

§10 Cheating Prevention

- traditional cheating in computer games
 - * cracking the copy protection
 - fiddling with the binaries: boosters, trainers, etc.
- here, the focus is on multiplayer online games
 - * exploiting technical advantages
 - exploiting social advantages
- cheaters' motivations
 - · vandalism and dominance
 - peer prestige
 - * greed

The goals of cheating prevention

- protect the sensitive information
 - * cracking passwords
 - * pretending to be an administrator
- provide a fair playing field
 - * tampering the network traffic colluding with other players
- uphold a sense of justice inside the game world
 - abusing beginners
 - gangs

Network Security

- ♦ Military
 - $\boldsymbol{\div}\ private\ networks \rightarrow no\ problem$

- ♦ Business, industry, e-commerce,...
 - 'traditional' security problems

- ◆ Entertainment industry
 - * multiplayer computer games, online games
 - specialized problems

Taxonomy of Online Cheating 1 (4) Cheating by compromising passwords

- ◆ Cheating by denying service from peer players
 - * denial-of-service (DoS) attack
 - * clog the opponent's network connection

Taxonomy of Online Cheating 2 (4)

◆ Cheating by tampering with the network traffic

- * reflex augmentation
- ❖ packet interception
- ❖ look-ahead cheating
- ❖ packet replay attack
- ◆ Cheating with authoritative clients
 - receivers accept commands blindly
 - ⊙requests instead of commands
 - $\odot\,\text{checksums}$ from the game state

Taxonomy of Online Cheating 3 (4)

- ♦ Cheating due to illicit information
 - * access to replicated, hidden game data
 - * compromised software or data

- Cheating related with internal misuse
 - privileges of system administrators
 - * logging critical operations into CD-ROMs
- ◆ Cheating by exploiting a bug or design flaw
 - * repair the observed defects with patches
 - ❖ limit the original functionality to avoid the defects
 - good software design in the first place!

Taxonomy of Online Cheating 4 (4)

- ◆ Cheating by collusion
 - two or more players play together without informing the other participants
 - * one cheater participates as two or more players
- ♦ Cheating related to virtual assets
 - ♦ demand ⇒ supply ⇒ market ⇒ money flow ⇒ cheating
- ◆ Cheating by offending other players
 - * acting against the 'spirit' of the game

Breaking the control protocol: Maladies & remedies

- malady: change data in the messages and observe effects
- remedy: checksums (MD5 algorithm)
- malady: reverse engineer the checksum algorithm
- remedy: encrypt the messages
- malady: attack with packet replay
- remedy: add state information (pseudo-random numbers)
- → malady: analyse messages based on their sizes
- remedy: modify messages and add a variable amount of junk data to messages

MD5 algorithm

- message digest = a constant length 'fingerprint' of the message
- no one should be able to produce
 - * two messages having the same message digest
 - * the original message from a given message digest
- R. L. Rivest: MD5 algorithm
 - produces a 128-bit message digest from an arbitrary length message
- collision attack: different messages with the same fingerprint
- finding collisions is (now even technically!) possibl
 - what is the future of message digest algorithms?

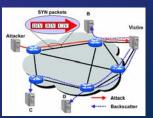
Illicit information

- access to replicated, hidden game data
 - * removing the fog of war
 - · compromised graphics rendering drivers
- ◆ cheaters have more knowledge than they should have → passive cheating
- compromised software or data
- counter-measures in a networked environment
 - $\ensuremath{\bigstar}$ centralized: server maintains integrity among the clients
 - distributed: nodes check the validity of each other's commands to detect cheaters

Exploiting design defects

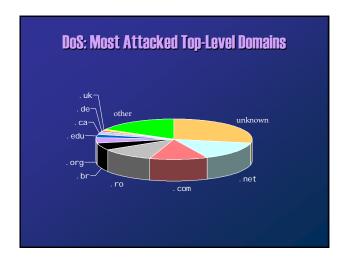
- what can we do to poor designs!
 - * repair the observed defects with patches
 - limit the original functionality to avoid the defects
- client authority abuse
 - information from the clients is taken face-value regardless its reliability
- unrecognized (or unheeded) features of the network
 - * operation when the latencies are high
 - * coping with DoS and other attacks

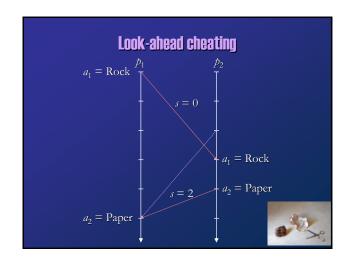
Denial-of-Service (DoS) Attack


- Attack types:
 - logic attack: exploit flaws in the software
 - flooding attack: overwhelm the victim's resources by sending a large number of spurious requests
- Distributed DoS attack: attack simultaneously from multiple (possibly cracked) hosts
- ◆ IP spoofing: forge the source address of the outgoing packets
- ◆ Consequences:
 - * wasted bandwidth, connection blockages
 - * computational strain on the hosts

Analysing DoS Activity ◆ Backscatter analysis ◆ Spoofing using random

source addressA host on the Internet receives unsolicited


responses


- ◆ An attack of m packets, monitor n addresses
- Expectation of observing an attack: $E(X) = nm/2^{32}$

DoS: Selected Results

- ◆ Three week-long logging periods, February 2001
- ♦ >12,000 attacks, >5,000 distinct targets
- ◆ Significant number of attacks were directed against
 - home machine
 - * users running Internet Relay Chat (IRC)
 - users with names that are sexually suggestive or incorporate themes of drug use
 - users supporting multiplayer games
- In addition to well-known Internet sites, a large range of small and medium sized businesses were targeted

Two problems ◆ delaying one's decision ◆ announce own action only after learning the opponent's decision ◆ one-to-one and one-to-many ◆ inconsistent decisions ◆ announce different actions for the same turn to different opponents ◆ one-to-many