Path finding

- common problem in computer games
 - routing characters, troops etc.
- computationally intensive problem
 - complex game worlds
 - high number of entities
 - dynamically changing environments
 - real-time response
Problem statement

- given a start point \(s \) and a goal point \(r \), find a path from \(s \) to \(r \) minimizing a given criterion

- search problem formulation
 - find a path that minimizes the cost

- optimization problem formulation
 - minimize cost subject to the constraint of the path
The three phases of path finding

1. discretize the game world
 - select the waypoints and connections
2. solve the path finding problem in a graph
 - let waypoints = vertices, connections = edges, costs = weights
 - find a minimum path in the graph
3. realize the movement in the game world
 - aesthetic concerns
 - user-interface concerns
Discretization

- **waypoints (vertices)**
 - doorways, corners, obstacles, tunnels, passages, …

- **connections (edges)**
 - based on the game world geometry, are two waypoints connected

- **costs (weights)**
 - distance, environment type, difference in altitude, …

- **manual or automatic process?**
 - grids, navigation meshes
Grid

- regular tiling of polygons
 - square grid
 - triangular grid
 - hexagonal grid
- tile = waypoint
- tile’s neighbourhood = connections
Navigation mesh

- convex partitioning of the game world geometry
 - convex polygons covering the game world
 - adjacent polygons share only two points and one edge
 - no overlapping
- polygon = waypoint
 - middlepoints, centre of edges
- adjacent polygons = connections
Solving the convex partitioning problem

- minimize the number of polygons
 - points: \(n \)
 - points with concave interior angle (notches): \(r \leq n - 3 \)
- optimal solution
 - dynamic programming: \(O(r^2 n \log n) \)
- Hertel–Mehlhorn heuristic
 - number of polygons \(\leq 4 \times \) optimum
 - running time: \(O(n + r \log r) \)
 - requires triangulation
 - running time: \(O(n) \) (at least in theory)
 - Seidel’s algorithm: \(O(n \lg^* n) \) (also in practice)
Path finding in a graph

- after discretization form a graph $G = (V, E)$
 - waypoints = vertices (V)
 - connections = edges (E)
 - costs = weights of edges ($weight : E \rightarrow \mathbb{R}_+$)

- next, find a path in the graph
Graph algorithms

- breadth-first search
 - running time: $O(|V| + |E|)$

- depth-first search
 - running time: $\Theta(|V| + |E|)$

- Dijkstra’s algorithm
 - running time: $O(|V|^2)$
 - can be improved to $O(|V| \log |V| + |E|)$
Heuristical improvements

- best-first search
 - order the vertices in the neighbourhood according to a heuristic estimate of their closeness to the goal
 - returns optimal solution

- beam search
 - order the vertices but expand only the most promising candidates
 - can return suboptimal solution
Evaluation function

- expand vertex minimizing

\[f(v) = g(s \rightarrow v) + h(v \rightarrow r) \]

- \(g(s \rightarrow v) \) estimates the minimum cost from the start vertex to \(v \)

- \(h(v \rightarrow r) \) estimates (heuristically) the cost from \(v \) to the goal vertex

- if we had exact evaluation function \(f^* \), we could solve the problem without expanding any unnecessary vertices
Cost function \(g \)

- actual cost from \(s \) to \(v \) along the cheapest path found so far
 - exact cost if \(G \) is a tree
 - can never underestimate the cost if \(G \) is a general graph

- \(f(v) = g(s \rightarrow v) \) and unit cost
 - \(\rightarrow \) breadth-first search

- \(f(v) = -g(s \rightarrow v) \) and unit cost
 - \(\rightarrow \) depth-first search
Heuristic function h

- carries information from outside the graph
- defined for the problem domain
- the closer to the actual cost, the less superfluous vertices are expanded

- $f(v) = g(s \rightarrow v) \rightarrow$ cheapest-first search
- $f(v) = h(v \rightarrow r) \rightarrow$ best-first search
Admissibility

- let Algorithm A be a best-first search using the evaluation function \(f \)

- search algorithm is \textit{admissible} if it finds the minimal path (if it exists)
 - if \(f = f^* \), Algorithm A is admissible

- Algorithm \(A^* = \) Algorithm A using an estimate function \(h \)
 - \(A^* \) is admissible, if \(h \) does not overestimate the actual cost
Monotonicity

- h is locally admissible $\rightarrow h$ is monotonic
- monotonic heuristic is also admissible
- actual cost is never less than the heuristic cost $\rightarrow f$ will never decrease
- monotonicity $\rightarrow A^*$ finds the shortest path to any vertex the first time it is expanded
 - if a vertex is rediscovered, path will not be shorter
 - simplifies implementation
Optimality

- Optimality theorem: The first path from s to r found by A* is optimal.
- Proof: see page 105 of the book
Informedness

- the more closely h approximates h^*, the better A* performs

- if A_1 using h_1 will never expand a vertex that is not also expanded by A_2 using h_2, A_1 is more informed than A_2

- informedness \rightarrow no other search strategy with the same amount of outside knowledge can do less work than A* and be sure of finding the optimal solution
Algorithm A*

- because of monotonicity
 - all weights must be positive
 - closed list can be omitted
- the path is constructed from the mapping π
 starting from the goal vertex
 - $s \rightarrow \ldots \rightarrow \pi(\pi(\pi(r))) \rightarrow \pi(\pi(r)) \rightarrow \pi(r) \rightarrow r$
Practical considerations

- computing h
 - despite the extra vertices expanded, less informed h may yield computationally less intensive implementation

- suboptimal solutions
 - by allowing overestimation A^* becomes inadmissible, but the results may be good enough for practical purposes
Realizing the movement

- movement through the waypoints
 - unrealistic: does not follow the game world geometry
 - aesthetically displeasing: straight lines and sharp turns

- improvements
 - line-of-sight testing
 - obstacle avoidance

- combining path finding to user-interface
 - real-time response
Alternatives?

- Although this is the *de facto* approach in (commercial) computer games, are there alternatives?

- possible answers
 - AI processors (unrealistic?)
 - robotics: reactive agents (unintelligent?)
 - analytical approaches (inaccessible?)