B common p oblem in computcr games

§5 Path Finding

| I()thiﬂg C acters, tl'()()pS etc.

® computationally intensive problem

® complex game wotlds

® hi

= dyna

number of entities
cally changing environments

ponse

Problem statement

given a start point s and a goal point 7, find a
path from s to 7 minimizing a given criterion
m scarch problem formulation
= find a path that minimizes the cost
® optimization problem formulation

= minimize cost subject to the constraint of the path

The three phases of path finding Discretization

discretize the game world
m select the waypoints and connecti OC tacles, tunnels, passages, ...
solve the path finding problem in a ® connections (edges)
let waypoints = vertices, connections S = based on the game world geometry, are two
costs = waypoints connected
= find a minimum path in the graph m costs (weights)
te = O
realize the movement in the game wotld = distance, e nment type, difference in altitude, ...
m aesthetic concerns = manual or automatic process?

= user-interface concerns m orids, navigation meshes

Grid

regular tiling of polygons
® square grid

= triangular grid

= hexagonal grid

tile = waypoint

Navigation mesh

B convex partitioning of the game world geometry
u co pol covering the game world
= adjacent polygons share only two points and one
edge
= no ovetlapping
® polygon = waypoint
= middlepoints, centre of edges

® adjacent polygons = connections

Solving the convex partitioning
problem

Path finding in a graph
= minimize the number of polyg m after discretization form a graph G = (17, E)
m points: 7 ¢ g ~
B . = waypoints = vertices ()
u pOlﬂfS \Vlﬂ'l concave Interio .))
. . B connections = s
m optimal solution connections 5 (8

® dynamic programming: O(7%7 log 7) m costs = weights o edges (ll’t’/ﬂ’fl E—R))

m Hertel-Mehlhorn heuristic ® next, find a path in the graph
= number of polygons < 4 X optimum
= running time: O(z + rlog 7)
ngulation
D least in theory)

: O(n1g* 7) (also in practice)

Graph algorithms Heuristical improvements

m breadth-first search m best-first search

= running time: O(| /| + | E|) = order the vertices in the n ourhood according to

[=]

= depth—ﬁrst Seatch a heuristic estimate of their closeness to the goal

i i 4 ' B returns optimal soluti
» running time: ©(| 1| + | E|) returns optimal solution

.. . . -
m Dijkstra’s algorithm beam search

5 > order rtices X2 © e MOoS
time: O(| 1/]?) 4 extices but expand only the most
promising candidates

N rur ey

® can be improved to O(| /] log | V| + | E])) .
) ® can return suboptimal solution

