§9.4 Local Perception Filters

- exploiting human's perceptual limitations
 - level-of-detail: less details where they cannot be observed
 - $\,\, \star \,$ image, video and audio compression
- ♦ local perception filters
 - exploits temporal perception
 - * shows possibly out-of-date information (\neq dead reckoning)
 - ensures consistent interaction
 - * allows to introduce artificial delays (e.g., bullet time)

Exploiting Perceptual Limitations

Humans have inherent perceptual limitations

Two approaches to exploit

- Information can provided at multiple levels of detail and at different update rates
- Mask the timeliness characteristics of information

Exploiting Level-of-Detail Perception

- Nearby viewers
 - expect full graphical details
 - * accurate structure, position, orientation
 - * update rate \rightarrow local frame rate

Distant viewers

- ✤ can tolerate less graphical details
- less accurate structure, position, orientation

◆ User's focus is typically nearby

 Many inaccuracies cannot even be detected on a fineresolution display

Multiple-Channel Architecture

Multiple independent data channels for each entity

Selecting the Channels to Provide

• To satisfy the trade-off, three channels for each entity

* channels provide order-of-magnitude differences in

♦ How many channels to provide for an entity?

* more channels: better service for subscribers

* each channel imposes a cost (bandwidth and

©structural and positional accuracy

computational)

is typically needed

⊙packet rate

Implementation Examples

Client-server

- each transmission identifies its channel
- * server dispatches data from channels to clients
- Multicast group for each region
 - * assign multiple addresses for each region
 - one group provides all of the entities' high-resolution channels, another group provides all of the entities' low-resolution channels
- Multicast group for each entity
 assign multiple addresses for each entity
- Different reliabilities to each channel
 - low-frequency updates are important
 o lost packets can have a significant impact

Approximate-body channel Mid-range viewers

1

Approximate-Body Channel

- More frequent position and orientation updates
- Hosts can render a rough approximation of the entity's
 - * appendages and other articulated parts
- Provided information is entity-specific * corresponds to the dominant changes of the structure

Common Approximations

- ♦ Radial length
 - motion towards and away from a centre point
 - update packets include the current radius
- * the current direction of the appendage
- models a rotating turret, arms and legs
- ◆ Local co-ordinate system points subset of the entity's significant vertices relative to the entity's
 - the entity is composed of multiple components

Full-Body Channel

- ♦ Highest level of detail
- ◆ High bandwidth and computational requirements * viewer can subscribe to a limited number of full-body channels
- Frequent transmissions
- Position and orientation
- Accurate structure information

Local Perception Filters (LPFs)

- introduced by Sharkey, Ryan & Roberts (1998)
- a method for hiding communication delays in networked virtual environments
- exploits the human perceptual limitations by rendering entities slightly out-of-date locations based on the underlying network delays
 - ✤ causality of events is preserved
 - * rendered view may have temporal distortions
 - ☆ rendered view ≠ real view

Active and Passive Entities

- - generates updates

 - cannot be predicted typically
 - rendered using state updates adjusted for the latency

A passive entity

- environment, does not generate its own actions
- * inanimate objects (e.g., rocks, balls, books)
- of its nearest active entity
- actions of a nearby active entity

Rules of LPFs

- Player should be able to interact in real-time with the nearby entities.
- Player should be able to view remote interactions in realtime, although they can be out-of-date.
- Temporal distortions in the player's perception should be as unnoticeable as possible.

Interaction Between Players

- interaction = communication between the players * remote players: subject to the network latency
- interaction = players exchanging passive entities passive entities are predictable ⇒ they can be rendered in the past (or in the future)
- a passive entity can change its time frame dynamically
 - * the nearer to a remote player, the closer it is rendered to its time frame

- ◆Two active entities:
- movement unpredictable ♦ One passive entity: ball
- ✤ movement predictable
- \diamond Latency of *d* seconds

The View of the Blue Player

Pong: A Summary • Each player sees a different representation of the same playing field • The ball accelerates as it approaches the local player's paddle • The ball decelerates as it approaches the remote player's paddle ◆ The ball's rendered position alternates between the current time network latency ⊙ observing meaningful interaction for remote player

Temporal Contours in Pong Blue player Red player Image: Im