26

ProOXxY and STAIRWAY TO HEAVEN:

Does anybody remember laughter?

--Robert Plant, The Song Remains the Same.

There are many barriers in software systems. When we move data from our program into
the database, we are crossing the database barrier. When we send a message from one
computer to another we are crossing the network barrier.

Crossing these barriers can be complicated. If we aren’'t careful, our software will be
more about the barriers than about the problem to be solved. The patterns in this chapter

help us cross such barriers while keeping the program centered on the problem to be
solved.

397

398

PROXY

Imagine that we are writing a shopping cart system for a website. Such a system might
have objects for the customer, the order (the cart), and the productsin the order. Figure 26-
1 shows a possible structure. This structureis simplistic, but will serve for our purposes.

Customer 0.* Order
-name -address -date -status
-billingInformation

-

Item Product
-quantity -name -price -sku
Figure 26-1

Simple shopping card object model.

If we consider the problem of adding a new item to an order, we might come up with
the codein Listing 26-1. The addl t emmethod of class Or der simply createsanew |t em
holding the appropriate Product and quantity. It then adds that 1t em to its interna
Vect or of | t ens.

Listing 26-1
Adding an itemto the Object Model.
public class O der

private Vector itsltens = new Vector();
public void addltem(Product p, int qty)
{

Iltemitem= new lten(p, qty);
itsltens.add(item;

}
}

Now imagine that these objects represent data that are kept in a relationa database.
Figure 26-2 shows the tables and keys that might represent the objects. To find the orders
for a given customer, you find all orders that have the customer’s cusi d. To find al the
itemsin agiven order, you find the items that have the order’s or der | d. To find the prod-
ucts referenced by the items, you use the product’s sku.

If we want to add an item row for a particular order, we' d use something like Listing
26-2. This code makes JDBC calsto directly manipulate the relational data model.

399 Chapter 26: Proxy and Sairway to Heaven: Managing
Third Party APIs

Customer
Order

-cusid -name ;
-address eusid P _qrderid -cusid

-billingInformation -date -status

orderld

Item Product

-orderld -quantity -sku -name -price

Figure 26-2
Shopping Card Relational Data M odel

Listing 26-2
Adding an itemto the rel ational nodel.
public class Addlitemlransaciion extends Transaction

public void addltem(int orderld, String sku, int qty)

Statenent s = itsConnection. CreateStatenent();
s. execut eUpdate("insert into items val ues(" +
orderld + "," + sku + "," +
, aty +")");

}

These two code snippets are very different, and yet they perform the same logical
function. They both connect an item to an order. The first ignores the existence of a data
base and the second gloriesin it.

Clearly the shopping cart program is al about orders, items, and products. Unfortu-
nately, if we use the code in Listing 26-2 we make it about SQL statements, database con-
nections and piecing together query strings. This is a significant violation of SRP and
possibly the CCP. Listing 26-2 mixes together two concepts that change for different rea-
sons. It mixes the concept of the items and orders with the concept of relational schemas
and SQL. If either concept must change for any reason, the other concept will be affected.
Listing 26-2 also violates the DIP since the policy of the program depends upon the details
of the storage mechanism.

The PrROXY pattern is away to cure these ills. To explore this, lets set up atest pro-
gram that demonstrates the behavior of creating an order and calculating the total price.
The salient part of this program is shown in Listing 26-3

Listing 26-3

Test program creates order and verifies cal culation of price.
public void testOrderPrice()
{

Order o = new Order (" Bob");
Product toothpaste = new Product (" Toot hpaste", 129);

400

Listing 26-3 (Continued)
Test program creates order and verifies cal culation of price.
0. addlten(t oot hpaste, 1I);
assert Equal s(129, o.total ());
Product nout hwash = new Product (" Mout hwash", 342);
0. addl t em(nout hwash, 2);
assert Equal s(813, o.total ());

}

The simple code that passes this test is shown in Listing 26-4 through Listing 26-6. It
makes use of the simple object model in Figure 26-1. It does not assume that there is a
database anywhere.

Listing 26-4
order.java
public class Oder

private Vector itsltens = new Vector();
public Order(String cusid)
{

}
public void addltem(Product p, int qty)

Itemitem = new | ten(p, qty);
itsltens. add(item;

}
public int total ()

int total = 0;
for (int i =0; i < itsltens.size(); i++)

Iltemitem= (ltem itsltens. el ementAt(i);
Product p i tem get Product ();

int gty = itemgetQuantity();

total += p.getPrice() * qty;

return total;
}
}

Listing 26-5
product.java

public class Product
private int itsPrice;
public Product(String nane, int price)
itsPrice = price;

public int getPrice()
{

401 Chapter 26: Proxy and Sairway to Heaven: Managing
Third Party APIs

Listing 26-5 (Continued)
product.java
return itsPrice;

}
}
Listing 26-6
itemjava
public class Ttem

{

private Product itsProduct;
private int itsQuantity;

public Item(Product p, int qty)

itsProduct = p;
itsQuantity = qty;
}

publ i c Product getProduct()

return itsProduct;

public int getQuantity()

{
return itsQuantity;

}

}

Figure 26-3 and Figure 26-4 show how the PROXY pattern works. Each object that is
to be proxied is split into three parts. Thefirst is an interface that declares all the methods
that clients will want to invoke. The second is an implementation that implements those
methods without knowledge of the database. The third is the proxy that knows about the
database.

«interface»
Product
DB Product «delegates» Product
= — .
DB Proxy Implementation
Figure 26-3

ProOXY static model

Consider the Product class. We have proxied it by replacing it with an interface.
This interface has all the same methods that Pr oduct has. The Product | npl emen-

402

getPrice() ‘ ‘

Product
i DB Proxy DB
\
‘ retrieveProduct(sku) |
<o
price = o U% Product _
| Product Implementation
\ getPrice() |
1
pr i
‘ price
\ ‘ |
Figure 26-4

PrOXY dynamic model

tati on class implements the interface aimost exactly as before. The Pr oduct DBPr oxy
implements al the methods of Pr oduct to fetch the product from the database, create an
instance of Pr oduct | npl enent at i on and then delegate the message to it.

The sequence diagram in Figure 26-4 shows how this works. The client sends the
get Pri ce message to what it thinks is a Product, but what is really a Product -
DBPr oxy. The Pr oduct DBPr oxy fetches the Product | npl enent at i on from the data-
base. It then delegates the get Pri ce method to it.

Neither the client nor the Pr oduct | npl ement at i on knows that this has happened.
The database has been inserted into the application without either party knowing about it.
That's the beauty of the PROXY pattern. In theory it can be inserted in between two collab-
orating objects without those objects having to know about it. Thus, it can be used to cross
abarrier like a database or a network without either of the participants knowing about it.

In reality using proxies is non-trivial. To get an idea what some of the problems are,
lets try to add the PrRoOxY pattern to the simple shopping cart application.

Proxifying the Shopping Cart.

The simplest Proxy to create is for the Pr oduct class. For our purposes the product table
represents asimple dictionary. It will be loaded in one place with all the products. Thereis
no other manipulation of this table; and that makes the proxies relatively trivial.

To get started, we need a simple database utility that stores and retrieves product data.
The proxy will use this interface to manipulate the database. Listing 26-7 shows the test
program for what | have in mind. Listing 26-8 and Listing 26-9 make that test pass.

Listing 26-7

DBTest . j ava

import junit.framework.~,

i mport junit.sw ngui.TestRunner;

public class DBTest extends Test Case

403 Chapter 26: Proxy and Sairway to Heaven: Managing
Third Party APIs

Listing 26-7 (Continued)
DBTest .| ava
{

public static void main(String[] args)

Test Runner. mai n(new String[]{"DBTest"});

}
publ i c DBTest (String name)
{
super (nane) ;
}

public void setUp() throws Exception

DB.init();

ublic void tearDown() throws Exception

DB. cl ose();

ublic void testStoreProduct () throws Exception

~s -~ AT -~

Product Data storedProduct = new ProductData();
st or edProduct . name = "M/Product";
st oredProduct . price = 1234;
st or edPr oduct . sku = "999";
DB. st or e(st or edPr oduct);
Product Data retrievedProduct = DB. get ProductDat a("999");
DB. del et ePr oduct Dat a(" 999") ;
assert Equal s(st oredProduct, retrievedProduct);
}
}

Listing 26-8
Pr oduct Dat a. j ava
public class ProductData
{
public String nane;
public int price;

publ i c Product Dat a()

%

public ProductData(String nane, int price, String sku)
this.nane = nane;

this.price = price;
this.sku = sku;

public String sku;

publ i c bool ean equal s(Object 0)

404

Listing 26-8 (Continued)
Product Dat a. j ava

Product Data pd = (Product Dat a) o;
return name. equal s(pd. nane)
sku. equal s(pd. sku) &&
price==pd. pri ce;
}
}

Listing 26-9
DB.j ava

import java.sql.~™;
public class DB
private static Connection con;
public static void init() throws Exception

C ass. for Nane("sun. j dbc. odbc. JdbcOdbcDri ver");
con = DriverManager . get Connecti on(
"jdbc: odbc: PP Shoppl ng Cart");

}

public static void store(ProductData pd) throws Exception

PreparedStatenent s = buildlnsertionStatenent (pd);
execut eSt at ement (s) ;

}

Bri vate static PreparedStatenent
ui I dl nsertionStatenent (ProductData pd) throws SQLException
{

PreparedSt atenent s = con. prepareSt atement(
| NSERT i nto Products VALUES (?, ?, ?2)");

s.setString(1, pd.sku);

s.setString(2, pd. name) ;

s.setInt(3, pd.price);

return s;

}
public static ProductData getProductData(String sku)
throws Exception

{
PreparedStatenent s = buil dProduct QuerySt at enent (sku) ;
ResultSet rs = executeQueryStatenent(s);

Product Data pd = extract Product Dat aFromResul t Set(rs);

rs.close();

s. cl ose();

return pd;

}
B ivate static PreparedStatenent

| dProduct QuerySt at enent (String sku) throws SQLException
{

PreparedStatement s = con. e ar eSt at ement (
"SELECT * FROM Products ERE sku = ?;");

405 Chapter 26: Proxy and Sairway to Heaven: Managing
Third Party APIs

Listing 26-9 (Continued)
DB.j ava

s.setString(I, sku);
return s;

rivate static ProductData
xtract Product Dat aFr onResuI t Set (Result Set rs)
hrows SQLExcepti on

~ DT -

Product Data pd = new Product Data();
pd.sku = rs.getString(1);

pd. name = rs.getString(2);

pd.price = rs.getlnt(3);

return pd;
}
public static void del eteProductData(String sku)
throws Exception
{

execut eSt at ement (bui | dPr oduct Del et eSt at enent (sku)) ;
}
B ivate static PreparedStatenent

| dProduct Del et eStatenment (String sku) throws SQLException
{

PreparedStatement s = con. prepar eSt atement(

ELETE from Products where sku = ?");

s.setString(1, sku);

return s;
}
private static void executeStatenent (PreparedSt at enent s)
throws SQLException
{

s. execute();
s. cl ose();

}
private static Result Set
execut eQuer ySt at emrent (Prepar edSt at ement s)
throws SQLException
ResultSet rs = s.executeQery();

rs.next();
return rs;

public static void close() throws Exception

con. cl ose();

}

The next step in implementing the proxy is to write a test that shows how it works.
This test adds a product to the database. It then creates a Pr oduct Pr oxy with the sku of

406

the stored product, and attempts to use the accessors of Pr oduct to acquire the data from
the proxy. See Listing 26-10

Listing 26-10

ProxyTest.j ava

import junit.framework.~;

i mport junit.sw ngui.TestRunner;

public class ProxyTest extends TestCase

{

public static void main(String[] args)

Test Runner. mai n(new String[]{"ProxyTest"});

}
public ProxyTest(String nane)
{
super (nane) ;
}
public void setUp() throws Exception
{
DB.init();
Product Data pd = new Product Data();
pd. sku = "ProxyTest 1";
pd. nane = "ProxyTest Nanel";
pd. price = 456;
DB. st ore(pd);
}

public void tearDown() throws Exception

DB. del et ePr oduct Dat a(" ProxyTest 1");
DB. cl ose();

}
public void testProductProxy() throws Exception
{

Product p = new Product Proxy("ProxyTest1");
assert Equal s(456, p.getPrice());
assert Equal s("ProxyTest Namel", p.getNanme());
assert Equal s("ProxyTest1", p.getSku());
}
}

In order to make this work we have to separate the interface of Product from its
implementation. So | changed Product to an interface and created Pr oduct | np to
implement it (See Listing 26-11 and Listing 26-12). This forced me to make changes to
Test Shoppi ngCart (not shown) to use Pr oduct | np instead of Pr oduct .

Notice that | have added exceptions to the Pr oduct interface. This is because | was
writing Pr oduct Proxy (Listing 26-13) at the same time as | was writing Pr oduct ,
Pr oduct | np, and Pr oxyTest . | implemented them all one accessor at atime. Aswe will
see, the Product Proxy class invokes the database which throws exceptions. | did not

407 Chapter 26: Proxy and Sairway to Heaven: Managing
Third Party APIs

want those exceptions to be caught and hidden by the proxy, so | decided to let them
escape from the interface.

Listing 26-11
Product. java

public interface Product

public int getPrice() throws Exception;
public String getName() throws Exception;
public String getSku() throws Exception;

Listing 26-12
Product | np. j ava

public class Productinp inplenments Product

{

private int itsPrice;
private String itsNane;
private String itsSku;

public Productlnp(String sku, String name, int price)

{
itsPrice = price;
i t sNane = nane;
i tsSku = sku;

}

public int getPrice()

return itsPrice;

}
public String get Nane()

{
return itsNane;
}
public String get Sku()
{
return itsSku;
}
}
Listing 26-13

Pr oduct Proxy. j ava

public class ProductProxy inplenments Product

private String itsSku;
publ ic ProductProxy(String sku)

i tsSku = sku;
public int getPrice() throws Exception

Product Data pd = DB. get Product Dat a(itsSku);
return pd.price;

408

Listing 26-13 (Continued)
Pr oduct Proxy. j ava

1
public String getName() throws Exception

Product Data pd = DB. get Product Dat a(itsSku);
return pd. nane;

public String getSku() throws Exception
{

return itsSku;
}
}
The implementation of this proxy is trivia. In fact, it doesn’t quite match the canoni-
cal form of the pattern shown in Figure 26-3 and Figure 26-4. This was an unexpected sur-

prise. My intent was to implement the PROXY pattern. But when the implementation
finally materialized, the canonical pattern made no sense.

As shown below, the canonical pattern would have had Product Proxy create a
Product | np in every method. It would then have deegated that method to the
Pr oduct | np.

ublic int getPrice() throws Exception

Product Data pd = DB. get Product Data(itsSku);
ProductInp p = new Product!np(pd.sku, pd.name, pd.price);
return p.getPrice();

The creation of the Pr oduct | np is a complete waste of programmer and computer
resources. The Product Proxy already has the data that the Product | np accessors
would return. So there is no need to create, and then delegate to, the Pr oduct | np. Thisis
yet another example of how the code may lead you away from the patterns and models
you expected.

Notice that the get Sku method of Pr oduct Pr oxy in Listing 26-13 takes this theme
one step further. It doesn’t even bother to hit the database for the sku. Why should it? It
aready hasthe sku.

You might be thinking that the implementation of Pr oduct Pr oxy isvery inefficient.
It hits the database for each accessor. wouldn't it be better if it cached the Pr oduct Dat a
item in order to avoid hitting the database?

Thischangeistrivid; but the only thing driving usto do it is our fear. At this point we
have no data to suggest that this program has a performance problem. And besides, we
know the database engine is doing some caching too. So it's not clear what building our
own cache would buy us. We should wait until we see indications of a performance prob-
lem before we invent trouble for ourselves.

409 Chapter 26: Proxy and Sairway to Heaven: Managing
Third Party APIs

Proxyifying Relationships. Our next step is to create the proxy for O der. Each
Or der instance contains many | t eminstances. In the relational schema (Figure 26-2) this
relationship is captured within the | t emtable. Each row of the It emtable contains the
key of the Or der that contains it. In the object model, however, the relationship isimple-
mented by a Vect or within Or der (See Listing 26-4). Somehow the proxy is going to
have to translate between the two forms.

We begin by posing atest case that the proxy must pass. This test adds afew dummy
products to the database. It then obtains proxiesto those products, and uses them to invoke
addl temon an O der Proxy. Finaly, it asks the Or der Pr oxy for the total price (See
Listing 26-14). The intent of this test case is to show that an Or der Pr oxy behaves just
like an Or der, but that it obtains its data from the database instead of from in-memory
objects.

Listing 26-14
ProxyTest.j ava
publ'ic void testOrderProxyTotal () throws Exception

DB. st ore(new Product Dat a(" Weati es", 349, "wheaties"));
DB. st ore(new Product Data("Crest", 258, "crest"));

Pr oduct Proxy wheati es = new Product Proxy("wheaties");
Pr oduct Proxy crest = new Product Proxy("crest");
OrderData od = DB. newOrder ("test OrderProxy");

O der Proxy order = new Order Proxy(od. orderld);
order.addltem(crest, 1);

order. addl tem wheaties, 2);

assert Equal s(956, order.total ());

}

In order to make this test case work, we have to implement a few new classes and
methods. The first we'll tackle is the newOr der method of DB. It looks like this method
returns an instance of something called an Or der Dat a. Or der Dat a isjust like Pr oduct -
Dat a. It is a simple data structure that represents a row of the Or der database table. It is
shown in Listing 26-15.

Listing 26-15

O derDat a. j ava

public class O derData

{
public String custonerld;
public int orderld;

public OrderData()
{

}
public OrderData(int orderld, String customnerld)

this.orderld = orderld;
this.custonmerld = custonerld;

}
}

410

Don’'t be offended by the use of public data members. This is not an object in the true
sense. Itisjust acontainer for data. It has no interesting behavior that needs to be encapsu-
lated. Making the data variables private, and providing getters and setters would just be a
waste of time.

Now we need to write the newOr der function of DB. Notice that when we call it in
Listing 26-14, we provide the id of the owning customer; but we do not provide the
or der | d. Each Or der needs anor der | d to act as its key. What's more, in the relational
schema, each | t emrefersto thisor der | d as away to show its connection to the Or der .
Clearly the or der I d must be unique. How does it get created? Lets write a test to show
our intent. See Listing 26-16.

Listing 26-16
DBTest .| ava
public void testOrderKeyGeneration() throws Exception
{
OrderData ol = DB. newOr der (" Bob");
OrderData 02 = DB.newOrder("Bill");
int firstOderld = ol.orderld;
int secondOrderld = o02.orderld;
assert Equal s(firstOrderld+1l, secondOrderld);

}

This test shows that we expect the or der | d to somehow automatically increment
every time anew Or der is created. Thisis easily implemented by querying the database
for the maximum or der | d currently in use, and then adding oneto it. See Listing 26-17

Listing 26-17
DB. j ava

public static OrderData newOrder (String custonerld)
throws Exception
{

int newMaxOrderld = getMaxOrderld() + 1;
PreparedStatenment s = con. prepareSt at enent (

"I nsert into Orders(orderld, cusid) Values(?,?);");
s.setlnt(1, newivaxOrderld);
s.setString(2, custonerld);
execut eSt at ement (s) ;
return new O derDat a(newivaxOrderld, custonerld);

}
private static int getMaxOrderld() throws SQ.Exception

Statenment gs = con.createStatenent();
ResultSet rs = gs.executeQuery(

"Sel ect max(orderld) from Orders;");
rs.next();
int mxOrderld = rs.getlnt(1);
rs.close();
return maxOrderld;

411 Chapter 26: Proxy and Sairway to Heaven: Managing
Third Party APIs

Now we can start to write Or der Pr oxy. As with Product, we need to split Or der
into an interface and an implementation. So O der becomes the interface and Or der | np
becomes the implementation. See Listing 26-18 and Listing 26-19.

Listing 26-18
Order.java

public interface O der

public String getCustonerld();
public void addltem Product p, int quantity);
public int total ();

Listing 26-19
O derlnp.java

import java.util.Vector;
public class Oderlnp inmplements Order
{

private Vector itsltens = new Vector();
private String itsCustonerld;

public String getCustonerld()

return itsCustonerld;

}
public O derlnmp(String cusid)

~

itsCustonerld = cusid;

—

public void addltem(Product p, int qty)

{
Iltemitem = new | ten(p, qty);

itsltens. add(item;

public int total ()

{
try
i
int total = 0O;
for (int i =0; i < itsltens.size(); i++)
Iltemitem= (ltem itsltens. el ementAt(i);
Product p = item get Product();

int gty = itemgetQuantity();
total += p.getPrice() * qty;

return total;
}
catch (Exception e)

throw new Error(e.toString());

}

412

Listing 26-19 (Continued)
O derlnp.java

}

| had to add some exception processing to Or der | np because the Pr oduct interface
throws exceptions. I'm getting frustrated with all these exceptions. The implementations
of proxies behind an interface should not have an effect upon that interface; and yet the
proxies are throwing exceptions that propagate out through the interface. So, | resolve to
change all the Excepti ons to Errors so that | don't have to pollute the interfaces with
t hr ows clauses, and the users of those interfaces witht ry/ cat ch blocks.

How do | implement addl t emin the proxy? Clearly the proxy cannot delegate to
Order | np. addl t eml Rather, the proxy is going to have to insert an I t emrow in the
database. On the other hand, | really want to delegate Or der Proxy.total to Order-
I mp. total , because | want the business rules, i.e. the policy for creating totas, to be
encapsulated in Or der | np. The whole point of building proxies is to separate database
implementation from business rules.

In order to delegate the t ot al function, the proxy is going to have to build the com-
plete Or der object along with al its contained | t ens. Thus, in Or der Pr oxy.total we are
going to have to read in al the items from the database, call addlt emon an empty
Orderl np for each item we find. And then call total on that Orderl np. Thus, the
O der Pr oxy implementation ought to look something like Listing 26-20.

Listing 26-20
O der Proxy. j ava

inmport java.sql.SQ.Exception;
public class OrderProxy inplenents Order
t private int orderld;

?ubl ic OrderProxy(int orderld)

this.orderld = orderld;

public int total ()
{
try
{
Oderlnmp inp = new Orderl nmp(getCustonerld());
ItenData[] itenDataArray = DB. getltenmsForOrder(orderld);
for (int i =0; i < itenDataArray.length; i ++)

ItenData item = itemDataArray[i];
i np. addlt em(new ProductProxy(item sku), itemaqty);

return inp.total ();

}
catch (Exception e)
{

413 Chapter 26: Proxy and Sairway to Heaven: Managing
Third Party APIs

Listing 26-20 (Continued)
Or der Proxy. j ava

throw new Error (e.toString());
}
}
public String getCustonerld()

try

O derData od = DB. get Order Data(orderld);
return od.custonerld;

}
catch (SQLException e)

throw new Error(e.toString());

}
}
public void addltem Product p, int quantity)
{
try
ItenData id =
new | tenDat a(orderld, quantity, p.getSku());
DB. store(id);

E:atch (Exception e)
throw new Error(e.toString());
) }
public int getOrderld()

return orderld;

}
}

Thisimplies the existence of an | t enDat a class, and a few DB functions for manipu-
lating | t enDat a rows. These are shown in Listing 26-21 through Listing 26-23

Listing 26-21
ItenData.java

public class TtenData
public int orderld;
public int qty;
public String sku = "junk";
public ItenData()
{
}

public ItenData(int orderld, int qty, String sku)

this.orderld = orderld;

414

Listing 26-21 (Continued)
| tenDat a. j ava

this.qty = qty;
this.sku = sku;

}

publ i ¢ bool ean equal s(Obj ect 0)

ItemData id = (ItenData)o;
return orderld == id.orderld &&
gty == id.qty &&
sku. equal s(i d. sku);
}
}

Listing 26-22
DBTest .| ava

public void testStorelten{) throws Excepiion

ItenData storedltem = new ItenData(1l, 3, "sku");
DB. store(storedltem;

ItemData[] retrievedltems = DB.getltensForOrder(1);
assert Equal s(1, retrievedltens.|ength);

assert Equal s(storedltem retrievedltens[0]);

}

public void testNoltens() throws Exception

ItenData[] id = DB.getltensForOder(42);
assert Equal s(0, id.length);

Listing 26-23
DB. j ava

public stafic void store(TtenData id) throws Excepiion
PreparedStatenent s = buildltem nsersionStatenent (id);
execut eSt at ement (s) ;

private static PreparedStatenent

buil dltem nsersionStatenent (ItenData id) throws SQLException
{

PreparedStatenent s = con. prepar eSt at enent (
"Insert into Itens(orderld, quantity, sku) " +

"VALUES (?, 2, ?2):;");
s.setInt(1,id.orderld);
s.setInt(2,id.qty);
s.setString(3, id.sku);
return s;

public static ItenData[] getltensForOder(int orderld)
throws Exception

{

PreparedStatenent s =
buil dl t emsFor Or der Quer ySt at enent (order | d);

415

Chapter 26: Proxy and Sairway to Heaven: Managing
Third Party APIs

Listing 26-23 (Continued)
DB.j ava

ResultSet rs = s.executeQery();

ItemData[] id = extractltenDat aFronResultSet(rs);
rs.close();

s.cl ose();

return id;

}

private static PreparedStatenent
bui | dl t ensFor Or der Query St atemrent (i nt orderl d)
throws SQLException

PreparedStatement s = con. prepar eSt at ement (
"SELECT * FROM Itens WHERE orderid = ?;");

s.setInt(1, orderld);

return s;

private static Iteerata[]
extract|tenDat aFr onResul t Set (Resul t Set rs)
throws SQLException

Li nkedLi st | = new Li nkedList();
for (int row = 0; rs.next(); rowt+)

ItenData id = new I tenmData();
id.orderld = rs.getlInt("orderid");
id.gty = rs.getlnt("quantity");
id.sku = rs.getString("sku");

| .add(id);

) Eeturn (ItenData[]) |.toArray(new ItenData[l.size()]);

public static OrderData get OrderData(int orderld)
throws SQLException
{
PreparedStatenent s = con. prepar eSt at enent (
"Sel ect cusid fromorders where orderid = ?;");
s.setInt(1, orderld);
ResultSet rs = s.executeQery();
OrderData od = null;
if (rs.next())
od = new OrderData(orderld, rs.getString("cusid"));
rs.close();
s. cl ose();
return od;

}

Summary of PROXY

This example should have dispelled any false illusions about the elegance and simplicity
of using proxies. Proxies are not trivial to use. The simple delegation model implied by the
canonical pattern seldom materializes so neatly. Rather, we find ourselves short circuiting

416

the delegation for trivial getters and setters. For methods that manage 1: N relationships,
we find ourselves delaying the delegation and moving it into other methods, just as the
delegation for addl t emwas moved into t ot al . Finally we face the specter of caching.

We didn’'t do any caching in this example. The tests all run in less than a second, so
there was no need to worry overmuch about performance. But in a real application the
issue of performance, and the need for intelligent caching is likely to arise. | do not sug-
gest that you automatically implement a caching strategy because you fear performance
will otherwise be too slow. Indeed, | have found that adding caching too early is a very
good way to decrease performance. Rather, if you fear performance may be a problem, |
recommend that you conduct some experiments to prove that it will be a problem. Once
proven, and only once proven, you should start considering how to speed things up.

The benefit of Proxy. For al the troublesome nature of proxies, they have one very
powerful benefit: the separation of concerns. In our example the business rules and the
database have been completely separated. Or der | np has no dependence whatever on the
database. If we want to change the database schema, or change the database engine, we
can do so without affecting Order, Order | np, or any of the other business domain
classes.

In those instances where separation of business rules from database implementationis
critically important, PROXY can be a good pattern to employ. For that matter, PROXY can
be used to separate business rules from any kind of implementation issue. It can be used to
keep the business rules from being polluted by such things as COM, CORBA, EJB, etc. It
isaway to keep the business rule assets of your project separate from the implementation
mechanisms that are currently in vogue.

Dealing with Databases, Middlewar e, and other Third Party
interfaces.

Third party APIs are afact of life for software engineers. We buy database engines, mid-
dleware engines, class libraries, threading libraries, etc. Initially we use these APIs by
making direct calls to them from our application code (See Figure 26-5).

Over time, however, we find that our application code becomes more and more pol-
luted with such API calls. In a database application, for example, we may find more and
more SQL strings littering the code that also contains the business rules.

This becomes a problem when the third party APl changes. For databases it aso
becomes a problem when the schema changes. As new versions of the APl or Schema are
released, more and more of the application code has to be reworked to align with those
changes.

Eventualy the developers decide that they must insulate themselves from these
changes. So they invent alayer that separates the application business rules from the third
party APl (See Figure 26-6). They concentrate into this layer all the code that uses the

417 Chapter 26: Proxy and Sairway to Heaven: Managing
Third Party APIs

Application

i

API

Figure 26-5
Initial relationship between an application and a third party API

third party API, and all of the concepts that related to the API rather than to the business
rules of the application.

Application

LAYER

API

Figure 26-6
Introducing an insul ation layer

Such layers can sometimes be purchased. ODBC or JDBC are such layers. They sep-
arate the application code from the actua database engine. Of course they are also third
party APIs in and of themselves, and therefore the application may need to be insulated
even from them.

Notice that there is a transitive dependency from the Appl i cati on to the API . In
some applications that indirect dependence is still enough to cause problems. JDBC, for
example, does not insulate the application from the details of the schema.

In order to attain even better insulation, we need to invert the dependency between the
Application and the Layer (See Figure 26-7). This keeps the application from knowing
anything at all about the third party AP, either directly or indirectly. In the case of a data-

418

base, it keeps the application from direct knowledge of the schema. In the case of amid-
dleware engine, it keeps the application from knowing anything about the datatypes used
by that middleware processor.

Application

API

Figure 26-7
Inverting the dependency between the Application and the Layer

This arrangement of dependenciesis precisely what the PROXY pattern achieves. The
application does not depend upon the proxies at all. Rather the proxies depend upon the
application, and upon the API. This concentrates all knowledge of the mapping between
the application and the API into the proxies.

«interface» Product
App Product "] Implementation
Product
Layer Proxy
AP o8
Figure 26-8

How the Proxy inverts the dependency between the A pplication and the Layer.

419 Chapter 26: Proxy and Sairway to Heaven: Managing
Third Party APIs

This concentration of knowledge means that the proxies are nightmares. Whenever
the API changes, the proxies change. Whenever the application changes the proxies
change. The proxies can become very hard to deal with.

It's good to know where your nightmares live. Without the proxies, the nightmares
would be spread throughout the application code.

Most applications don’t need proxies. Proxies are avery heavy weight solution. When
| see proxy solutions in use, my recommendation in most cases is to take them out and use
something simpler. But there are cases when the intense separation between the applica-
tion and the API afforded by proxies is beneficial. Those cases are amost always in very
large systems that undergo frequent schema and/or API thrashing. Or in systems that can
ride on top of many different database engines or middleware engines.

STAIRWAY TO HEAVEN!

STAIRWAY TO HEAVEN is another pattern that achieves the same dependency inver-
sion as PROXY. It employs a variation on the class form of the ADAPTER pattern. See Fig-
ure 26-9.

PersistentObject

+write +read

Persistent
Product

Product

Persistent
Assembly

Assembly

Figure 26-9
Stairway to Heaven

Per si st ent Obj ect isan abstract class that knows about the database. It provides
two abstract methods. read and wri t e. It also provides a set of implemented methods
that provide the tools needed to implement read and wri t e. Per si st ent Product , for
example, uses these tools to implement r ead and wri t e to read and write al the data

1. [Martin97]

420

fields of Product from and to the database. By the same token, Per si st ent Assenbl y
implements read and wri t e to do the same for the extra fields within Assenbl y. It
inherits the ability to read and write the fields of Product from Persi st ent Product
and structuresther ead and wr i t e methods so as to take advantage of that fact.

This pattern is only useful in languages that support multiple inheritance. Note that
both Per si st ent Product and Per si st ent Assenbl y inherit from two implemented
base classes. What's more, Per si st ent Assenbl y finds itsef in a diamond inheritance
relationship with Product . In C++ we would have to use virtual inheritance to prevent
two instances of Pr oduct from being inherited into Per si st ent Assenbl y.

The need for virtual inheritance, or similar relationships in other languages, means
that this pattern is somewhat intrusive. It makes itself felt in the Pr oduct hierarchy. But
theintrusion is minimal.

The benefit of this pattern is that it completely separates knowledge of the database
away from the business rules of the application. Those small bits of the application that
need to invoke r ead and wr i t e can do so through the following exigency:

_Pfer?i)st ent Obj ect* o = dynam c_cast <Per si st ent Obj ect *>(product);

| (0]

o->wite();

In other words, we ask the application object if it conforms to the Per si st ent -
bj ect interface; and if so we invoke either read or wri t e. This keeps that part of the
application that does not need to know about reading and writing completely independent
of the Per si st ent Obj ect side of the hierarchy.

Example of STAIRWAY TO HEAVEN

Listing 26-24 through Listing 26-34 show an example of STAIRWAY TO HEAVEN in
C++. Asusual, it is best to start with the test case. CppUnit' is a bit wordy if shown in its
entirety, so | have only included the test case methods in Listing 26-24. The first test case
verifiesthat aPer si st ent Product can be passed around the system as a Pr oduct , and
then converted to a Persistent Cbj ect and written at will. We assume that the
Per si st ent Product will writeitself inasimple XML format. The second test case ver-
ifies the same for Per si st ent Assenbl y, the only difference being the addition of a sec-
ond field inthe Assenbl y object.

Listing 26-24
product Persi stenceTest Case. cpp {abri dged}

voi d ProductPersi stenceTest Case: : t est Wi t eProduct ()

ostrstreams;

Product* p = new Persi stentProduct (" Cheerio0s");

Persi stent Obj ect* po = dynami c_cast <Per si st ent Obj ect*>(p);
assert (po);

1. One of the XUnit family of unit test frameworks. Seewww. j uni t . or g, and ww. X pr ogr anmi ng. comfor more infor-
mation.

421 Chapter 26: Proxy and Sairway to Heaven: Managing
Third Party APIs

Listing 26-24 (Continued)
pr oduct Per si st enceTest Case. cpp {abri dged}
po->wite(s);
char* wittenString = s.str();
assert(strcmp(" <PRGDUCT><NAI\/E>Cheer| 0s </ NAMVE></ PRODUCT>"

writtenString) == 0);
}
voi d Product Persi st enceTest Case: :test Wi teAssenbl y()
{

ostrstreams;
Assenbl y* a = new Persi stent Assenbl y("Weaties", "7734");
Persi stent Cbj ect* po = dynam c_cast <Persi st ent Obj ect *>(a);
assert (po);
po->write(s);
char* wittenString = s.str();
assert(strcmp(” <ASSEI\/BLY><NAI\/E>V\heat ies"
" </ NAME><ASSYCODE>7734</ ASSYCODE></ ASSEMBLY>"
writtenString) == 0);

}

Next, in Listing 26-25 through Listing 26-28 we see the definitions and implementa-
tions of both Product and Assenbl y. In the interest of saving space in our example,
these classes are nearly degenerate. In a normal application these classes would contain
methods that implemented business rules. Note that there is no hint of persistence in either
of these classes. There is no dependence whatever from the business rules to the persis-
tence mechanism. This isthe whole point of the pattern.

While the dependency characteristics are good, there is an artifact in Listing 26-27
that is present solely because of the STAIRWAY TO HEAVEN pattern. Assenbl y inherits
from Product using the vi rt ual keyword. This is necessary in order to prevent dupli-
cate inheritance of Product in Per si st ent Assenbl y. If you refer back to Figure 26-9
you'll see that Product is the apex of a diamond' of inheritance involving Assenbl v,
Persi st ent Product, and Per si st ent Cbj ect. To prevent duplicate inheritance of
Pr oduct it must be inherited virtually.

Listing 26-25

product. h

#1 fndef STAI RWAYTOHEAVENPRODUCT_H
#def i ne STAI RWAYTOHEAVENPRODUCT_H

#i ncl ude <string>
cl ass Product

publi c:

Product (const string& nane);

virtual ~Product();

const string& get Nanme() const {return itsNane;}
private:

1. Sometimes facetiously known as the Deadly Diamond of Death.

422

Listing 26-25 (Continued)
product. h

string itsNane;

#endi f

Listing 26-26
pr oduct. cpp

nclude "product.h”

Product: : Product (const string& nane)
i t sName(name)
{

}

Product: : ~Product ()

{
}

Listing 26-27
assenbly. h

#1 T ndef STAI RWAYTOHEAVENASSEMVBLY_H
#def i ne STAI RWAYTOHEAVENASSEMBLY_H

#i ncl ude <string>
#i ncl ude "product.h"

cl ass Assenbly : public virtual Product

{
publi c:
Assenbl y(const string& nanme, const string& assyCode);
virtual ~Assenbly();

const string& get AssyCode() const {return itsAssyCode;}
private:

string itsAssyCode;
b

#endi f

Listing 26-28
assenbly. cpp

#i nclude "assenbly. h”

Assenbl y:: Assenbl y(const string& name, const string& assyCode)
: Product (nanme), itsAssyCode(assyCode)

{
}
{Asserrbl y::~Assenbl y()
}

Listing 26-29 and Listing 26-30 show the definition and implementation of

Persi stent Obj ect. Note that while Persi stent Obj ect knows nothing of the

423 Chapter 26: Proxy and Sairway to Heaven: Managing
Third Party APIs

Pr oduct hierarchy, it does seem to know something about how to write XML. At least it
understands that objects are written by writing a header, followed by the fields, followed

by afooter.

Thew i t e method of Per si st ent Obj ect uses the TEMPLATE METHOD' pattern to
control the writing of all its derivatives. Thus the persistent side of the STAIRWAY TO
HEAVEN pattern makes use of the facilities of the Per si st ent Obj ect base class.

Listing 26-29
persi stent Cbj ect. h

#1 T ndef STAI RWAYTOHEAVENPERSI STENTOBJECT_H
#def i ne STAI RWAYTOHEAVENPERS| STENTOBJECT_H

#i ncl ude <i ostreanr
cl ass Persi stent Obj ect
publi c:
virtual ~Persistent ject();
virtual void wite(ostrean®) const;

pr ot ect ed:
virtual void witeFields(ostream&) const

private:
virtual void witeHeader(ostream) const
virtual void witeFooter(ostream&) const

#endi f

Listing 26-30
persi st ent Obj ect. cpp

#include "persistentObj ect.h”

Per si st ent Obj ect: : ~Persi stent Obj ect ()

{
}

{
wri t eHeader (s);
writeFields(s);
writeFooter(s);
s << ends;

}

void Persistentbject::wite(ostream& s) const

Listing 26-31 and Listing 26-32 show the implementation of Per si st ent Pr oduct .
This class implements the wri t eHeader, wri t eFoot er, and wri t eFi el d functions to
create the appropriate XML for a Product. It inherits the fields and accessors from
Pr oduct , and is driven by the write method of its base class Per si st ent Obj ect .

1. SeeChapter 14: Template Method & Srategy: Inheritance vs. Delegation, on page 193.

424

Listing 26-31

persi stent Product . h

#1 T ndef STAI RWAYTOHEAVENPERSI STENTPRODUCT_H
#def i ne STAI RWAYTOHEAVENPERSI STENTPRODUCT_H

#i ncl ude "product.h"
#i ncl ude "persistentObject.h"

cl ass PersistentProduct : public virtual Product
, public Persistent bject

publi c:
Per si st ent Product (const string& nane);
virtual ~PersistentProduct();

pr ot ect ed:
virtual void witeFields(ostream& s) const;

private:
virtual void witeHeader(ostream& s) const;
virtual void witeFooter(ostream& s) const;

b
#endi f

Listing 26-32
persi stent Product. cpp

nclude "persistentProduct. h”

Per si st ent Product : : Persi st ent Product (const string& nane)
: Product (nane)

}

Per si st ent Product : : ~Per si st ent Product ()

}
voi d PersistentProduct::witeHeader(ostream& s) const

s << "<PRODUCT>";

}
voi d PersistentProduct::writeFooter(ostream& s) const
{
s << "</ PRODUCT>";
}

voi d PersistentProduct::writeFields(ostream& s) const

S << "<NAME>" << getNanme() << "</ NAME>";
}

Finally, Listing 26-33 and Listing 26-34 show how Per si st ent Assenl y unifies
Assenbly and Persistent Product. Just like Persi stent Product it overrides
writ eHeader, writeFooter, and witeFields. However, it implements wite-

425 Chapter 26: Proxy and Sairway to Heaven: Managing
Third Party APIs

Fi el ds toinvoke Per si st ent Product: : wri t eFi el ds. Thusit inherits the ability to
write the Product part of Assenbly from Persi st ent Product; and inherits the

Product and Assenbl y fieldsand accessorsfrom Assenbl y.

Listing 26-33
persi stent Assenbl y. h

#1 T ndef STAI RWAYTOHEAVENPERSI STENTASSEVBLY_H
#def i ne STAI RWAYTOHEAVENPERS| STENTASSEMBLY_H

#i ncl ude "assenbly. h"
#i ncl ude "persi st ent Product. h"

cl ass PersistentAssenbly : public Assenbly, public
Per si st ent Product

publi c:
Persi st ent Assenbl y(const string& name
const string& assyCode)
virtual ~PersistentAssenbly();

pr ot ect ed:
virtual void witeFields(ostream& s) const;

private:
virtual void witeHeader(ostream& s) const;
virtual void witeFooter(ostream& s) const;

I
#endi f

Listing 26-34
persi stent Assenbl y. cpp

#include "persistentAssenbly. h”

Persi stent Assenbl y: : Per si stent Assenbl y(const string& nane,
const string& assyCode)

Assenbl y(name, assyCode)

Persi st ent Product (name)

Pr oduct (nane)

er si st ent Assenbl y: : ~Per si st ent Assenbl y()

et s I e RN

voi d Persistent Assenbly::witeHeader(ostrean& s) const

S << "<ASSEMBLY>";

}
voi d Persistent Assenbly::witeFooter(ostrean& s) const
{
S << "</ ASSEMBLY>";
}

voi d Persistent Assenbly::witeFields(ostrean& s) const

426

Listing 26-34 (Continued)
persi stent Assenbl y. cpp

PersistentProduct::witeFields(s);
S << "<ASSYCODE>" << getAssyCode() << "</ ASSYCODE>";

}

Conclusion. I've seen STAIRWAY TO HEAVEN used in many different scenarios with
good results. The pattern is relatively easy to set up, and has a minimum impact on the
objects that contain the business rules. On the other hand, it requires alanguage, like C++,
that supports multiple inheritance of implementation.

OTHER PATTERNS THAT CAN BE USED WITH DATABASES

EXTENSION OBJECT. Imagine an Extension Object’ that knows how to write the extended
object on a database. In order to write such an object you would ask it for an Extension
Object that matched the “ Database” key, cast it to a Dat abaseW i t er Ext ensi on, and
then invoke thewr i t e function.

Product p = /* some function that returns a Product */

_E;(t (en)si onCbj ect e = p.get Extensi on(" Dat abase");
i e

Dat abaseW i t er Ext ensi on dwe = (Dat abaseW it er Extension) e;
e.wite();

VISITOR?. Imagine a visitor hierarchy that knows how to write the visited object on a
database. You would write an object on the database by creating the appropriate type of
visitor, and then calling accept on the object to be written.

Pr oduct = /* some function that returns a Product */

Dat abaseWiterVisitor dw = new DatabaseWitierVisitor();
p. accept (dw) ;

DECORATOR®. There are two ways to use a decorator to implement databases. You can
decorate a business object and give it read and write methods; or you can decorate a data
object that knows how to read and write itself and give it business rules. The latter
approach is not uncommon when using Object Oriented Databases. The business rules are
kept out of the OODB schema and added in with decorators.

FACADE. Thisis my favorite starting point. It's simple and effective. On the down side, it
couples the business rule objects to the database. Figure 26-10 shows the structure. The
Dat abaseFacade class simply provides methods for reading and writing al the neces-

1. See"Extension Object” on page 498
2. See“VISITOR” on page 478
3. See“Decorator” on page 494

427 Chapter 26: Proxy and Sairway to Heaven: Managing
Third Party APIs

sary objects. This couples the objects to the Dat abaseFacade and vice versa. The objects
know about the facade because they are often the ones that call the read and write func-
tions. The facade knows about the objects because it must use their accessors and mutators
to implement the read and write functions.

- T T T 7T
V
Product
Database
Facade
+readProduct()

+writeProduct()
+readAssembly()
+writeAssembly()

Assembly
A
- _
Figure 26-10
Database Facade

This coupling can cause a lot of problems in larger applications; but in smaller apps,
or in apps that are just starting to grow, it's a pretty effective technique. If you start using a
facade and then later decide to change to one of the other patterns to reduce coupling, the
facade is pretty easy to refactor.

CONCLUSION.

It isvery tempting to anticipate the need for PROXY or STAIRWAY TO HEAVEN, long before
the need really exists. This is almost never a good idea; especially with PROXY. | recom-
mend starting with FACADE and then refactoring as necessary. You'll save yourself time
and trouble if you do.

BIBLIOGRAPHY

[GOF95]: Design Patterns, Gammea, et. al., Addison Wesley, 1995

[Martin97]: Design Patterns for Dealing with Dual Inheritance Hierarchies, Robert C.
Martin, C++ Report, April, 1997.

428

	Proxy and Stairway to Heaven: Managing Third Party APIs
	Proxy
	Proxifying the Shopping Cart.
	Summary of Proxy
	Dealing with Databases, Middleware, and other Third Party interfaces.

	Stairway to Heaven
	Example of Stairway to Heaven

	Other Patterns that can be used with databases
	Conclusion.
	Bibliography

