Lockstep protocol

1. Announce a commitment to an action.
 - commitment can be easily calculated from the action but the action cannot be inferred from the commitment
 - formed with a one-way function (e.g., hash)
2. When everybody has announced their commitments for the turn, announce the action.
 - everybody knows what everybody else has promised to do
3. Verify that the actions correspond to the commitments.
 - if not, then somebody is cheating…

Loosening the synchronization 1(2)

- the slowest player dictates the speed
 - short turns
 - time limits for the announcements
- asynchronous lockstep protocol
 - sphere of influence: synchronization is needed only when the players can affect each other in the next turn(s)
 - otherwise, the players can proceed asynchronously

Loosening the synchronization 2(2)

- pipelined lockstep protocol
 - player can send several commitments which are pipelined
 - drawback: look-ahead cheating if a player announces action earlier than required
- adaptive pipeline protocol
 - measure the actual latencies between the players
 - grow or shrink the pipeline size accordingly

Drawbacks of the lockstep protocol

- requires two separate message transmissions
 - commitment and action are sent separately
 - slows down the communication
- requires a synchronization step
 - the slowest player dictates the pace
 - improvements: asynchronous lockstep, pipelined lockstep, adaptive pipeline lockstep
 - does not solve the inconsistency problem!

Idea #1: Let’s get rid of the repeat!

- send only a single message
 - but how can we be sure that the opponent cannot learn the action before announcing its own action?
- the message is an active object, a delegate
 - program code to be run by the receiver (host)
 - delegate’s behaviour cannot be worked out by analytical methods alone
 - guarantees the message exchange on a possibly hostile environment
 - delegate provides the action once the host has sent its own action using the delegate

Example of commitments and actions:

\[a_1 = \text{Rock}, \quad c_1 = H(a_1) = 4736 \]
\[a_2 = \text{Scissors}, \quad c_2 = H(a_2) = 1832 \]
\[a_1 = \text{Rock}, \quad a_1 = \text{Rock} \]
\[a_2 = \text{Paper}, \quad a_2 = \text{Paper} \]
\[H(a_2) = 5383 \neq a_2 \]
Example with two players

Threats

- what if the host delays or prevents the delegate’s message from getting to its originator?
- what if the host will not receive the next delegate until the message is sent
- what if the originator is malicious and the delegate spies or wastes the host’s resources?
- how can the host restrict the resources available to the delegate

- communication check-up

Communication check-up

- the delegate sends a unique identification to its originator
- static and dynamic information
- the delegate waits until the originator has responded correctly
- check-ups are done randomly
- probability can be quite low
- host cannot know whether the transmission is the actual message or just a check-up

Idea #2: Peer pressure

- players gossip the other players’ actions from the previous turn(s)
- compare gossip and recorded actions; if there are inconsistencies, ban the player
- cheating is detected only afterwards
- gossiping imposes a threat of getting caught
- how to be sure that the gossip is not forged?
- rechecking with randomly selected players

How much is enough?

- example: 10 players, 60 turns, 1 cheater who forges 10% of messages, gossip from one previous turn
 - 1% gossip: P(cheater gets caught) = 0.44
 - 5% gossip: P(cheater gets caught) = 0.91
 - 10% gossip: P(cheater gets caught) = 0.98
- example: 100 players, 60 turns, 1 cheater who forges 10% of messages
 - 1% gossip: P(cheater gets caught) = 0.98
- example: 10 players, 360 turns, 1 cheater who forges 10% of messages
 - 1% gossip: P(cheater gets caught) = 0.97

Message

- action for the current turn t
- delegate for the next turn $t + 1$
- set of actions (i.e., gossip) from the previous turn $t - 1$
Collusion
- imperfect information games
 - infer the hidden information
 - outwit the opponents
- collusion = two or more players play together without informing the other participants
- how to detect collusion in online game?
 - players can communicate through other media
 - one player can have several avatars

Analysing collusion
- tracking
 - determine who the players are
 - but physical identity does not reflect who is actually playing the game
- styling
 - analyse how the players play the game
 - requires a sufficient amount of game data
 - collusion can be detected only afterwards
 → no pre-emptive nor real-time counter-measures

Collusion types
- active collusion
 - cheaters play more aggressively than they normally would
 - can be detected with styling
- passive collusion
 - cheaters play more cautiously than they normally would
 - practically undetectable

Offending other players
- acting against the ‘spirit’ of the game
 - problematic: is camping in a first-person shooter cheating or just a good tactic?
 - some rules are ‘gentlemen’s agreements’
- examples
 - killing and stealing from inexperienced and ill-equipped players
 - gangs and ghettoization of the game world
 - blocking exits, interfering fights, verbal abuse

Upholding justice
- players handle the policing themselves
 - theory: players take the law into their own hands (e.g., militia)
 - reality: gangs shall inherit the game world
- systems records misconducts and brands offenders as criminals
 - theory: bounties and penalties prevent crime
 - reality: throw-away avatars commit the crimes
- players decide whether they can offend/be offended
 - theory: players know what kind of game world they want
 - reality: how to offend you? let me count the ways…

Recapitulation: Outline of the course
8. Communication layers
 - physical platform
 - logical platform
 - networked application
9. Compensating resource limitations
 - aspects of compensation
 - protocol optimization
10. Cheating prevention
 - technical exploitations
 - rule violations
Examinations 1 (2)

- examination dates
 1. January 16, 2006
 2. February 13, 2006
 3. March 2, 2006
- check the exact times and places at http://www.it.utu.fi/opetus/tentit/
- if you are not a student of University of Turku, you must register to receive the credits
 - further instructions are available at http://www.tucs.fi/education/courses/participating_courses.php

Examinations 2 (2)

- questions
 - based on both lectures and lecture notes
 - two questions, a 5 points
 - to pass the examination, at least 5 points (50%) are required
 - grade: \(g = \frac{p}{p - 5} \)
 - questions are in English, but you can answer in English or in Finnish
- remember to enrol in time!