Alpha-beta pruning

- reduce the branching factor of nodes
- alpha value
 - associated with MAX nodes
 - represents the worst outcome MAX can achieve
 - can never decrease

beta value

- associated with MIN nodes
- represents the worst outcome MIN can achieve
- can never increase

Example

- in a MAX node, $\alpha = 4$
 - we know that MAX can make a move which will result at least the value 4
 - we can omit children whose value is less than or equal to 4
- in a MIN node, $\beta = 4$
 - we know that MIN can make a move which will result at most the value 4
 - we can omit children whose value is greater than or equal to 4

Ancestors and $\alpha \& \beta$

- alpha value of a node is never less than the alpha value of its ancestors
- beta value of a node is never greater than the beta value of its ancestors

Rules of pruning

- 1. Prune below any MIN node having a beta value less than or equal to the alpha value of any of its MAX ancestors.
- 2. Prune below any MAX node having an alpha value greater than or equal to the beta value of any of its MIN ancestors

Or, simply put: If $\alpha \geq \beta$, then prune below!

Best-case analysis

- omit the principal variation
- at depth *d* − 1 optimum pruning: each node expands one child at depth *d*
- at depth d 2 no pruning: each node expands all children at depth d 1
- at depth d 3 optimum pruning
- at depth d 4 no pruning, etc.
- total amount of expanded nodes: $\Omega(b^{d/2})$

Principal variation search

- alpha-beta range should be small
 - I limit the range artificially \rightarrow aspiration search
 - if search fails, revert to the original range
- game tree node is either
 - α -node: every move has $e \leq \alpha$
 - **\square** β -node: every move has $e \ge \beta$
 - principal variation node: one or more moves has $e > \alpha$ but none has $e \ge \beta$

Principal variation search (cont'd)

- **I** if we find a principal variation move (i.e., between α and β), assume we have found a principal variation node

 - selected first

Prisoner's dilemma

• two criminals are arrested and isolated from each other

Non-zero sum game:

- police suspects they have committed a crime together but don't have enough proof
- both are offered a deal: rat on the other one and get a lighter sentence
 - if one defects, he gets free whilst the other gets a long sentence
 - if both defect, both get a medium sentence

Prisoner's dilemma (cont'd)

- two players
- possible moves
- the dilemma: player cannot make a good knowing what the other will do

Prisoner B's move Prisoner A's move	Co-operate: keep silent	Defect: rat on the other prisoner
Co-operate: keep silent	Fairly good: 6 months	Bad: 10 years
Defect: rat on the other prisoner	Good: no penalty	Mediocre: 5 years

Payoffs in Chicken		
Driver B's move	Co-operate:	Defect: keep
Driver A's move	swerve	going
Co-operate:	Fairly good:	Mediocre:
swerve	<i>It's a dram.</i>	I'm chicken
Defect: keep	Good:	Bad:
going	I win!	Crash, boom, bang!!

Payoffs in Battle of Sexes		
Wife's move Husband's move	Co-operate: boxing	Defect: opera
Co-operate: opera	Wife: Very bad Husband: Very bad	Wife: Good Husband: Mediocre
Defect: boxing	Wife: Mediocre Husband: Good	Wife: Bad Husband: Bad

Iterated prisoner's dilemma

- encounters are repeatedplayers have memory of the previous encounters
- players have memory of the previous encounters
 R. Axelrod: *The Evolution of Cooperation* (1984)
 greedy strategies tend to work poorly
 altruistic strategies work better—even if judged by self-interest only
 Nash equilibrium: always defect!
 but sometimes rational decisions are not sensible

- Dut sometimes rational decisions are not sensible
 Tit for Tat (A. Rapoport)
 co-operate on the first iteration
 do what the opponent did on the previous move