§2 Random Numbers

m what is randomness?

m linear congruential method
® parameter choices
m testing

m random shuffling

B uses in computer games

Random numbers?

m there is no such thing as a ‘random number’
®m is 42 a random number?
m definition: a sequence of statistically zdependent
random numbers with a uniform distribution
= numbers ate obtained by chance
= they have nothing to do with the other numbers in
the sequence
m uniform distribution: each possible number is
equally probable

B
L]

Generating random numbers with
arithmetic operations

= von Neumann (ca. 19406): middle square method

m take the square of previous number and extract the
middle digits
m cxample: four-digit numbers
269

-, = 1601 (r;, > = 14160169)
= 5632 (1, ,> = 2563201)

B7iis3

What are random numbers good for
(according to D.E.K.)

simulation

sampling

numerical analysis
computer programming
decision-making
aesthetics

recreation

Methods

random selection
= drawing balls out of a ‘well-stitred urn’

tables of random digits |

|
m decimals from 7 %

generating data \
= white noise generators
= cosmic background radiation

computer programs?

Truly random numbers?

each number is completely determined by its
predecessor!

sequence is not random but appears fo be
— pseudo-random numbers

all random generators based arithmetic
operation have their own in-built characteristic
regularities

m hence, testing and analysis is required




Middle square (revisited)

m another example:
= 7= 6100
w7, = 2100 (77
w o, , = 4100 (r;, 2
w7, 5 =8100 (r;,
mr,,=06100=r

® how to counteract?

Words of the more (or less) wise

m ‘We guarantee that each number is random
individually, but we don’t guarantee that more
than one of them is random.’

anonymous computer centre’s programming
consultant (quoted in Numerical Recipes in C)

Linear congruential method

m D. H. Lehmer (1949)
m choose four integers

= modulus: 7 (0 < 7)

= multiplier: 2 (0 = 2 < )

m increment: ¢ (0 = ¢ < m)

= starting value (or seed): X, (0= X, <)
® obtain a sequence (X ) by setting

X, 1= (@X,+¢modw (n=0)

Words of the wise

® ‘random numbers should not be generated with
a method chosen at random’

— D. E. Knuth

® ‘Any one who considers arithmetical methods of
producing random digits is, of course, in a state

>

of sin

— J. von Neumann

Other concerns

m speed of the algorithm
m case of implementation
m parallelization techniques

® portable implementations

Linear congruential method (cont’d)

mletb=a—-1
m generalization:
X o= (@X, + (d*—1) ¢/b) mod
(£=20,7=0)

random floating point numbers U, € [0, 1):

U=X,/m




Random integers from a given
interval

m Monte Catlo methods

be improved at the cost
ng time
m [as Vegas methods
m exact solution
® termination is not guaranteed
m Sherwood methods
® cxact solution, termination guaranteed
m reduce the difference between good
and bad inputs

Choice of multiplier a

m period of maximum length
o= 1= + 1) mod 7
® hardly random: ..., 0, e, m—1,0,1,2, ...
m results from Theorem 2.1.1
m if s is a product of distinct primes, only 2 = 1 produces full
petiod
m if s is divisible by a high power of some prime, there is
latitude when choosing &

m rules of thumb
m 0.01l7 < a<0.99%

® no simple, regular bit patterns in the binary representation

Choice of starting value X

m determines from where in the sequence the
numbers are taken
m to guarantee randomness, initialization from a
varying soutrce
= built-in clock of the computer
= Jast value from the previous run
m using the same value allows to repeat the
sequence

Choice of modulus m

m sequence of random numbers is finite — period
(repeating cycle)

m period has at most 7 elements — modulus
should be large

m recommendation: # is a prime

m reducing modulo: 7 is a power of 2

=2 :xmodm=xn (2 -1)

Choice of increment ¢

® no common factor with »
=1
a
m if ¢ = 0, addition operation can be eliminated
m faster processing

m period length decreases

Tests for randomness 1(2)

m Frequency test
m Serial test

m Gap test

m Poker test

m Coupon collector’s test




Tests for randomness 2(2)

® Permutation test

m Run test

m Collision test

m Birthday spacings test

m Spectral test

Spectral test

m good generators will pass it
m bad generators are likely to fail it
m idea:

= let the length of the period be 7

= take # consecutive numbers

m construct a set of ~dimensional points:

{ G X s Xyuy) [0S n<m}

® when 7increases the petiodic accutacy decteases

= 2 truly random sequence would retain the accutracy



