§8.2 Logical Platform Communication Architecture

4 communication architecture
% peer-to-peer
< client-server
+ Sserver lCT\VOl’k Single 1.]Ode
data and control architecture
% centralized

] Peer-to-peer
% replicated

Server-network

Client-server

P Example: How Many Players Can We
g Put into a Two-Player LAN?

Logical connections # Distributed Interactive Simulatio
(DIS) protocol data unit (PDU): sufficient processor power
144 bY‘CS (1,152 bits) no other network usage

Communication Architecture (contd) %

< how the messages flow

¢ Graphics: 30 fram 2 % a mix of player types

¢ PDU rates

+ the wires between the E raft 12 g > 3,680 packe
computers

Physical connections

cond
ground vehicle 5 PD i fully arf ed humans + firing =
% the hmm‘ng fﬂctm‘ b) g apon firing 3 PDU/second
communication architecture fully articulated human 30
PD! cond

¢ Bandwidth

< Ethernet LAN 10 Mbps

< modems 56 Kbps

/ DIS battle
s to 300 pl onaLAN
and network

Multiplayer Client-Server Systems:
Logical Architecture

r game on a LAN, # Client-server system

Example (cont'd)

= Modem: 48 packets/se ¢ In a two-pla
fully articulated humans + firing = 1
human
ai afts .) hardly matters

the protocol selection (TCP, UDP, # each pla ends packets to
other players via a server
Server slows down the message

ground vehicles + firing = 6 vehicles & As the number of live or alilivesy Communication

¢ Benefits of having a server
efficient architecture becomes to send all packets to all

players increase an
Redesign packets
% size more important
= Modem: 2 2 ess multiple packets to a
fully 2 : i packet
human
aircrafts + firing = 14 aircrafts
ground vehicles + firing = 27 vehicles

mooth out the packet flow
able communication without
the overhead of a fully connected . . . y
i Multiplayer client-server - logical architecture

administration

Multiplayer Client-Server Systems:
Physical Architecture (on a LAN)

¢ All messages in the same wire

has to provide some added-value function

Server

Multiplayer client-server - physical architecture on a LAN

Traditional Client-Server

Server may act as

badcast reflector

egation se

Scalability problems

% all traffic goes through the
ver

—=Server-network architecture

Partitioning Clients across Multiple Servers

rs exchange control
yes among themselves
% inform the interests of their
clients
Reduces the workload on each
server
Incurs a greater latency
The total processing and
bandwidth requirements are
greater

Physical Architecture Can Match
the Logical Architecture

Phone lines

Multiplayer client-server -
physical architecture with phone lines

Multiplayer Server-Network Architecture

Players can locate in the same

place in the game world, but

transmit the world state
information
/AN, LAN
Each server serves a number of
client players
» LAN, modem, cable modem

lity

Partitioning the Game World across Multiple
Servers

Each server manages clients
located within a i i

aggregate me
lot of network traffic
nced iguration

egion visible

Server Hierarchies

Servers themselves act as clients
Packet from an upstream server:
< deliver to the interested
downstream clients
Packet from a downstream client:
% deliver to the interested
mstream clients
if other regions are interested in
the packet then deliver it to the

upstream server

Peer-to-Peer with Multicast

For a scalable multiplayer game
on a LAN, use multicast

To utilize multicast, assign packets

appropriate multicast groups
+ keep track of available groups
+ even out stream information

Data and Control Architectures

& Where does the data reside and how it can be update:

Centralized
< one node holds a full copy of the data
Replicated
< all nodes hold a full copy of the
Distributed
< one node holds a partial copy of the data

+ all nodes combined hold a full copy of the data

Consistency vs. responsiveness

In the ideal large-scale networked
game design, d having servers
at all

+ eventually we cannot scale out
< a finite number of players
Design goal
eer-to-peer communication
calable within resourci
Peer-to-peer: communication goes
directly from the sending player to
the rec g player (or a set of
them)

Peer-Server Systems

Peer-to-peer: minimizes
latency, consumes
bandwidth

Client-server: effective
aggregation and filtering,
increases later

& Hybrid peer-serve
% 0 hort-haul, high-
bandwidth links: peer-to-peer
% over long-haul, low
bandwidth links:

Each entity has own
multicast group

¢ Well-connected hosts
subscribe directly to a
multicast group (peer-to-
peer)

Poorly-connected hosts
subscribe to a forwarding
server

Forwarding server
subscribes to the en
multicast grouy

regation, filtering

Requirements for Data and Control Architectures

Consistency: nodes should have the same view on the data

% centralized: simple—one node binds them all!

+ replicated: hard—how to make sure that every replica gets updated?

+ distributed: quite simple—onl

(but where?)

one copy of the piece of data ex

Responsiveness: nodes should have a quick access to the data

% centralized: hard—all updat

% replicated: simple—just do it!

must go through the centre node

quite simple—just do it (if data is in the local node) or send
an update message (but to whom?)

Centralized Architecture

Ensure that all nodes have identical information

Synchronization

Centrali
Data St

State State

‘Eventuarl’ Consistency

Synchronization
Locks
User
m—
Per-client Per-client
FIFO Event ¢, FIFO Event

Queues Queues

en
Data Store

State State

Replicated Architecture

¢ Nodes exchange messages directly
ensure that all nodes receive updates
+ determine a common global
ordering for updates

No central host
¢ Every node has an identical view
¢ All state information is accessed from

local node

Problem: Who's Got the Ball Now?

Pull and Push

he clients ‘pull” information when they need it
< make a request whenever data access is needed

oblem: unnecessary delays, if the state data has not changed

The server can ‘push’ the information to the clients whenever
the state is updated
+ clients can maintain a local cache
oblem: excessive traffic, if the clients are interested only a small

subset of the overall data

Distributed Architecture

State information is distributed among the participating players
< who gets what?
< what to do when a new player joins the game?

< what to do when an existing player leaves the game?

& = Entity ownership

Problem: Who's Got the Ball Now? [Part Il

000

\N

'\QJ

NG

Lock Manager: Example

Lock Manager

Request fax Request
Lock

Reject
ock

Update State

Ownership Tr

Lock Manager

Update Position (A >
uest Ownership
B

Entity Ownership

Ensure that a shared state can only be updated by
time
+ exactly one node has the ownership of the state
+ the owner periodically broadc he value of the state
Typically player’s own representation (avatar) is owned by
that player
Locks on other entities are managed by a lock manager server
% clients query to obtain ownership and contact to release it
ires that each entity has only one owner
the server owns the entity if no one else does
failure recovery

Proxy Update

&N mer sends an update request to the owner of the state

¢ The owner decides whether it accepts the update

¢ The owne! S a proxy

¢ Generates an extra message on each non-owner update

Suitable when non-owner updates are rare or many nodes want to update
the state

Transfer (cont'd)

The lock manager has the lock information at all times

If the node fails, the lock manager defines the current lock
ownership state

& Lock ownership transfer incurs extra message overhead
Suitable when a single node is going to make a series of
updates and there is little contention among nodes wishing to

make updates

