§4 Game Trees

- perfect information games
 no hidden information
- two-player, perfect information games
 - Noughts and Control
 - Go
 - G0 imperfect information
- Doker
- Backgammon
- Monopoly
- zero-sum property
 - one player's gain equals another player's loss

Game tree

- all possible plays of two-player, perfect information games can be represented with a game tree
 - nodes: positions (or states)
 - edges: moves
- players: MAX (has the first move) and MIN
- ply = the length of the path between two nodes
- MAX has even plies counting from the root node
- MIN has odd plies counting from the root node

Problem statement

Given a node v in a game tree

find a winning strategy for MAX (or MIN) from ν

or (equivalently)

show that MAX (or MIN) can force a win from v

Minimax

- assumption: players are rational and try to win
- given a game tree, we know the outcome in the leaves
 assign the leaves to win, draw, or loss (or a numeric value like +1, 0, -1) according to MAX's point of view
- at nodes one ply above the leaves, we choose the best outcome among the children (which are leaves)
 - MAX: win if possible; otherwise, draw if possible; else loss
 - MIN: loss if possible; otherwise, draw if possible; else wir
- recurse through the nodes until in the root

Minimax rules

- 1. If the node is labelled to MAX, assign it to the maximum value of its children.
- 2. If the node is labelled to MIN, assign it to the minimum value of its children.
- MIN minimizes, MAX maximizes \rightarrow minimax

Analysis

- simplifying assumptions
 - \blacksquare internal nodes have the same branching factor b
 - **\blacksquare** game tree is searched to a fixed depth d
- time consumption is proportional to the number of expanded nodes
 - 1 root node (the initial ply)
 - *b* nodes in the first ply
 - b² nodes in the second p
 - b^d nodes in the *d*th ply
- overall running time *O*(*b*^{*d*})

Rough estimates on running times when d = 5

- suppose expanding a node takes 1 ms
- branching factor *b* depends on the game
- Draughts ($b \approx 3$): t = 0.243 s
- Chess ($b \approx 30$): $t = 6^{3/4}$ h
- Go (*b* ≈ 300): *t* = 77 a
- alpha-beta pruning reduces b

Controlling the search depth

- usually the whole game tree is too large
 - \rightarrow limit the search depth
 - \rightarrow a partial game tree
 - \rightarrow partial minimax
- *n*-move look-ahead strategy
 - stop searching after *n* moves
 - make the internal nodes (i.e., frontier nodes) leaves
 - use an evaluation function to 'guess' the outcome

Evaluation function

- combination of numerical measurements
 m_x(*s*, *p*) of the game state
 - single measurement: $m_i(s, p)$
 - difference measurement: $m_i(s, p) m_i(s, q)$
 - **•** ratio of measurements: $m_i(s, p) / m_i(s, q)$
- aggregate the measurements maintaining the zero-sum property

Example: Noughts and Crosses

- heuristic evaluation function e:
 - count the winning lines open to MAX
 - subtract the number of winning lines open to MIN
- forced wins
 - state is evaluated $+\infty$, if it is a forced win for MAX
 - state is evaluated —∞, if it is forced win for MIN

Examples of the evaluation

Drawbacks of partial minimax

horizon effect

- situation

- phase-related search: opening, midgame, end game however, horizon effect cannot be totally eliminated
- bias

 - distortion in the root: odd plies \rightarrow win, even plies \rightarrow loss

The deeper the better...?

assumptions:

- leaves with uniform random distribution
- minimax convergence theorem:
- last player theorem:
- minimax pathology theorem:
 - *n* increases → probability of selecting non-optimal move increases (← uniformity assumption!)