Transmission Technigues IP Broadcasting

Unicasting # Using a single UDP/IP socket, the & With UDP/IP, the data is only
same packet can be sent to delivered to the applications that
)) multiple destinations by repeating are receiving on a designated port
¢ Multicasting the send call & Broadcast is expensive
< one or more receivers that have joined a multicast group % ‘Unicasting’ % each host has to receive and
* Broadcasting % great bandwidth is required process every broadcast packet
+ each host has to maintaina listof & Only recommended (and only
other hosts guaranteed) on the local LAN
+ Not suitable for Internet-based
P broadcasting allows a single applications
transmission to be delivered to all
hosts on the network
+ a special bit mask of receiving
hosts is used as a address

% single receiver

% all nodes in the network are receivers

IP Multicasting 1(3) IP Multicasting 2 (3]

Packets are only delivered j + ‘Distributors’ are multicast- + Application can specify the IP
to subscribers capable routers time-to-live (TTL) value
& Subscribers must explicitly & They construct a multicast A ?f;‘\’l"e{ar s fezist gagiess sl
request packets from the local distribution tree » Qi Es el
distributors + Each multicast distribution tree is 1: on the local LAN
+ No duplicate packets are sent represented by a pseudo-I1P 2-31: to the local site (network)
down the same distribution path address (multicast IP address, 32-63: to the local region
 Original ‘publisher’ does not need class D address) 64-127: to the local continent
to know all subscribers % 224.0.0.0-239.255.255.255 % 128-254: deliver globally
< some addresses are reserved
< local applications should use
239.0.0.0-239.255.255.255
& Address collisions possible
%+ Internet Assigned Number
Authority (IANA)

Receiver-controlled distribution

IP Multicasting 3 (3] Multicasting in Java

Provides desirable network efficiency ¢ Uses DatagramPacket as in UDP
+ Allows partitioning of different types of data by using multiple # Sender sends datagram packets to a multicast address
multicast addresses & Receiver joins the multicast address (group):

MulticastSocket socket =

new MulticastSocket(PORT);
InetAddress group =

InetAddress.getByName (GROUP_ADDRESS) ;
Older routers do not support multicasting socket. joinGroup(group);

+ Multicast-aware routers communicate directly by ‘tunneling’ # Packets are received like normal UDP datagrams:

data past the non-multicast routers (Multicast Backbone, sgcket. TEESNVE dp);
Mbone) + Finally the receiver leaves the group and closes the socket:

socket. leaveGroup(group) ;
L)

The players can announce their presence by using application’s
well-known multicast address

% Participant’s local router has to be multicast-capable
P P socket.close();

Multicast Example: Sender

class MulticastSender {
private DatagramSocket socket;

public MulticastSender() {
try {
socket = new DatagramSocket(PORT);
} catch (SocketException e) { /* Construction failed. */

oy

public void send(byte[] data) {
try {
Datagram packet = new DatagramPacket(data,
data. length, GROUP_ADDRESS, PORT);
socket.send(packet) ;
} catch (10Exception e) { /* Sending failed. */
b

public void fi zeQ {
IT (socket nulll) socket.close();
super.finalize();

Selecting a Protocol 1(4)

+ Multiple protocols can be used in a single system

+ Not which protocol should | use in my game but which
protocol should | use to transmit this piece of information?

Using TCP/IP
< reliable data transmission between two hosts
< packets are delivered in order, error handling
< relatively easy to use

< point-to-point limits its use in large-scale multiplayer games
< bandwidth overhead

Selecting a Protocol 3 (4)

Using IP broadcasting
% design considerations similar to (unicast) UDP/IP
limited to LAN
not for games with a large number of participants
to distinguish different applications using the same port number (or
multicast address):
© Avoid the problem entirely: assign the necessary number
Detect conflict and renegotiate: notify the participants and direct them to
migrate a new port number
© Use protocol and instance magic numbers: each packet includes a magic
number at a well-known position
® Use encryption

Multicast Example: Receiver

class MulticastReceiver {

private MulticastSocket socket;
public MulticastReceiver() {
try {
socket = new MulticastSocket(PORT);
socket. joinGroup(GROUP_ADDRESS) ;
} catch (10Exception e) { /* Joining failed. */ }

b
public byte[] receive() {
byte[] buffer = new byte[BUFFER_SIZE];
DatagramPacket packet =
new DatagramPacket(buffer, buffer.length);
try {
socket.receive(packet);
return packet.getData();
} catch (10Exception e) { /* Receiving failed. */ }
return null
X
public void finalizeQ) {

if (socket ull) { socket.leaveGroup(); socket.close(); }
super . finalize(

Selecting a Protocol 2 (4)

Using UDP/IP
lightweight
offers no reliability nor guarantees the order of packets
packets can be sent to multiple hosts
deliver time-sensitive information among a large number of hosts

more complex services have to be implemented in the application
© serial numbers, timestamps
recovery of lost packets
ositive acknowledgement scheme
egative acknowledgement scheme
> more effective when the destination knows the sources and their frequency
transmit a quench packet if packets are received too often

Selecting a Protocol 4 (4)

Using IP multicasting
% provides a quite efficient way to transmit information among a large
number of hosts
information delivery is restricted
ime-to-live
® group subscriptions
preferred method for large-scale multiplayer games
how to separate the information flows among different multicast
groups
single group/address for all information
everal multicast groups to segment the information

