Algorithms and Networking for Computer Games

Chapter 2: Random Numbers
What are random numbers good for (according to D.E. Knuth)

- simulation
- sampling
- numerical analysis
- computer programming
- decision-making
- aesthetics
- recreation
Random numbers?

- there is no such thing as a ‘random number’
 - is 42 a random number?

- definition: a sequence of statistically independent random numbers with a uniform distribution
 - numbers are obtained by chance
 - they have nothing to do with the other numbers in the sequence

- uniform distribution: each possible number is equally probable
Methods

- random selection
 - drawing balls out of a ‘well-stirred urn’
- tables of random digits
 - decimals from π
- generating data
 - white noise generators
 - cosmic background radiation
- computer programs?
Generating random numbers with arithmetic operations

- von Neumann (ca. 1946): middle square method
 - take the square of previous number and extract the middle digits

- example: four-digit numbers
 - \(r_i = 8269 \)
 - \(r_{i+1} = 3763 \) (\(r_i^2 = 68376361 \))
 - \(r_{i+2} = 1601 \) (\(r_{i+1}^2 = 14160169 \))
 - \(r_{i+3} = 5632 \) (\(r_{i+2}^2 = 2563201 \))
Truly random numbers?

- each number is completely determined by its predecessor!
- sequence is not random but *appears to be*
- → pseudo-random numbers
- all random generators based arithmetic operation have their own in-built characteristic regularities
- hence, testing and analysis is required
Middle square (revisited)

- another example:
 - \(r_i = 6100 \)
 - \(r_{i+1} = 2100 \ (r_i^2 = 37210000) \)
 - \(r_{i+2} = 4100 \ (r_{i+1}^2 = 4410000) \)
 - \(r_{i+3} = 8100 \ (r_{i+2}^2 = 16810000) \)
 - \(r_{i+4} = 6100 = r_i \ (r_{i+3}^2 = 65610000) \)

- how to counteract?
Words of the wise

- ‘random numbers should not be generated with a method chosen at random’
 — D. E. Knuth
- ‘Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin.’
 — J. von Neumann
Words of the more (or less) wise

- ‘We guarantee that each number is random individually, but we don’t guarantee that more than one of them is random.’
 — anonymous computer centre’s programming consultant (quoted in Numerical Recipes in C)
Other concerns

- speed of the algorithm
- ease of implementation
- parallelization techniques
- portable implementations
Linear congruential method

- D. H. Lehmer (1949)
- choose four integers
 - modulus: \(m \) \((0 < m) \)
 - multiplier: \(a \) \((0 \leq a < m) \)
 - increment: \(c \) \((0 \leq c < m) \)
 - starting value (or seed): \(X_0 \) \((0 \leq X_0 < m) \)
- obtain a sequence \(\langle X_n \rangle \) by setting
 \[X_{n+1} = (aX_n + c) \mod m \] \((n \geq 0) \)
Linear congruential method (cont’d)

- let $b = a - 1$
- generalization:
 $$X_{n+k} = (a^k X_n + (a^k - 1) c / b) \mod m$$
 $$(k \geq 0, n \geq 0)$$
- random floating point numbers $U_n \in [0, 1)$:
 $$U_n = X_n / m$$
Random integers from a given interval

- Monte Carlo methods
 - approximate solution
 - accuracy can be improved at the cost of running time
- Las Vegas methods
 - exact solution
 - termination is not guaranteed
- Sherwood methods
 - exact solution, termination guaranteed
 - reduce the difference between good and bad inputs
Choice of modulus m

- sequence of random numbers is finite \rightarrow period (repeating cycle)
- period has at most m elements \rightarrow modulus should be large
- recommendation: m is a prime
- reducing modulo: m is a power of 2
 - $m = 2^i : x \mod m = x \oplus (2^i - 1)$
Choice of multiplier \(a \)

- **period of maximum length**
 - \(a = c = 1: X_{n+1} = (X_n + 1) \text{ mod } m \)
 - hardly random: \(\ldots, 0, 1, 2, \ldots, m - 1, 0, 1, 2, \ldots \)

- **results from Theorem 2.1.1**
 - if \(m \) is a product of distinct primes, only \(a = 1 \) produces full period
 - if \(m \) is divisible by a high power of some prime, there is latitude when choosing \(a \)

- **rules of thumb**
 - \(0.01m < a < 0.99m \)
 - no simple, regular bit patterns in the binary representation
Choice of increment c

- no common factor with m
 - $c = 1$
 - $c = a$
- if $c = 0$, addition operation can be eliminated
 - faster processing
 - period length decreases
Choice of starting value X_0

- determines from where in the sequence the numbers are taken
- to guarantee randomness, initialization from a varying source
 - built-in clock of the computer
 - last value from the previous run
- using the same value allows to repeat the sequence
Tests for randomness 1(2)

- Frequency test
- Serial test
- Gap test
- Poker test
- Coupon collector’s test
Tests for randomness 2(2)

- Permutation test
- Run test
- Collision test
- Birthday spacings test
- Spectral test
Spectral test

- good generators will pass it
- bad generators are likely to fail it
- idea:
 - let the length of the period be m
 - take t consecutive numbers
 - construct a set of t-dimensional points:
 \[
 \{ (X_n, X_{n+1}, \ldots, X_{n+t-1}) \mid 0 \leq n < m \}
 \]
- when t increases the periodic accuracy decreases
 - a truly random sequence would retain the accuracy
Random shuffling

- generate random permutation, where all permutations have a uniform random distribution
- shuffling \approx inverse sorting (!)
- ordered set $S = \langle s_1, \ldots, s_n \rangle$ to be shuffled
- naïve solution
 - enumerate all possible $n!$ permutations
 - generate a random integer $[1, n!]$ and select the corresponding permutation
 - practical only when n is small
Random sampling without replacement

- guarantees that the distribution of permutations is uniform

- every element has a probability $1/n$ to become selected in the first position

- subsequent position are filled with the remaining $n - 1$ elements

- because selections are independent, the probability of any generated ordered set is

 \[
 \frac{1}{n} \cdot \frac{1}{n-1} \cdot \frac{1}{n-2} \cdot \ldots \cdot \frac{1}{1} = \frac{1}{n!}
 \]

- there are exactly $n!$ possible permutations
 → generated ordered sets have a uniform distribution
Premo: Standard order
Premo: After a riffle shuffle and card insertion

<table>
<thead>
<tr>
<th>9</th>
<th>10</th>
<th>K</th>
<th>J</th>
<th>Q</th>
<th>A</th>
<th>K</th>
<th>A</th>
<th>2</th>
<th>Q</th>
<th>3</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>♠</td>
<td>♠</td>
<td>♦</td>
<td>♣</td>
<td>♠</td>
<td>♠</td>
<td>♦</td>
<td>♣</td>
<td>♠</td>
<td>♠</td>
<td>♠</td>
<td>♠</td>
<td>♠</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>4</th>
<th>8</th>
<th>9</th>
<th>5</th>
<th>10</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>♡</td>
</tr>
<tr>
<td>♣</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>K</th>
<th>9</th>
<th>10</th>
<th>J</th>
<th>Q</th>
<th>A</th>
<th>K</th>
<th>2</th>
<th>A</th>
<th>3</th>
<th>4</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>♠</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>7</th>
<th>9</th>
<th>10</th>
<th>J</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>♠</td>
</tr>
<tr>
<td>♣</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>10</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>7</th>
<th>9</th>
<th>10</th>
<th>J</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>♠</td>
</tr>
<tr>
<td>♣</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>10</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Premo: The inserted card
Random numbers in games

- terrain generation
- events
- character creation
- decision-making
- game world compression
- synchronized simulation
Game world compression

- used in *Elite* (1984)
- finite and discrete galaxy
- enumerate the positions
- set the seed value
- generate a random value for each position
 - if smaller than a given density, create a star
 - otherwise, space is void
- each star is associated with a randomly generated number, which used as a seed when creating the star system details (name, composition, planets)
- can be hierarchically extended
Terrain generation 1(2)

- simple random
- limited random
- particle deposition
Terrain generation 2(2)

- fault line
- circle hill
- midpoint displacement