
1

This article is derived from a chapter of The Principles, Patterns, and Practices of Agile Software Development,
Robert C. Martin, Prentice Hall, 2002.

Copyright (C) 2002, Robert C. Martin, All Rights Reserved.

SINGLETON and MONOSTATE

“Infinite beatitude of existence! It is; and there is none else beside It.”
-- The point. Flatland. Edwin A. Abbott

Usually there is a one to many relationship between classes and instances. You can create
many instance of most classes. The instances are created when they are needed and dis-
posed of when their usefulness ends. They come and go in a flow of memory allocations
and deallocations.

But there are some classes that should have only one instance. That instance should
appear to have come into existence when the program started, and should only be disposed
of when the program ends. Such objects are sometimes the roots of the application. From
the roots you can find your way to many other objects in the system. Sometimes they are
factories which you can use to create the other objects in the system. Sometimes these
objects are managers, responsible for keeping track of certain other objects and driving
them through their paces.

Whatever these objects are, it is a severe logic failure if more than one of them is cre-
ated. If more than one root is created then access to objects in the application may depend
upon a chosen root. Programmers, not knowing that more than one root exists, may find
themselves looking at a subset of the application objects without knowing it. If more than



2

one factory exists, clerical control over the created objects may be compromised. If more
than one manager exists, activities that were intended to be serial may become concurrent.

It may seem that mechanisms to enforce the singularity of these objects is overkill.
After all, when you initialize the application, you can simply create one of each and be
done with it. In fact, this is usually the best course of action. Mechanism should be
avoided when there is no immediate and significant need. However, we also want our code
to communicate our intent. If the mechanism for enforcing singularity is trivial, the benefit
of communication may outweigh the cost of the mechanism.

This chapter is about two patterns that enforce singularity. These patterns have very
different cost/benefit trade-offs. In most contexts their cost is low enough to more than
balance the benefit of their expressiveness.

SINGLETON1

SINGLETON is a very simple pattern. The test case in Listing 16-1 shows how it should
work. The first test function shows that the Singleton instance is accessed through the
public static method Instance. It also shows that if Instance is called multiple times, a
reference to the exact same instance is returned each time. The second test case shows that
the Singleton class has no public constructors, so there is no way for anyone to create an
instance without using the Instance method.

1. [GOF95], p127

Listing 16-1
Singleton Test Case
import junit.framework.*;
import java.lang.reflect.Constructor;

public class TestSimpleSingleton extends TestCase
{
public TestSimpleSingleton(String name)
{
super(name);

}

public void testCreateSingleton()
{
Singleton s = Singleton.Instance();
Singleton s2 = Singleton.Instance();
assertSame(s, s2);

}

public void testNoPublicConstructors() throws Exception
{
Class singleton = Class.forName("Singleton");
Constructor[] constructors = singleton.getConstructors();



3 Chapter : Singleton and Monostate

This test case is a specification for the SINGLETON pattern. It leads directly to the code
shown in Listing 16-2. It should be clear, by inspecting this code, that there can never be
more than one instance of the Singleton class within the scope of the static variable
Singleton.theInstance.

Benefits of the SINGLETON

• Cross Platform: Using appropriate middleware, (e.g. RMI) Singleton can be
extended to work across many JVMs and many computers.

• Applicable to any class. You can change any class into a singleton simply by making
its constructors private and by adding the appropriate static functions and variable.

• Can be created through derivation. Given a class, you can create a subclass that is a
singleton.

• Lazy Evaluation. If the singleton is never used, it is never created.

Costs of the SINGLETON

• Destruction is undefined. There is no good way to destroy or decommission a sin-
gleton. If you add a decommission method that nulls out theInstance, other mod-
ules in the system may still be holding a reference to the singleton. Subsequent calls
to Instance will cause another instance to be created, causing two concurrent
instances to exist. This problem is particularly acute in C++ where the instance can be
destroyed, leading to possible dereferencing of a destroyed object.

• Not inherited. A class derived from a singleton is not a singleton. If it needs to be a
singleton, the static function and variable need to be added to it.

assertEquals("Singleton has public constructors.",
0, constructors.length);

}
}

Listing 16-2
Singleton Implementation
public class Singleton
{
private static Singleton theInstance = null;
private Singleton() {}

public static Singleton Instance()
{
if (theInstance == null)
theInstance = new Singleton();

return theInstance;
}

}

Listing 16-1
Singleton Test Case



4

• Efficiency. Each call to Instance invokes the if statement. For most of those calls,
the if statement is useless.

• Non-transparent. Users of a singleton know that they are using a singleton because
they must invoke the Instance method.

SINGLETON in Action

Assume that we have a web based system that allows users to log in to secure areas of a
web server. Such a system will have a database containing user names, passwords, and
other user attributes. Assume further that the database is accessed through a third party
API. We could access the database directly in every module that needed to read and write
a user. However this would scatter usage of the third party API throughout the code, and
would leave us no place to enforce access or structure conventions.

A better solution is to use the FACADE pattern and create a UserDatabase class that
provides methods for reading and writing User objects. These methods access the third
party API of the database, translating between User objects and the tables and rows of the
database. Within the UserDatabase we can enforce conventions of structure and access.
For example, we can guarantee that no User record gets written unless it has a non-blank
username. Or we can serialize access to a User record, making sure that two modules
cannot simultaneously read and write it.

The code in Listing 16-3 and Listing 16-4 show a SINGLETON solution. The SINGLE-
TON class is named UserDatabaseSource. It implements the UserDatabase interface.
Notice that the static instance() method does not have the traditional if statement to
protect against multiple creations. Instead, it takes advantage of the Java initialization
facility.

Listing 16-3
UserDatabase Interface
public interface UserDatabase
{
User readUser(String userName);
void writeUser(User user);

}

Listing 16-4
UserDatabaseSource Singleton
public class UserDatabaseSource implements UserDatabase
{
private static UserDatabase theInstance =

new UserDatabaseSource();

public static UserDatabase instance()
{
return theInstance;

}

private UserDatabaseSource()
{



5 Chapter : Singleton and Monostate

This is an extremely common use of the SINGLETON pattern. It assures that all data-
base access will be through a single instance of UserDatabaseSource. This makes it
easy to put checks, counters and locks in UserDatabaseSource that enforce the access
and structure conventions mentioned earlier.

MONOSTATE

The MONOSTATE pattern is another way to achieve singularity. It works through a com-
pletely different mechanism. We can see how that mechanism works by studying the
Monostate test case in Listing 16-5.

The first test function simply describes an object whose x variable can be set and
retrieved. But the second test case shows that two instances of the same class behave as
though they were one. If you set the x variable on one instance to a particular value, you
can retrieve that value by getting the x variable of a different instance. It’s as though the
two instances are just different names for the same object.

}

public User readUser(String userName)
{
// Some Implementation
return null; // just to make it compile.S

}

public void writeUser(User user)
{
// Some Implementation

}
}

Listing 16-5
Monostate Test Case
import junit.framework.*;

public class TestMonostate extends TestCase
{
public TestMonostate(String name)
{
super(name);

}

public void testInstance()
{
Monostate m = new Monostate();
for (int x = 0; x<10; x++)
{
m.setX(x);
assertEquals(x, m.getX());

Listing 16-4 (Continued)
UserDatabaseSource Singleton



6

If we were to plug the Singleton class into this test case, and replace all the new

Monostate statements with calls to Singleton.Instance, the test case should still
pass. So this test case describes the behavior of Singleton without imposing the con-
straint of a single instance!

How can two instances behave as though they were a single object? Quite simply it
means that the two objects must share the same variables. This is easily achieved by mak-
ing all the variables static. Listing 16-6 shows the implementation of Monostate that
passes the above test case. Note that the itsX variable is static. Note also that none of the
methods are static. This is important as we’ll see later.

I find this to be a delightfully twisted pattern. No matter how many instances of
Monostate you create, they all behave as though they were a single object. You can even
destroy or decommission all the current instances without losing the data.

Note that the difference between the two patterns is one of behavior vs. structure. The
SINGLETON pattern enforces the structure of singularity. It prevents any more than one
instance from being created. Whereas MONOSTATE enforces the behavior of singularity

}
}

public void testInstancesBehaveAsOne()
{
Monostate m1 = new Monostate();
Monostate m2 = new Monostate();

for (int x = 0; x<10; x++)
{
m1.setX(x);
assertEquals(x, m2.getX());

}
}

}

Listing 16-6
Monostate Implementation
public class Monostate
{
private static int itsX = 0;
public Monostate() {}

public void setX(int x)
{
itsX = x;

}

public int getX()
{
return itsX;

}
}

Listing 16-5
Monostate Test Case



7 Chapter : Singleton and Monostate

without imposing structural constraints. To underscore this difference consider that the
Monostate test case is valid for the Singleton class, but the singleton test case is not
even close to being valid for the Monostate class.

Benefits of MONOSTATE

• Transparency. Users of a monostate do not behave differently than users of a regular
object. The users do not need to know that the object is monostate.

• Derivability. Derivatives of a monostate are monostates. Indeed, all the derivatives of
a monostate are part of the same monostate. They all share the same static variables.

• Polymorphism. Since the methods of a monostate are not static, they can be overrid-
den in a derivative. Thus different derivatives can offer different behavior over the
same set of static variables.

• Well defined creation and destruction. The variables of a monostate, being static,
have well defined creation and destruction times

Costs of MONOSTATE

• No conversion. A non monostate class cannot be converted into a monostate class
through derivation.

• Efficiency. A monostate may go through many creations and destructions because it
is a real object. These operations are often costly.

• Presence. The variables of a monostate take up space, even if the monostate is never
used.

• Platform local. You can’t make a monostate work across several JVM instances or
across several platforms.

MONOSTATE in Action

Consider implementing the simple finite state machine for a subway turnstile shown in
Figure 16-1. The turnstile begins its life in the Locked state. If a coin is deposited, it tran-
sitions to the Unlocked state, and unlocks the gate, resets any alarm state that might be
present, and deposits the coin in its collection bin. If a user passes through the gate at this
point, the turnstile transitions back to the Locked state and locks the gate.

There are two abnormal conditions. If the user deposits two or more coins before
passing through the gate, the coins will be refunded, and the gate will remain unlocked. If
the user passes through without paying, then an alarm will sound and the gate will remain
locked.

The test program that describes this operation is shown in Listing 16-7. Note that the
test methods assume that the Turnstyle is a monostate. It expects to be able to send



8

events and gather queries from different instances. This makes sense if there will never be
more than one instance of the Turnstyle.

Figure 16-1
Subway Turnstile Finite State Machine

Listing 16-7
TestTurnstyle
import junit.framework.*;

public class TestTurnstyle extends TestCase
{
public TestTurnstyle(String name)
{
super(name);

}

public void setUp()
{
Turnstyle t = new Turnstyle();
t.reset();

}

public void testInit()
{
Turnstyle t = new Turnstyle();
assert(t.locked());
assert(!t.alarm());

}

public void testCoin()
{
Turnstyle t = new Turnstyle();
t.coin();
Turnstyle t1 = new Turnstyle();
assert(!t1.locked());
assert(!t1.alarm());
assertEquals(1, t1.coins());

}

public void testCoinAndPass()
{
Turnstyle t = new Turnstyle();

Locked

Unlocked

Coin / Unlock, AlarmOff, Deposit

Pass / Lock
Coin / Refund

Pass / Alarm

H



9 Chapter : Singleton and Monostate

t.coin();
t.pass();

Turnstyle t1 = new Turnstyle();
assert(t1.locked());
assert(!t1.alarm());
assertEquals("coins", 1, t1.coins());

}

public void testTwoCoins()
{
Turnstyle t = new Turnstyle();
t.coin();
t.coin();

Turnstyle t1 = new Turnstyle();
assert("unlocked", !t1.locked());
assertEquals("coins",1, t1.coins());
assertEquals("refunds", 1, t1.refunds());
assert(!t1.alarm());

}

public void testPass()
{
Turnstyle t = new Turnstyle();
t.pass();
Turnstyle t1 = new Turnstyle();
assert("alarm", t1.alarm());
assert("locked", t1.locked());

}

public void testCancelAlarm()
{
Turnstyle t = new Turnstyle();
t.pass();
t.coin();
Turnstyle t1 = new Turnstyle();
assert("alarm", !t1.alarm());
assert("locked", !t1.locked());
assertEquals("coin", 1, t1.coins());
assertEquals("refund", 0, t1.refunds());

}

public void testTwoOperations()
{
Turnstyle t = new Turnstyle();
t.coin();
t.pass();
t.coin();
assert("unlocked", !t.locked());
assertEquals("coins", 2, t.coins());
t.pass();
assert("locked", t.locked());

}
}

Listing 16-7 (Continued)
TestTurnstyle



10

The implementation of the monostate Turnstyle is in Listing 16-8. The base
Turnstyle class delegates the two event functions, coin and pass, to two derivatives of
Turnstyle, Locked and Unlocked, that represent the states of the finite state machine.

Listing 16-8
Turnstyle
public class Turnstyle
{
private static boolean isLocked = true;
private static boolean isAlarming = false;
private static int itsCoins = 0;
private static int itsRefunds = 0;
protected final static Turnstyle LOCKED = new Locked();
protected final static Turnstyle UNLOCKED = new Unlocked();
protected static Turnstyle itsState = LOCKED;

public void reset()
{
lock(true);
alarm(false);
itsCoins = 0;
itsRefunds = 0;
itsState = LOCKED;

}

public boolean locked()
{
return isLocked;

}

public boolean alarm()
{
return isAlarming;

}

public void coin()
{
itsState.coin();

}

public void pass()
{
itsState.pass();

}

protected void lock(boolean shouldLock)
{
isLocked = shouldLock;

}

protected void alarm(boolean shouldAlarm)
{
isAlarming = shouldAlarm;

}

public int coins()
{



11 Chapter : Singleton and Monostate

This example shows some of the useful features of the MONOSTATE pattern. It takes
advantage of the ability for monostate derivatives to be polymorphic, and that monostate
derivatives are themselves monostates. This example also shows how difficult it can
sometimes be to turn a monostate into a non-monostate. The structure of this solution
strongly depends upon the monostate nature of Turnstyle. If we needed to control more

return itsCoins;
}

public int refunds()
{
return itsRefunds;

}

public void deposit()
{
itsCoins++;

}

public void refund()
{
itsRefunds++;

}
}

class Locked extends Turnstyle
{
public void coin()
{
itsState = UNLOCKED;
lock(false);
alarm(false);
deposit();

}

public void pass()
{
alarm(true);

}
}

class Unlocked extends Turnstyle
{
public void coin()
{
refund();

}

public void pass()
{
lock(true);
itsState = LOCKED;

}
}

Listing 16-8 (Continued)
Turnstyle



12

than one turnstile with this finite state machine, the code would require some significant
refactoring.

Perhaps you are concerned about the unconventional use of inheritance in this exam-
ple. Having Unlocked and Locked derived from Turnstyle seems a violation of nor-
mal OO principles. However, since Turnstile is a Monostate, there are no separate
instances of it. Thus, Unlocked and Locked aren’t really separate objects. Instead they
are part of the Turnstyle abstraction. Unlocked and Locked have access to the same
variables and methods that Turnstyle does.

Conclusion

It is often necessary to enforce that a particular object have only a single instantiation.
This chapter has shown two very different techniques. SINGLETON makes use of private
constructors, a static variable, and a static function to control and limit instantiation.
MONOSTATE simply makes all variables of the object static.

SINGLETON is best used when you have an existing class that you want to constrain
through derivation, and you don’t mind that everyone will have to call the instance()

method to gain access. Monostate is best used when you want the singular nature of the
class to be transparent to the users, or when you want to employ polymorphic derivatives
of the single object.



13 Chapter : Singleton and Monostate

Bibliography

[GOF95]: Design Patterns, Gamma, et. al., Addison Wesley, 1995

[PLOPD3]: Pattern Languages of Program Design 3, Robert C. Martin, et. al., Addison
Wesley, 1998.



14


	Singleton and Monostate
	Singleton
	Benefits of the Singleton
	Costs of the Singleton
	Singleton in Action

	Monostate
	Benefits of Monostate
	Costs of Monostate
	Monostate in Action

	Conclusion
	Bibliography


