunctive form ({@A-} & S+) or ({@A-} & O-). In the LG terminology, the
elementary conjunctions in the disjunctive form are referred to as disjuncts. Each
disjunct represents a particular way of satisfying the linking requirements of the
word. We define disjuncts in terms of regular expressions that describe their
string representation: for example, the conjunction operator & corresponds to
concatenation, the optionality operator {} corresponds to disjunction with an
empty string, and optional repetition {@} corresponds to the Kleene star op-
erator. The order of concatenation respects the interpretation of the formula
according to the ordering axiom as well as the grouping by connector direction
according to the string encoding whereby left connectors are separated from
right connectors by the ⇑ symbol.

The regular expression for the whole formula is then a disjunction of the reg-
ular expressions of its disjuncts, prefixed with the symbol ⇓. For the disjunctive
form above, the corresponding expression is ⇓(((A>)*⇑<S)|((A>)*O>⇑)).

Let Rf be the regular expression corresponding to the linking requirement
formula f . A grammar entry for a word w with requirement formula f is then
represented by the regular expression Rw

Rw = #wRf

For example, for the word ideas with a grammar entry ideas: {@A-} & (O- or
S+), the language Rideas contains the following strings:

#ideas⇓O>⇑ #ideas⇓⇑<S
#ideas⇓A>O>⇑ #ideas⇓A>⇑<S
#ideas⇓A>A>O>⇑ #ideas⇓A>A>⇑<S
.

Let further L be the lexicon language defined by the regular expression

L = (Rw1 | . . . |Rwn) + #

where w1 . . . wn are the words defined in the grammar. The lexicon language L
thus consists of sequences of words with linking requirements, terminated with
the boundary symbol #. L contains strings such as

#green⇓⇑<A#ideas⇓A>⇑<S#sleep⇓S>⇑ #
#sleep⇓S>⇑ #ideas⇓A>⇑<S#green⇓⇑<A#
#sleep⇓S>⇑<MV#furiously⇓MV>⇑ #

Regular Approximation of Link Grammar 569

**

>

<

>

<

* *

>

< <

>
. . .

S0 S1 S2 St

Fig. 3. Untyped balanced bracketing FSA Bt. The states S0–St serve as a memory of
the number of currently open brackets.

#green⇓⇑<A#ideas⇓A>O>⇑ #
. . .

Note that of the strings above, only the first string encodes a valid LG linkage.

3.3 Planarity and the Nature of the Approximation

Let us define a typed balanced bracketing in the context of the strings encoding
LG linkages as a bracketing where brackets do not cross and the connector types
associated with the corresponding opening and closing brackets match.

By definition, an LG linkage is planar2 if and only if its links when drawn
above the sentence do not cross. As crossing links directly translate to cross-
ing typed brackets and vice versa, it is easy to see that the string representa-
tion contains a typed balanced bracketing if and only if the linkage it encodes
does not contain crossing links. Thus, an LG linkage is planar if and only if its
encoding string contains a typed balanced bracketing. Enforcing the planarity
axiom is thus equivalent to enforcing a typed balanced bracketing in the string
representation.

Let us consider the untyped bracketing case, disregarding the connector type
matching. It is a well-known fact that a balanced bracketing with unrestricted
depth is not a regular language. A balanced bracketing with a finite fixed max-
imum depth t ∈ N, however, is a regular language and can be defined by the
simple t+1-state FSA Bt illustrated in Figure 3. Following Yli-Jyrä [9], we limit
the maximum depth of the bracketing, thus approximating LG. The maximum
bracketing depth t is a parameter of the approximation.

In order to enforce the planarity axiom, it is necessary to enforce the LG
connector type matching in addition to the untyped balanced bracketing. Let Δ
be the alphabet of all connector types used in right connectors in a particular
LG grammar. Similarly, ∇ is the alphabet of left connector types3. Let further
M(c) ⊆ ∇ be the set of all connector types in ∇ matching a connector type c ∈ Δ.
For each bracketing depth d, we define an FSA Pd,t (Figure 4) which accepts a
string only if for each link opened with a connector type c ∈ Δ at the depth d,
the link is closed with a connector type c′ ∈ M(c). This approach implements the
connector type matching algorithm by simple enumeration, since in any given
grammar, the number of unique connector types is finite. The intersection FSA

2 More correctly, the term semi-planar is often used.
3 Roughly, Δ corresponds to the alphabets BL and Bl in [9] and ∇ corresponds to BR

and Br.

570 F. Ginter et al.

*

>

<

*

*

>

<

*

*

.
 .

 .

>

< <

>
. . .

*

* *

<

>

>

<

*

<

>
. . .

>

< <

>
. . .

S0

Δ1
d Δ1

d+1

S1 Sd

Δn
d Δn

tΔn
d+1

Δ1
t

Δn

M(Δn)

Δ1

M(Δ1)

Fig. 4. Planarity FSA Pd,t. The states S0–Sd maintain a balanced bracketing up to
the depth d. From the state Sd, there is an outgoing edge and a new state Δi

d for every
connector type Δ1 . . . Δn ∈ Δ. For every such state Δi

d, there is a sequence of states
Δi

d . . . Δi
t that maintain a balanced bracketing up to the total depth t. Further, there

is an edge from Δi
d to Sd for each connector type in M(Δi). Consequently, the states

Δ1
d . . . Δn

d serve as a memory of which right connector type was used to open the link
at depth d. A transition back to the state Sd is only possible through a matching left
connector type.

Pt =
t⋂

d=1

Pd,t

then accepts a language where all connector types associated with corresponding
open/close bracket pairs match. Any string from L ∩ Pt thus encodes a planar
LG linkage graph.

3.4 Exclusion

The exclusion FSA Ed,t accepts only strings such that if the bracketing depths
d and d + 1 are opened by the same word, then they are closed by two different
words, thus enforcing the exclusion axiom at the two adjacent bracketing depths.
It is easy to see that the intersection FSA

Et =
t−1⋂

d=1

Ed,t

then accepts only strings where no two words are connected by more than one
link. The FSA Ed,t is detailed in Figure 5.

3.5 Connectivity

Words in a linkage that do not connect to any other words to the left (resp.
right) are called left-bare words (resp. right-bare words). Further, an island in a
linkage is a connected component of the linkage graph. The connectivity axiom
requires that a linkage only has one connected component. Trivially, any island
starts with a left-bare word and ends with a right-bare word. By the projectivity
axiom, any island consists of a balanced bracketing. The depth d at the boundary
symbol preceding the first word of an island is therefore equal to the depth at the

Regular Approximation of Link Grammar 571

* *

>

<

*

**

*

*

<
#

>

>

>

>
<

>

<

>

<

<

>

<

*

*

<

>
. . .

*

<

>
. . .

>

<

*

<

>
. . .

S0

Td

Sd Sd+1

Td+1

Ud+1Ud

⇑
S

S1

Tt

StSd−1

Fig. 5. Exclusion FSA Ed,t. The states S0–St maintain balanced bracketing up to the
depth t. If a link is opened at the depth d − 1, thus opening the depth d, the FSA
reaches the state Td. If another link is opened by the same word, the state Td+1 is
reached, otherwise the FSA continues in Sd. When the depth d + 1 is closed the FSA
reaches the state Ud+1. If the depth d is closed by the same word, the sink state S
is reached and the string is rejected. Otherwise the states Sd−1 or Sd+1 are reached
through Ud.

**

*

<

><

#>

*

>

<

>

<

>

<

* *

>

< <

>
. . .

*

*

*

>

< <

>

*

>

< <

>
. . .

. . .
S0

B1

E S

⇑

Sd Sd+1S1

Id+1B2

Sd−1

⇓
St

It

Fig. 6. Connectivity FSA Cd,t. The states S0–Sd maintain balanced bracketing up to
the depth d. If the current word is a left-bare word at depth d, the FSA reaches state
B2, otherwise it returns to state Sd. States Id+1–It maintain a balanced bracketing
from the left-bare word onward and the state E is reached upon closing the depth d.
If, at this point, also the depth d − 1 is closed, it means that the left-bare word did
not open an island since the current depth is smaller than d. The FSA then returns
to state Sd−1. If, on the other hand, the FSA proceeds from the state E to S, it has
reached a right-bare word and the depth within the island was never been smaller than
d. Therefore, an island was found and since S is a sink state, the string is rejected.

boundary symbol following the last word of the island. Moreover, at any point
within the island, the depth is ≥ d. These properties are used in the construction
of an FSA Cd,t that only accepts strings that do not have islands opened at the
depth d. The FSA C0,t must, however, accept the single island comprising the
whole linkage. The intersection FSA

Ct =
t−1⋂

d=0

Cd,t

then accepts strings encoding connected linkages. The FSA Cd,t is detailed in
Figure 6. Note that the FSA C0,t cannot be constructed as in the figure. Its
construction is, however, trivial.

572 F. Ginter et al.

3.6 Approximation Language

The approximation language Lt is defined as an intersection of the lexicon lan-
guage L with the languages Pt, Et, and Ct which implement the LG axioms of
planarity, exclusion, and connectivity. The LG axiom of ordering is implicit in
L.

Lt = L ∩ Pt ∩ Et ∩ Ct

The definition of Lt concludes the construction of the regular LG approxima-
tion.

4 Parsing with the Finite-State LG Approximation

We now introduce two ways to implement a parser based on the finite-state
approximation of LG.

4.1 LG as a Monolithic Transducer

Let us consider Lt as an identity finite-state transducer (FST) with edge in-
put:output symbol pairs z : z. Let us define a FST Tt based on Lt such that
every edge symbol pair z : z in Lt where z ∈ Δ ∪ ∇ ∪ {⇑, ⇓, <, >} is replaced
with ε : z, where ε is the empty transition symbol. The FST Tt thus generates
the parse encoding on the output string via ε-transitions on the input string.

4.2 LG as a Finite-State Intersection Grammar

We now cast LG finite-state parsing as an intersection problem within the frame-
work of finite-state intersection grammars [8].

For a sentence s = w1w2 . . . wn we define the language Rs as the regular
expression

Rs = Rw1Rw2 . . . Rwn#

that is, the concatenation of the regular languages representing the grammar
entries for the individual words as defined in Section 3.2. The sentence s is then
parsed by computing the intersection

Rs ∩ Pt ∩ Et ∩ Ct

The resulting language encodes all parses of s with bracketing depth ≤ t.
Note that for a sentence s with n words, the planarity and exclusion axioms

imply that the maximum possible bracketing depth is n − 1. A perfect approxi-
mation, where the set of parses in the regular language Rs is exactly the set of
all parses possible for the sentence in the context-free language, can therefore
theoretically be achieved by setting t = n − 1.

Regular Approximation of Link Grammar 573

5 Practical Considerations

We have created proof-of-concept implementations of the two finite-state LG
parsers. We have implemented the automata with the FSA utilities [16] and, for
efficiency reasons, executed the automata and operations such as intersections
and minimizations in the AT&T FSM utilities [17].

The efficiency of the intersection algorithm critically depends on the size of the
intersected FSAs. When sequentially intersecting several FSAs, the size of the in-
termediate automata has a strong influence on the efficiency of the computation.
For illustration, we list the sizes (as the number of states/transitions) of several
determinized and minimized automata constructed based on a broad-coverage
English LG grammar4 with 47K words: P1,6 (1.1K/465K), C6 (159/40K), E6
(157/52K), C6 ∩ E6 (1.2K/337K), L (45K/110K).

Given the size of the automata, it is not surprising that building the monolithic
FST has proven impractical. Even for a very simple grammar5 and t = 3 the
FSA Lt has over 20M states. The explicit computation of the monolithic parser
for a broad-coverage grammar is thus infeasible.

Parsing within the framework of finite-state intersection grammars is more
practical. For illustration, when considering a complex sentence with 41 words
and depth up to 6, Rs has 2.2K states and 4K transitions. The parsing of this
complex sentence, however, takes on the order of minutes, while the LG parser
takes on the order of seconds. Hence, unlike the monolithic approach, LG pars-
ing as a finite-state intersection grammar is feasible, but inefficient due to the
computation of intermediate results, where, although the result FSA has 130K
states, the largest intermediate result has 1M states.

The problem of the large size of intermediate results is inherent to the finite-
state intersection grammars. Several approaches to alleviate the problem are
discussed, for example, by Tapanainen in [1]. For instance, the size of interme-
diate results strongly depends on the order in which the FSAs are intersected
and optimizing the order can result in improved efficiency. We first compute
Rs ∩ Et ∩ Ct and then intersect sequentially with Pd,t for the individual depths
d. We observed that intersecting the FSAs Pd,t in the inverse order, starting with
Pt,t, leads to several times faster intersection (largest intermediate result has 1M
states) than intersecting P1,t first and Pt,t last (largest intermediate result has
2.5M states). Other approaches discussed by Tapanainen include using a parallel
intersection algorithm, or alternatively avoiding the explicit computation of the
intersection by using a depth-first search through the FSA Rs, backtracking any
time an axiom FSA rejects the string.

The efficiency of the original LG parser depends critically on pruning, where,
prior to execution of the main parsing algorithm, the set of disjuncts assigned
to each word is pruned so that, for example, if a disjunct contains a right con-
nector and no disjunct of any following word contains a matching left connector,
the disjunct cannot be satisfied and can thus be discarded [12]. The decrease in

4 4.0.dict in the LG distribution
5 tiny.dict in the LG distribution

574 F. Ginter et al.

the number of disjuncts and hence the decrease in the size of the search space
is very substantial, often several orders of magnitude. As the number of dis-
juncts directly relates to the number of paths through the machine, pruning,
once implemented, should result in a substantial decrease in parsing time also
for the finite-state approximation of LG. Additionally, Yli-Jyrä [9] proposed sev-
eral techniques which, through extension of the internal alphabets, achieve local
testability of some of the linking axioms — with a corresponding positive effect
on the size of intermediate results. Adapting Yli-Jyrä’s techniques to the current
implementation is thus another potential direction of research.

The explosion in the number of states can also potentially be avoided by
the use of extended finite-state approaches, where the finite-state formalism is
augmented in order to allow for more compact machines. Commonly, for every
extended FSM there exists an equivalent, but considerably larger, pure FSM.
However, some extended FSM techniques result in non-regular languages. An
example of a practical application of an extended finite-state approach to parsing
is that of Oflazer [6]. Additionally, lazy evaluation, supported for example by the
AT&T FSM library, avoids explicitly expanding the machines in terms of atomic
states and transitions and could result in a further decrease in parsing time.

Optimizing the computation of the intersection through the techniques dis-
cussed above or, alternatively, avoiding its explicit computation with an extended
finite-state approach can be expected to increase the practicability and efficiency
of finite-state LG parsing.

6 Conclusions

In this study, we have introduced a finite-state approximation of Link Grammar.
The regular language approximating a given LG grammar was constructed by
intersecting finite-state machines implementing the LG grammar and the LG
axioms that constrain the set of grammatical parses. The approximation lan-
guage is a subset of the corresponding context-free LG language with a limited
maximum nesting depth of links.

Further, as a preliminary study of the practical applicability of the presented
approximation, we have implemented finite-state LG parsers in terms of a mono-
lithic transducer and in the framework of finite-state intersection grammars.

We have shown that a finite-state approximation of LG can be constructed
and that finite-state parsing based on the approximation is feasible. Whether
efficiency comparable to that of the original LG parser can be achieved using
intersection optimization techniques or extended finite-state approaches remains
a question for future research.

Acknowledgments

This work has been supported by Tekes, the Finnish Funding Agency for Tech-
nology and Innovation. We would like to thank the anonymous reviewers for
their detailed and enlightening comments.

Regular Approximation of Link Grammar 575

References

1. Roche, E., Schabes, Y., eds.: Finite-State Language Processing. MIT Press (1997)
2. Carroll, J.: Parsing. In Mitkov, R., ed.: The Oxford Handbook of Computational

Linguistics. Oxford University Press (2003) 233–248
3. Nederhof, M.J.: Practical experiments with regular approximation of context-free

languages. Computational Linguistics 26(1) (2000) 17–44
4. Grimley Evans, E.: Approximating context-free grammars with a finite-state calcu-

lus. In: Proceedings of ACL/EACL ’97, Association for Computational Linguistics
(1997) 452–459

5. Johnson, M.: Finite-state approximation of constraint-based grammars using left-
corner grammar transforms. In: Proceedings of ACL/COLING ’98, Association for
Computational Linguistics (1998) 619–623

6. Oflazer, K.: Dependency parsing with an extended finite-state approach. Compu-
tational Linguistics 29(4) (2003) 515–544

7. Elworthy, D.: A finite state parser with dependency structure output. In: Proceed-
ings of the Sixth International Workshop on Parsing Technologies IWPT 2000,
Trento, Italy. (2000)

8. Koskenniemi, K.: Finite-state parsing and disambiguation. In Karlgren, H., ed.:
Proceedings of the 13th International Conference on Computational Linguistics
COLING 90, Helsinki, Finland, ACL (1990) 229–232

9. Yli-Jyrä, A.M.: Approximating dependency grammars through intersection of star-
free regular languages. International Journal of Foundations of Computer Science
16(3) (2005) 565–579

10. Hays, D.G.: Dependency theory: A formalism and some observations. Language
40 (1964) 511–525

11. Gaifman, H.: Dependency systems and phrase-structure systems. Information and
Control 8 (1965) 304–337

12. Sleator, D.D., Temperley, D.: Parsing English with a Link Grammar. In: Pro-
ceedings of the Third International Workshop on Parsing Technologies IWPT 93,
Tilburg, Netherlands. (1993)

13. Miller, S., Fox, H., Ramshaw, L., Weischedel, R.: A novel use of statistical pars-
ing to extract information from text. In: Proceedings of NAACL ’00, Morgan
Kaufmann (2000) 226–233

14. Ginter, F., Mylläri, A., Salakoski, T.: A probabilistic search for the best solution
among partially completed candidates. In: Proceedings of the HLT/NAACL’06
Workshop on Computationally Hard Problems and Joint Inference in Speech and
Language Processing, Association for Computational Linguistics (2006) 33–40

15. Grinberg, D., Lafferty, J., Sleator, D.D.: A robust parsing algorithm for link gram-
mars. In: Proceedings of the Fourth International Workshop on Parsing Technolo-
gies IWPT 95, Prague, Czech Republic. (1995)

16. van Noord, G.: FSA utilities: A toolbox to manipulate finite-state automata. In
Wood, D., Darrell, R., Yu, S., eds.: Automata Implementation. Volume 1260 of
Lecture Notes in Computer Science (LNCS)., Springer, Heidelberg (1997) 87–108

17. Mohri, M., Pereira, F.C.N., Riley, M.: A rational design for a weighted finite-
state transducer library. In Wood, D., Yu, S., eds.: Proceedings of the Second
International Workshop on Implementing Automata WIA 97, London, Canada.
Volume 1436 of Lecture Notes in Computer Science (LNCS)., Springer, Heidelberg
(1998) 144–158

	Introduction
	Link Grammar
	Linking Requirements
	Connector Matching
	Linkage Axioms

	The Approximation
	String Encoding
	Lexicon Language
	Planarity and the Nature of the Approximation
	Exclusion
	Connectivity
	Approximation Language

	Parsing with the Finite-State LG Approximation
	LG as a Monolithic Transducer
	LG as a Finite-State Intersection Grammar

	Practical Considerations
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

