Random Numbers

- what is randomness?
- linear congruential method
- parameter choices
- testing
- random shuffling
- uses in computer games

What are random numbers good for (according to D.E.K.)

- simulation
- sampling
- numerical analysis
- computer programming
- decision-making
- aesthetics
- recreation

Random numbers?

- there is no such thing as a 'random number' - is 42 a random number?
- definition: a sequence of statistically independent random numbers with a uniform distribution
- numbers are obtained by chance
- they have nothing to do with the other numbers in the sequence
- uniform distribution: each possible number is equally probable

Methods

- random selection
- drawing balls out of a 'well-stirred urn'
- tables of random digits
- decimals from π
- generating data
- white noise generators
- cosmic background radiation

- computer programs?

Truly random numbers?

- each number is completely determined by its predecessor!
- sequence is not random but appears to be
$\square \rightarrow$ pseudo-random numbers
- all random generators based arithmetic
operation have their own in-built characteristic regularities
\square hence, testing and analysis is required

Middle square (revisited)

- another example:
- $r_{i}=6100$
- $r_{i+1}=2100\left(r_{i}^{2}=37210000\right)$
- $r_{i+2}=4100\left(r_{i+1}^{2}=4410000\right)$
- $r_{i+3}=8100\left(r_{i+2^{2}}=16810000\right)$
- $r_{i+4}=6100=r_{i}\left(r_{i+3}^{2}=65610000\right)$
- how to counteract?

Words of the wise

- 'random numbers should not be generated with a method chosen at random' — D. E. Knuth
- 'Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin.'
- J. von Neumann

Words of the more (or less) wise

- 'We guarantee that each number is random individually, but we don't guarantee that more than one of them is random.'
— anonymous computer centre's programming consultant (quoted in Numerical Recipes in C)

Other concerns

- speed of the algorithm
- ease of implementation
- parallelization techniques
- portable implementations

Linear congruential method

- D. H. Lehmer (1949)
- choose four integers
- modulus: m ($0<m$)
- multiplier: $a(0 \leq a<m)$
- increment: $c(0 \leq c<m)$
- starting value (or seed): $X_{0}\left(0 \leq X_{0}<m\right)$
- obtain a sequence $\left\langle X_{n}\right\rangle$ by setting
$X_{n+1}=\left(a X_{n}+c\right) \bmod m(n \geq 0)$

Linear congruential method (cont'd)

- let $b=a-1$
- generalization:
$X_{n+k}=\left(a^{k} X_{n}+\left(a^{k}-1\right) c / b\right) \bmod m$

$$
(k \geq 0, n \geq 0)
$$

- random floating point numbers $U_{n} \in[0,1)$: $U_{n}=X_{n} / m$

Random integers from a given

 interval- Monte Carlo methods
- approximate solution
- accuracy can be improved at the cost of running time
- Las Vegas methods
- exact solution
- termination is not guaranteed
- Sherwood methods
- exact solution, termination guaranteed
- reduce the difference between good and bad inputs

Choice of modulus m

- sequence of random numbers is finite \rightarrow period (repeating cycle)
- period has at most m elements \rightarrow modulus should be large
- recommendation: m is a prime
- reducing modulo: m is a power of 2

$$
\square m=2^{i}: x \bmod m=x \sqcap\left(2^{i}-1\right)
$$

Choice of multiplier a

- period of maximum length
- $a=c=1: X_{n+1}=\left(X_{n}+1\right) \bmod m$
- hardly random: ..., $0,1,2, \ldots, m-1,0,1,2, \ldots$
- results from Theorem 2.1.1
- if m is a product of distinct primes, only $a=1$ produces full period
- if m is divisible by a high power of some prime, there is latitude when choosing a
- rules of thumb
- $0.01 m<a<0.99 m$
- no simple, regular bit patterns in the binary representation

Choice of increment c

- no common factor with m
- $c=1$
$\square c=a$
- if $c=0$, addition operation can be eliminated
- faster processing
- period length decreases

Choice of starting value X_{0}

- determines from where in the sequence the numbers are taken
- to guarantee randomness, initialization from a varying source
- built-in clock of the computer
- last value from the previous run
- using the same value allows to repeat the sequence

Tests for randomness 1(2)

- Frequency test
- Serial test
- Gap test
- Poker test
- Coupon collector's test

Spectral test

- good generators will pass it
- bad generators are likely to fail it
- idea:
- let the length of the period be m
- take t consecutive numbers
- construct a set of t-dimensional points:
$\left\{\left(X_{m}, X_{n+1}, \ldots, X_{n+t-1}\right) \mid 0 \leq n<m\right\}$
- when t increases the periodic accuracy decreases - a truly random sequence would retain the accuracy

