Evaluation function

expand vertex minimizing

 $f(v) = g(s \sim > v) + h(v \sim > r)$

- g(s ~> v) estimates the minimum cost from the start vertex to v
- *b*(*v* ~> *r*) estimates (heuristically) the cost from *v* to the goal vertex
- if we had exact evaluation function f^{*}, we could solve the problem without expanding any unnecessary vertices

Cost function g

- actual cost from s to v along the cheapest path found so far
 - exact cost if G is a tree
 - can never underestimate the cost if *G* is a general graph
- $f(v) = g(s \sim> v)$ and unit cost → breadth-first search
- $f(v) = -g(s \sim v)$ and unit cost \rightarrow depth-first search

Heuristic function h

- **c**arries information from outside the graph
- defined for the problem domain
- the closer to the actual cost, the less superfluous vertices are expanded
- $f(v) = g(s \sim > v)$ → cheapest-first search
- $f(v) = h(v \sim > r) \rightarrow \text{best-first search}$

Admissibility

- let Algorithm A be a best-first search using the evaluation function f
- search algorithm is *admissible* if it finds the minimal path (if it exists)
 - if $f = f^*$, Algorithm A is admissible
- Algorithm A* = Algorithm A using an estimate function *b*
 - A* is admissible, if h does not overestimate the actual cost

Monotonicity

- *h* is locally admissible \rightarrow *h* is monotonic
- monotonic heuristic is also admissible
- actual cost is never less than the heuristic cost $\rightarrow f$ will never decrease
- monotonicity → A* finds the shortest path to any vertex the first time it is expanded
 - if a vertex is rediscovered, path will not be shorter
 - simplifies implementation

Optimality

- Optimality theorem: The first path from *s* to *r* found by A* is optimal.
- Proof: lecture notes pp. 94-95

Informedness

- the more closely *h* approximates *h*^{*}, the better A* performs
- if A₁ using b₁ will never expand a vertex that is not also expanded by A₂ using b₂, A₁ is more informed that A₂
- informedness → no other search strategy with the same amount of outside knowledge can do less work than A* and be sure of finding the optimal solution

Algorithm A*

- because of monotonicity
 - all weights must be positive
 - closed list can be omitted
- the path is constructed from the mapping π starting from the goal vertex
 - $\blacksquare s \to \ldots \to \pi(\pi(\pi(r))) \to \pi(\pi(r)) \to \pi(r) \to r$

Practical considerations

- computing *b*
 - despite the extra vertices expanded, less informed *h* may yield computationally less intensive implementation
- suboptimal solutions
 - by allowing overestimation A* becomes inadmissible, but the results may be good enough for practical purposes

Realizing the movement

- movement through the waypoints
 - unrealistic: does not follow the game world geometryaesthetically displeasing: straight lines and sharp
 - turns
- improvements
 - line-of-sight testing
 - obstacle avoidance
- combining path finding to user-interface
 real-time response

Recapitulation

- 1. discretization of the game world
- grid, navigation mesh
- waypoints, connections, costs
- 2. path finding in a graph
 - Algorithm A*
- 3. realizing the movement
 - geometric corrections
 - aesthetic improvements

Alternatives?

- Although this is the *de facto* approach in (commercial) computer games, are there alternatives?
- possible answers
 - AI processors (unrealistic?)
 - robotics: reactive agents (unintelligent?)
 - analytical approaches (inaccessible?)

