§4 Game Trees

- perfect information games
- no hidden information
- two-player, perfect information games
- Noughts and Crosses
- Chess
- Go
- imperfect information games
- Poker
- Backgammon
- Monopoly
- zero-sum property
- one player's gain equals another player's loss

Game tree

- all possible plays of two-player, perfect information games can be represented with a game tree
- nodes: positions (or states)
- edges: moves
- players: MAX (has the first move) and MIN
- ply = the length of the path between two nodes
- max has even plies counting from the root node
- MIN has odd plies counting from the root node

Division Nim with seven matches IIIII III III |||| ||

Problem statement

Given a node v in a game tree
find a winning strategy for MAX (or MIN) from ν
or (equivalently)
show that MAX (or MIN) can force a win from v

Minimax

- assumption: players are rational and try to win
- given a game tree, we know the outcome in the leaves
- assign the leaves to win, draw, or loss (or a numeric value like $+1,0,-1$) according to MAX's point of view
- at nodes one ply above the leaves, we choose the best outcome among the children (which are leaves)
- MAX: win if possible; otherwise, draw if possible; else loss
- min: loss if possible; otherwise, draw if possible; else win
- recurse through the nodes until in the root

Minimax rules

1. If the node is labelled to MAX, assign it to the maximum value of its children.
2. If the node is labelled to MIN, assign it to the minimum value of its children.

- MIN minimizes, MAX maximizes \rightarrow minimax

Rough estimates on running

 times when $d=5$- suppose expanding a node takes 1 ms
- branching factor b depends on the game
- Draughts $(b \approx 3): t=0.243 \mathrm{~s}$
- Chess $(b \approx 30): t=63 / 4 \mathrm{~h}$
- Go ($b \approx 300$): $t=77$ a
- alpha-beta pruning reduces b

Evaluation function

- combination of numerical measurements $m_{i}(s, p)$ of the game state
- single measurement: $m_{i}(s, p)$
- difference measurement: $m_{i}(s, p)-m_{(}(s, q)$
- ratio of measurements: $m_{i}(s, p) / m_{i}(s, q)$
- aggregate the measurements maintaining the zero-sum property

Example: Noughts and Crosses

- heuristic evaluation function e :
- count the winning lines open to MAX
\square subtract the number of winning lines open to MIN
- forced wins
\square state is evaluated $+\infty$, if it is a forced win for MAX
- state is evaluated $-\infty$, if it is forced win for MIN

Examples of the evaluation

$x / 1+1$
 -7,
 (保

$e(\cdot)=6-5=1$

M1 12
保 $e(\bullet)=4-5=-1$

$$
e(\cdot)=+\infty
$$

Drawbacks of partial minimax

- horizon effect
- heuristically promising path can lead to an unfavourable situation
- staged search: extend the search on promising nodes
- iterative deepening: increase n until out of memory or time
- phase-related search: opening, midgame, end game
- however, horizon effect cannot be totally eliminated
- bias
- we want to have an estimate of minimax but get a minimax of estimates
- distortion in the root: odd plies \rightarrow win, even plies \rightarrow loss

The deeper the better...?

- assumptions:
n-move look-ahead
- branching factor b, depth d,
leaves with uniform random distribution
\square minimax convergence theorem:
- n increases \rightarrow root value converges to $f(b, d)$
- last player theorem:
- root values from odd and even plies not comparable
- minimax pathology theorem:
- n increases \rightarrow probability of selecting non-optimal move increases (\leftarrow uniformity assumption!)

