Scoring tournaments

- round robin: everybody meets everybody else once
- scoring table determines the tournament winner
- players are rewards with scoring points
- winner and tic
- matches are independent from one another

$$
\text { 6. } 4 \frac{8}{4}
$$

Reduction to a graph (cont'd)

- if n is odd, partition the edges of the clique to $(n-1) / 2$ disjoint sets
- in each turn, one player is resting
- player p_{i} rests in the round i
- if n is even, reduce the problem
- player p_{n-1} is taken out from the clique
- solve the pairings for $n-1$ players as above
- for each round, pair the resting player p_{i} with player p_{n-1}

Normalized round robin

- who is the resting player in a given round? \rightarrow answered
- given two players, in which round they will face one another?
\rightarrow no simple rule?
- change the selection of the resting player
- resting player: $r \cdot\lfloor(n+1) / 2\rfloor \bmod n$
- if n is odd, p_{i} and p_{j} will face in the round $i+j \bmod$ (number of rounds)

Reduction to a graph

- n players
- clique K_{n}
- players as vertices, matches as edges

- how to organize the rounds?
- a player has at most one match in a round
- a round has as many matches as possible

Round robin with seven players

round	matches			resting
0	$1-6$	$2-5$	$3-4$	0
1	$2-0$	$3-6$	$4-5$	1
2	$3-1$	$4-0$	$5-6$	2
3	$4-2$	$5-1$	$6-0$	3
4	$5-3$	$6-2$	$0-1$	4
5	$6-4$	$0-3$	$1-2$	5
6	$0-5$	$1-4$	$2-3$	6

Real-world tournament examples

- boxing
- reigning champion and challengers
- sport wrestling
- double elimination: consolation bracket
- professional wrestling
- royal rumble
- World Cup
- ice hockey championship

■ snooker

