
Scheduling Algorithms for
Computer-Aided Line Balancing
in Printed Circuit Board
Assembly

Timo Häyrinen
Mika Johnsson
Tommi Johtela
Jouni Smed
Olli Nevalainen

Turku Centre for Computer Science
TUCS Technical Report No 212
October 1998

ISBN 952-12-0311-0
ISSN 1239-1891

Abstract

Generalized Flexible Flow Line (GFFL) is a scheduling environment com-
prising several machine banks which the products visit in the same order
but can skip some machine banks. The products are transported either in
magazines or by a conveyor belt, and the change of the products demands
a set-up operation of the machine. The time consumption of this operation
depends on the current and the next product to be processed.

This paper describes several scheduling algorithms for GFFL problem.
The overall structure of these algorithms is similar, consisting of machine
allocation and sequencing phases. The algorithms have been implemented
and integrated into an interactive production scheduling system for electronic
assembly. Sample cases are used to illustrate the operation of the system in
practice.

Keywords: flow line scheduling, approximate algorithms, interactive sched-
uling, production planning, printed circuit board assembly

TUCS Research Group
Algorithmics

1 Introduction

It is characteristic of many branches of advanced production technologies
that the production program comprises a large number and several variants
of different products. The concept of Flexible Manufacturing Systems (FMS)
[14, 11] supports easy and cost-effective manufacturing of various products.
The main idea of these systems is using the same set of flexible machines for
processing all the products. A change from one product to another requires a
set-up operation, the time of which depends on the current and next product
to be manufactured. With a suitable production sequence we can decrease
the total amount of the set-up times during which the machines stay idle.
Furthermore, we can control the finishing times and the due dates by schedul-
ing the jobs. In many cases the production planner is mainly concerned with
the due dates, and the minimization of the set-up times may sometimes con-
flict with this goal. The construction of a feasible and, preferably, an efficient
schedule is one of the most difficult tasks in production planning. It has been
shown that the problem is too complicated to be solved accurately (even in
theory) [5, 3]. Therefore, the problem is usually approached by the use of
approximative algorithms.

There are two features that cause difficulties in the production environ-
ment. The manufacturing plant has usually multiple copies of operationally
identical machine types organized as machine banks. The banks can also be
considered as production phases. Each product has to pass these phases in a
predefined order (flow line processing). Hence, the system may process sev-
eral different types of products at a given time. The routing of the products
affects the total production efficiency. The second difficulty originates from
the fact that the production plan is subjected to due date constraints which
imply the preference of feasible schedules of the jobs (i.e., product batches).
Therefore, searching for an optimal schedule is not reasonable objective in
applications of practical value.

There are three different approaches to the flow line scheduling. In the
algorithmic approach the scheduling task is expressed as a mathematical
optimization problem and is solved by an approximate algorithm [15, 9]. In
the interactive scheduling the production designer uses computer simulation
to evaluate different schedules [12]. The hybrid approach integrates both
approaches [8]; the algorithms are used to produce a set of possible schedules
which can be then evaluated and manipulated by the interactive scheduling
tool.

1

In this paper we consider the hybrid approach. We concentrate on ef-
ficient algorithms and their integration to the interactive scheduler. Our
examples are taken from printed circuit board (PCB) assembly1. The pa-
per is organized as follows. In Section 2 we present the general framework
for our scheduling problem by introducing the generalized flexible flow line
scheduling. We also give the necessary notations used in the algorithms. In
Section 3 we describe the scheduling algorithms and in Section 4 we give a
practical example. Concluding remarks appear in Section 5.

2 Generalized Flexible Flow Lines

A Generalized Flexible Flow Line (GFFL) consists of m machines (possibly
of several different machine types). The machines are grouped into n phases,
each comprising one or more machines. Some of the machines in successive
phases are organized as logical (flexible) or physical (conveyor belt) lines.
The products pass the phases in the same order of phases. A given product
is processed either by one of the machines of a phase or the phase may be
skipped. Several copies of the same product are manufactured. The time to
process a product on a machine depends on the combination of the product
and machine (processing time) and the previous product on the machine
(set-up time). Therefore, it is efficient to manufacture products of the same
type in batches. A batch can also be splitted if it is considered to be too big
(However, this must be done before the process begins).

The problem is called GFFL because of the fixed order of machine vis-
its (-FL), multiple machines in a phase, the possibility of skipping a ma-
chine (-F-), the consideration of set-up times and the usage of magazines
(G-). The problem can be expressed in the three-tuple notation (see [3]) as
FMPM/pij, di, batch/ min

∑
T 2 which stands for a Flow-Shop with m ma-

chines; jobs with no pre-emption (i.e., the processing of a job on a machine
may not be interrupted); no precedence relations; all jobs are ready for pro-
cessing; processing demands differ; deadlines; batches; and the optimization
criterion is the minimization of the total sum of squared tardinesses of the
batches. For simplicity we assume that the processing times are stochastic
but the averages of the processing times are accurate enough for evaluating
different schedules. The schedule determines the machine allocation and the
sequence (ordering) of the jobs on each machine. Because the set-up times
are product-dependent, we introduce the concept of product families [10].
Product families vary from phase to phase. For a given phase a product fam-

1This work has been done in co-operation with Nokia Display Products of Nokia Cor-
poration, Finland as a part of a project on the optimization of the production plant.

2

ily consists of similar products so that the set-up time between the products
is short within the same family.

Ammons et al. [1] categorize the strategies for set-up management as
follows:

1. Single set-up strategy in which a group of machines is configured to
produce a family of PCBs using a single set-up:

(a) Unique set-up strategy in which the family contains only one prod-
uct type (i.e., mass production).

(b) Family set-up strategy in which the family comprises several prod-
uct types.

2. Multi set-up strategy in which limited component staging capacity pro-
hibits applying the single set-up strategy (see also [2]):

(a) Decompose and sequence in which the family is divided into sub-
families which are then sequenced to minimize the incremental
set-ups between subfamilies.

(b) Partition and repeat in which the required components are parti-
tioned into subsets restricted by machine capacity.

The concept of families is natural to many production environments; in
printed circuit board (PCB) assembly there are usually several different vari-
ations of the same basic product. These variants may have only a small set
of different components so that they can be processed with the same compo-
nent set-up. Therefore, the set-up times are short when changing from one
product to another of the same family.

Crama et al. [4] divide the problems of PCB production planning into
five categories:

1. partitioning the set of board types into families,

2. partitioning the set of component locations for each board type,

3. determining the feeder set-up for each machine,

4. assigning a component placement sequence for each pair consisting of
a machine and a board type, and

5. assigning a component retrieval plan for each pair of machine and board
type.

3

We assume in this paper that the product family partitioning is given (or can
be determined automatically from the product data by a simple analysis, for
more details, see [13]).

We use the following notations:

n production phase, n = 1, 2, . . . , N
m machine (index) in phase n, m = 1, 2, . . . , Mn

j job (batch), j = 1, 2, . . . , J
wnj amount of work to be performed in phase n for product j
tnmjk set-up time from job j to job k on machine m of phase n
fnj the family (index) of job j in phase n
bn the number of families in phase n
Fni the set of products belonging to family i of phase n, i.e., Fni =

{j|fnj = i, j ∈ {1, 2, . . . , J}}, for i = 1, 2, . . . , bn(≤ J)
Hnml 1, if machine m of phase n and machine l of the phase n + 1

are connected by a fixed or logical conveyor belt; 0, otherwise.

The families form a proper partitioning of the products; i.e., for each n(=
1, 2, . . . , N)

Fni ⊆ {1, 2, . . . , J}, for i = 1, 2, . . . , bn

Fnk ∩ Fnl = ?, for k �= l and k, l = 1, 2, . . . , bn

bn⋃
i=1

Fnl = {1, 2, . . . , J}

Note that some of the families may be singular. If two jobs k and l belong
to the same family in phase n, they need not to be in the same family in a
different phase n′; i.e. fnk = fnl does not imply fn′k = fn′l.

The concept of family reflects on the set-up times so that

tnmkl =

{
t′nm, if fnk �= fnl

t′′nm, if fnk = fnl (t′′nm 	 t′nm)

The above formulation of our scheduling problem simplifies somewhat the
actual production process. To be more accurate we should consider the
(somewhat) varying speeds of different machines in a phase. The products
are transported between phases in so-called magazines. However, these two
details can be omitted from the model without a risk of oversimplification.

There are several objectives that one should consider when constructing
a good schedule for the jobs:

4

• keeping product families together,

• meeting the due dates,

• separating the allocation and sequencing phases,

• preserving the ordering of the completion times in the starting times
of the next phase,

• work load balancing of the machines,

• minimizing the size of the internal storages, and

• minimizing the machine idle times.

These ideas and goals are contradictory in many cases, which makes the
scheduling extremely complicated. The objective function in our scheduling
problem is

C(S) =a ·
∑

squared tardinessj + b ·
∑

internal buffer sizem

+ c ·
∑

internal waiting timej + d ·
∑

number of familiesj ,

where the tardiness of a batch is the difference of the due date and the actual
finishing time; the summation by m and j is over the machines and over the
jobs, respectively. The multipliers a, b, c and d are required to emphasize
different criteria. Usually the weight a is the most important. For an integer
programming formulation of the GFFL, see [7].

3 Algorithms

In an Interactive Production Scheduler (IPS) [8] the production designer
can trigger the use of one or more scheduling algorithms, see Fig. 1. The
algorithms are fully integrated to the system so that no special input or
output is necessary. The results can be evaluated and re-scheduled by the
IPS directly.

Each of the algorithms accepts a Production Plan (PP) that gives the
number of products and the due date for each batch j. The algorithms have
access to the Production Data (PD) which include information about the
machines (e.g., operation rate), short (inner-family) and long (inter-family)
set-up times t′′nm and t′nm, line organization etc. Batch Data (BD) describe
the products by giving the number of machine operations for each production

5

Figure 1: The IPS (Interactive Production Scheduler)

phase wnj, the product family fnj, etc. The PD and BD files are subjected to
gradual changes as the machine installation and product spectrum develop.
The algorithms produce a Schedule (S) which gives for all the machines of the
installation a list of the product batch numbers in the order of manufacturing.

The scheduling algorithm consists of four steps (see Fig. 2):

1. Initial allocation of the batches to the machines

2. Improvement of the machine allocations

3. Initial sequencing of the batches

4. Improvement of the batch sequences

The scheduler includes three algorithms for allocation, five for improving
the allocation, one for initial sequencing and two for improving sequencing.
These are as follows:

1. Initial batch allocation to the machines
a) allocation by batches
p) allocation by families
r) random allocation of batches

2. Improving the machine allocation
l) local greedy improvement
g) the globally best pair algorithm
k) pairwise optimal, all pairs
s) pairwise optimal, random pairs
v) selection by function, pairwise optimal allocation

6

Figure 2: The main control flow of the scheduling algorithm

3. j) Initial ordering of the batches

4. Improving the schedule
f) re-scheduling the whole families
e) re-scheduling the batches of a family

The user can select any combination of these methods and repeat the im-
provement steps as many times as needed with the same or different method.
This grants us, apart from repetitions, 30 different variants of the algorithm.
The scheduling methods are identified by the above initial character notation
(e.g., plje = allocation by families followed by the local greedy improvement,
the initial ordering of the batches and the re-scheduling of the batches of a
family).

Next, we discuss the four phases of the algorithm in more detail. Because
the problem model is rather complicated, we give only an outline of the
solutions. A full implementation of this algorithm is given in [6] and available
from the authors. When describing the algorithms we introduce several new
notations which are summarized in Appendix A.

3.1 Initial Batch Allocation to Machines

In the first phase the scheduler determines an initial allocation of the jobs to
the machines. In this phase we aim at an initial situation which can then be
tuned to a balanced machine allocation in the next phase.

7

3.1.1 Allocation by Batches

We have two conflicting goals in this allocation rule:

• equal work load of machines for each phase, and

• preserving the integrity of the families by allocating all products of a
certain family to the same machine if possible.

To facilitate the allocation we introduce a parameter fair sharen for each
phase. This parameter gives us the first approximation of the work load of
each machine in phase n. It also gives the optimal allocation of the machines
when the work loads of the machines are equal. The parameter restricts
the addition of new batches disregarding the work load balancing among
different machines of the phase. The work load of a particular set of batches
is composed of two components: the total processing time and the sum of
the set-up times. Thus, we calculate the limit for each phase n = 1, 2, . . . , N
as follows

fair sharen =
1

Mn

J∑
j=1

wnj + c0 · min
m=1,2,... ,Mn

{t′nm} (1)

The first term is the share of the actual processing time among the Mn

machines. The second term considers the time usage of the major set-up
operations. The coefficient c0 is used for fine-tuning the algorithm; with it
we can control how much work load imbalance we tolerate in order to keep
families together.

To solve the conflict between work load balancing and family integrity
we introduce another parameter called share excess. With this parameter we
will restrict the excess of work load in machines that process large families.

At a coarse level the allocation algorithm considers each phase n sepa-
rately. We sort the jobs into a decreasing order by the processing demands
of the phase, and process the jobs in this order (Longest Processing Time
First). The actual allocation of the current job j is easy if a machine is
found for which the next two conditions hold:

1. the machine already contains some jobs that belong to the same family
as job j, and

2. the inequation W ≤ fair sharen − wnj holds, where W is the current
work load of the machine.

8

These considerations give us four heuristic rules for allocating job j.

Rule 1 Among the machines fulfilling the conditions 1 and 2 choose the one
for which the work load is minimal and allocate job j to it.

Rule 2 If condition 1 fails for each machine, allocate job j to the machine
which has the lowest work load.

Rule 3 If condition 2 is violated, we choose the machine which fulfills con-
dition 1. We apply this rule only when the work load of the selected
machine is at most share excess · fair sharen after the possible alloca-
tion. (By this we want to prevent the accumulation of a very high work
load at some machines with large families.) Thus, we finally abandon
the goal of keeping the families together.

Rule 4 If rule 3 is not applicable for any machine, job j is allocated to the
machine with the minimal work load so far.

The allocation of the machines is restricted by the fact that certain machines
in successive phases are interconnected. In that case the allocation of the
latter machine is the same as the allocation of the first one.

Next, we outline an algorithm which implements the allocation rules 1–4.

Algorithm fair share. The algorithm allocates jobs j = 1, 2, . . . , J to
machines m = 1, 2, . . . , Mn in phases n = 1, 2, . . . , N . Each job is allocated
only to one machine. The input of the algorithm includes

wnj processing demands
t′nm long set-up time
t′′nm short set-up time
fnj family indexes
Hnml machine line information
fair sharen allocation limit
share excess allocation limit

The algorithm determines for each machine the set of jobs Gnm allocated to
it. Variables Wnm and Bnm are used for storing the cumulative work load and
the family index sets of the machines. S, T , R are auxiliary sets of machine
indexes.

Step 1 (Process the machine phases) Perform the steps 2–6 for all phases
n = 1, 2, . . . , N .

9

Step 2 (Initialize the allocation for a phase) Let Gnm ← ?; Bnm ← ?; Wnm

← 0 for all m = 1, 2, . . . , Mn. Sort the jobs into a decreasing order by
the processing demand wnj.

Step 3 (Process the jobs) Perform the steps 4 to 6 for each job j in the
order determined at step 2.

Step 4 (Check the allocation conditions) Let S be the set of machines for
which fnj ∈ Bnm (at least one other job of the same family has been
allocated previously to the machine) and let T be the set of machines for
which Wnm ≤ fair sharen −wnj (the fair sharen will not be overridden).

Step 5 (Select the machine)

Case 1 If S ∩ T �= ? then let m0 be such that Wnm0 = minm∈S∩T

{Wnm} and go to step 6.

Case 2 If S = ? then let m0 be such that Wnm0 = minm=1,2,... ,Mn

{Wnm} and go to step 6.

Case 3 If T = ? let R = {m|Wnm + wnj ≤ share excess · fair sharen;
fnj ∈ Bnm; m ∈ S} (i.e., the set of machines with family fnj and
low work load). If R �= ? then let m0 be the machine for which
Wnm0 = minm∈R{Wnm} and go to step 6.

Case 4 Otherwise, let m0 be such that Wnm0 = minm=1,2,... ,Mn{Wnm}.
Step 6 (Allocate)

Gnm0 ← Gnm0 ∪ {j} (set of jobs)

Wnm0 ← Wnm0 + wnj (work load)

Bnm0 ← Bnm0 ∪ fnj (set of families)

Note that we have intentionally omitted the line machines. If we assume that
their jobs are fixed by the first machine, we can add to the initialization step
2 the following test:

If Hn−1,l,m = 1 for some l then Gnm ← Gn−1,l, Wnm ← ∞ and
Bnm = Bn−1,l.

Thus, we fill up the machine with the jobs of the previous machine and do
not consider it further; the latter line machines accept their jobs from the
line only.

Fig. 3 demonstrates the principle of the fair share allocation. Note that the
job 1 should be allocated to the machine 1 which contains a job in the same
family but the fair share limit would then be violated. Therefore, machine 2
is selected due to its minimal work load.

10

a) Jobs in the allocation order

b) Allocation of the machines

Figure 3: Initial allocation by fair share technique

3.1.2 Allocation by Families

In this allocation method we consider the families in the Longest Process-
ing Time First order (LPTF). A family is always allocated to the machine
with the lowest work load. The parameter fair sharen is not considered. The
method preserves the integrity of the families but may produce very skew
initial allocations, see Fig. 4 In spite of this problem, the allocation method
works well in scheduling. Therefore, the initial allocation is followed by some
improvement heuristics which shuffles the jobs but gets benefit from fami-
lies. Because the algorithm is a straightforward modification of the fair share
algorithm, we omit a more detailed description.

3.1.3 Random Allocation of Jobs

The allocation of jobs is random for each phase; the work load and the families
are not considered. Random initial allocations are very fast to generate and
they serve as initial solutions for the improvement methods.

11

a) Families in the LPTF order

b) Allocation of the families

Figure 4: Initial allocation of the families

3.2 Improvement of the Machine Allocation

In this section we give five swapping algorithms which can be used to improve
the initial machine allocation determined by one of the three aforementioned
techniques. A common characteristic of all these improvement methods is
that we select always two machines in the same production phase and check
whether we could improve the allocation by moving jobs from one machine to
another. If this is possible, we move the job or jobs and repeat the procedure
until a special termination criterion is met.

We must be careful when selecting the cost function by which we measure
the effect of the moves. Because we aim at low set-up costs and a balanced
work load; we search for an allocation for which the weighted sum of these

12

factors is minimal. A candidate allocation is realized if it has a low value of
the allocation cost defined by:

costlk = cw · (|Bnl| · t′nl + |Bnk| · t′nk) + |Wnl −Wnk| (2)

Here cw is a parameter that controls the tendency of preserving the families.
By increasing the value of cw we increase the cost incurred from the set-up
operations. The indices l and k refer to two machines of the phase n; |Bni|
gives the number of different families of the machine i; t′ni stands for the long
set-up time and Wni is the work load of the machine i (i = l or k). The
expression in the parentheses approximates long set-up times for the two
machines, and the last term gives the imbalance of their work loads. Wnl is
the largest and Wnk the smallest work load in a phase. The set of machines
from which l and k are selected depends on the method.

Next we outline the five improvement algorithms for the allocation.

3.2.1 The Globally Best Pair Algorithm

Let us consider phase n (1 ≤ n ≤ N) and let l0 and k0 be the pair of machines
for which the allocation cost (2) is maximal in this phase. The Globally Best
Pair (Gbest) algorithm checks all machine pairs and tests whether a pairwise
change of two jobs would decrease the current value of the maximal allocation
cost (costl0k0). If this is the case, we realize the change and start the same
process again with an updated l0, k0 and costl0k0. Note that the work loads
in formula (2) stands for the maximal and minimal ones in the phase in
question. Therefore, they are not necessarily the work loads of the current
machine pair. Although we can perform the tests in an arbitrary order, we
prefer an order where the index l runs from the machine with the maximal
to the minimal work load. For each fixed l the index k runs in the opposite
direction (i.e., from the minimal to the maximal work load), see Fig. 5.

The algorithm tests each pair of the jobs in the machines l and k. In
addition to the job pairs, the algorithm tests the effect of moving a job from
one machine to another (without returning to some other job), see Fig. 6.

The algorithm terminates after an unsuccessful round of iterations for all
job pairs and machine pairs. We observe that the method Gbest is conserva-
tive in the sense that it realizes a move only if the globally defined maximal
allocation cost (2) improves, see Fig. 7 and Fig. 8. Note that formula (2)
includes not only work load imbalance but also another factor, namely the
weighted set-up times. Therefore, a better value of (2) can be achieved even
though the work load imbalance is not improved. Note that the illustrative

13

Figure 5: The order of the pairwise testing of the machines

examples of Fig. 7 and 8 omit the effect of the set-up times (that is the first
factor in (2)) on the allocation cost.

Algorithm Gbest. The algorithm Gbest implements the idea of the Glob-
ally Best Pair changes. The method searches for the most profitable change
in respect to (2). The swap is realized if it decreases the global allocation cost
value. The selection-swapping phases are iterated until no improvement is
achieved. The input of the algorithm is an initial allocation of the machines
for each phase n (n = 1, 2, . . . , N):

Gnm a set of jobs in the machine m
Wnm work load of the machine m
Bnm a set of families of the machine m
cw weighting coefficient of formula (2)
t′nm long set-up time

The algorithm determines an improved allocation given by updated Gnm,
Wnm, Bnm.

Step 1 (Main loop) For all phases n = 1, 2, . . . , N perform the steps 2 to 6.

14

Figure 6: The testing of pairwise moves between two machines. Job 0 is nil;
it is used to describe the move of one job only.

Step 2 (Initialization) Sort the machines m (m = 1, 2, . . . , Mn) into a de-
creasing order by the respective Wnm values.

Step 3 (Selection of the machine pair) While there are unconsidered ma-
chine pairs, select a new pair (l, k). We let l run through the indexes
1, 2, . . . , Mn−1 and for each l the index k runs through Mn, Mn−1, . . . ,
l + 1.

Step 4 (Test candidate moves) Determine the current allocation cost costlk
of the machine pair l, k. (The work loads in formula (2) are calculated
from all the machines in phase n.)

Step 5 (Improve allocation) For all pairs (i, j) of jobs in the machines l and
k make a candidate move of job i from the machine l to the machine k
and job j from the machine k to the machine l. Let (G′

nl, W
′
nl, B

′
nl) and

(G′
nk, W

′
nk, B

′
nk) be the corresponding allocation of the two machines.

Calculate cost′l,k for the candidate move. If costlk > cost′lk then realize
the move by updating the G, W, B settings and return to step 2 (i.e.,
repeat the testing of the machine pairs)

Step 6 (No improvement at steps 4 and 5) Terminate the algorithm.

15

a) Before the move

b) After the move

Figure 7: The effect of the swap of two jobs

16

a) Before the move

b) After the move

Figure 8: The use of the globally maximal allocation cost

17

3.2.2 Local Greedy Improvement

Algorithm Lgreedy. The idea of the Local Greedy Method (Lgreedy) is
the same as in Gbest but the work loads in formula (2) are determined from
the two machine in question and not from all the machines in phase n. A
candidate move is realized if it gives a lower value of (2) than before the
move, see Fig. 7 and 8 for the difference of the local and global approaches.
The algorithm is a straightforward modification of Gbest.

3.2.3 Pairwise Optimal, All Pairs

Algorithm Popt. There are important practical cases where the number
of jobs allocated to each machine is rather small. In that case we can find
the optimal pairwise allocations by applying enumeration. Let us assume
that the initial allocation has placed ml and mk jobs to the machines l and
k, respectively. Now we can perform the allocation of these m = ml + mk

jobs in 2m different ways which is an exponentially increasing function of m.
However, if m is less than a given number Mlimit, we can calculate all possible
allocations of the machine pair and select the best one. Again, we consider
all possible machine pairs (l, k) but make a trade-off between the time and
the efficiency because we consider now all the pairs only once. The problem
of this method is that the comparison of the pair (i, l) can give a certain
allocation which is then altered by the comparison of the machines (l, k).
After that a repeated comparison of (i, l) could again change the allocations
of i and l. Because of this we should further consider the convergence or
calculate the overall cost of the allocation at each step. We omit this problem
and concentrate on only one iteration for each pairwise comparison.

3.2.4 Pairwise Optimal, Random Pairs

Algorithm Ropt. This method differs from the above in the selection of
the machine pairs only. We consider random machine pairs with replacement
(i.e., we allow the reconsideration of the same pair). The number of the pairs
is restricted by the user-defined parameter number of machine pairs.

3.2.5 Selection by Function, Optimal Allocation

Algorithm Fopt. The idea of this algorithm is to consider the machine
pairs in an order which increases our chances to make successful job moves.
We calculate for each machine in phase n a characteristic value

18

rm = cfamily · |Bnm|+ cjob · |Gnm|+ cwork · |Wnm| (3)

The user-defined coefficients cfamily, cjob and cwork give the weighting to the
number of the different families (|Bnm|), the number of the different jobs
(|Gnm|) and the total work load (|Wnm|) of the machine m. The algorithm
Fopt runs exactly like Ropt but now we choose at each selection step the
machine pair (l, k) for which

{
rl = minm∈{1,... ,Mn} rm,
rk = maxm∈{1,... ,Mn}−{l} rm.

3.3 Initial Sequencing of the Jobs

Let us assume that the machines have been allocated for the jobs as described
in section 3.1 and 3.2. The latter part of the scheduler sequences the jobs.
This is done in two phases. In the first phase we determine an initial ordering
for each machine separately, and in the second phase we try to improve this
ordering by considering the other machines, too.

In this section we discuss one possible technique for the initial sequencing.
We assume that the machine allocation (Gnm, Wnm, Bnm) has been given
and recall that each job has its own data about the work load (wnj), the
family (fnj) and the due date (dj). Our task is to determine for each phase
and machine pair (n, m) a sequence Π(n, m) = (j1, j2, . . .) which gives the
processing order of the jobs.

The concept of families was introduced for minimizing the set-up times.
Therefore, in the first step we group the jobs of the machine (n, m) according
to the families and determine the sequence of the jobs within each family from
the finishing times of the previous phase. In the second step we arrange the
order of the families so that the idle time of the machine will be as short as
possible.

Algorithm initial sequencing

Step 1 (Sequencing the jobs of a family): In the beginning the order of
the jobs in a family is fixed to correspond to the order of the finishing
times in the previous phase. The order of the previous phase should
be preserved. However, it is possible that the finishing times of the
previous phase are identical for two jobs of the family. (Note that
the grouping into the families may be different in the different phases

19

and two different machines may process the job allocated to the same
machine in the current phase. For the first phase the finishing times of
the previous phase are all zero.) When the finishing times are equal,
we can select the order by using one of the following rules (identified
with a parameter setting):

1. Earliest due date first (EDF)

2. Longest job first (LJF)

3. Shortest job first (SJF)

If a rule fails we apply the remaining ones. If all rules fail, we select
the job randomly.

Step 2 (Mutual ordering of the families): The mutual ordering of the fam-
ilies is based on the concept of losses. Let us denote the starting time
of the job l in phase n by starting timel(n) and its finishing time in
the previous phase by finishing timel(n − 1). The starting time is the
point where the processing of the job will start if the family of job l is
selected as the next family. We define

lossl = finishing timel(n− 1)− starting timel(n).

The loss gives us the amount of time during which a machine stays idle
when the processing of the job is not completed in the previous phase.
The loss of the whole family i is

loss(i) = max
fnl=i
{lossl, 0}

(i.e., the maximum of the losses in the family i, or zero if all jobs are
ready for processing in phase n). Note that when we calculate the
starting times of the jobs we bear in mind that some families have
already been scheduled and their processing loads have been added to
the machine. The principal idea of the mutual sequencing is thus to
order the families into an increasing order of losses.

Fig. 9 illustrates the calculation of losses when selecting the first family of a
machine in phase n. The first job of each family has been placed on the time
axis at its earliest point of starting. We select family 2 to be processed first

20

n

n-1

Figure 9: The use of losses in the scheduling of the families

and then we have to restart the consideration in the situation where there
are two families left to be scheduled in the machine in question.

Again, it is possible that the use of the losses does not enforce an unam-
biguous ordering of the families. This is the case when several loss values
are zero. Therefore, we introduce a selection criterion which is more global.
Large urgent jobs are preferred. For this reason, we calculate for each family
i the starting number which is, for the first phase, the average due date of the
family weighted by the job sizes, and for the other phases the average finishing
time of the previous work phases weighted by the job sizes. The job size aj is
the number of PCBs in the job (or batch). Thus, for the family i we define

starting numberi =

{ ∑
j aj · djP

aj
, for the first phase,∑

j aj · tjP
aj

, for the other phases.
(4)

The sum is over the jobs in the machine m in phase n, aj is the job size, dj

is the due date and tj the finishing time in the previous work phase. (The
due date of the most urgent job is the zero level and other due dates are
calculated in minutes from this. The jobs with no due date are given a due
date that is one day after the last defined due date).

Fig. 10 illustrates the idea of aj weighting in formula (4). The family 1
contains two urgent jobs and one small but not urgent job. Without weight-

21

Figure 10: Calculation of the starting numbers

ing, family 2 would be scheduled before family 1. The method is heuristic
and does not guarantee a correct ordering. Note that the finishing time in
the previous work phase is the finishing time of a part of a batch consist-
ing of a full transportation magazine (of, for example, K = 30 ready-made
PCBs). Therefore, the machines of successive phases can process a given job
in parallel:

finishing timel(n− 1) = starting timel(n− 1) + wn−1,l

·min{1, K/al}+ tnm,l−1,l

where the last term stands for the set-up from the previous to the current
job. The algorithm is quite straightforward and we omit its description.

3.4 The Improvement of a Schedule

A combination of the algorithms of the three previous subsections provides
us with a machine allocation and an initial sequence of the jobs, denoted
by Gnm, Wnm, Bnm, Π(n, m) (allocation of the jobs, machine work load,
families, ordering). In this section we introduce two more algorithms that
can be used to improve the schedule. The principle is to make such changes
to the schedule that the idle time of the machines will be reduced. There are
two apparent methods for achieving this goal:

• re-scheduling whole families

• re-scheduling jobs in a family.

22

Figure 11: Pairwise comparisons of the families and the jobs

3.4.1 Re-scheduling Whole Families

Algorithm ReFamilies. The re-scheduling of families is done by consid-
ering all pairs of the families in a machine. The mutual ordering of jobs in
a family is preserved, see the upper arrows of Fig. 11. The object function
machine waiting time, mwtnm counts the total elapsed idle time during the
period from the starting of the first job until finishing of the last job in the
machine. The idle time is used because some of the jobs from the previous
phase are not ready when the current machine is ready to proceed. Note
that we do not count the idle time before the first job and after the last
job of the schedule because we assume that the operation of the production
plant is continuous and these idle periods will be filled in by jobs of another
production plan.

We perform the candidate move if it decreases the total machine idle
time (

∑
n,m mwtnm) and does not violate the due dates. The same process is

repeated after a move.

3.4.2 Re-scheduling of the Jobs in a Family

Algorithm ReJobs. The re-scheduling of the jobs in a family is performed
as described above, see lower arrows in Fig. 11. The candidate moves do not
break the integrity of the families.

Note that in ReFamilies and ReJobs the re-scheduling of the first line
machine causes an automatic move of the jobs in the latter machine on the
same line.

4 Practical Tests

In this section we apply the methods described in the previous section to
scheduling problems arising from an actual production plant. To be more

23

GRIPLET AXIAL RADIAL SMD

Machine Internal Storage

Final products Components and PC-Boards

Physical line

Figure 12: A sample machine configuration (Nokia Display Products, Salo)

specific, we consider a assembly plant for printing electronic components on
Printed Circuit Boards (PCBs), where the production line consists of four
successive phases:

1. Griplet insertion (GRIPLET)

2. Axial insertion (AXIAL)

3. Radial insertion (RADIAL)

4. Surface mounted onsertion (SMD)

In addition to these work phases there are preparative and subsequent op-
erations that are not considered here. There are three fixed assembly lines
and, moreover, it is possible to form logical lines. The machine configura-
tion is shown in Fig. 12. The fixed lines are between RADIAL and SMD
phases and a conveyor belt is used for transporting the PCBs, whereas the
transportation is done in magazines between the other machines.

Table 1 gives an example of a typical production plan (PP) for one week
(PPs usually comprise 20–35 different PCB types). In this case PP com-
prises 24 batches with varying due dates. The batch sizes range from 500 to
5,000. Furthermore, it is assumed that old batches are ready for processing

24

PCB AMOUNT DUE PCB AMOUNT DUE

SH1275 800 12.01. SH1299 2800 17.01.

SH1275 800 13.01. SH1701 5000 15.01.

SH1275 800 14.01. SH1708 800 12.01.

SH1275 800 15.01. SH1714 2000 12.01.

SH1275 800 16.01. SH1716 600 15.01.

SH1275 800 17.01. SH1718 600 12.01.

SH1260 600 16.01. SH1721 600 12.01.

SH1277 5000 15.01. SH1722 500 15.01.

SH1294 2000 15.01. SH1722 500 16.01.

SH1296 3600 12.01. SH1722 500 17.01.

SH1298 900 12.01. SH1703 4000 15.01.

SH1298 1000 16.01. SH1262 1000 15.01.

Table 1: A sample production plan

at the beginning of the production period. The operation times for different
machine-PCB-type combinations are calculated from the machine data and
PCB data, or they are derived from the previous production data.

We consider the following features:

• the sum of the squared tardinesses,

• the sum of the internal storage levels (expressed as the number of
PCBs),

• the sum of the internal waiting times (in minutes), and

• the number of PCB families constructed by the algorithm.

As mentioned earlier, the scheduling algorithm has been integrated with
the IPS [8] by which the results can be visualized, see Fig. 13.

The graph for the internal storage level (Fig. 14) indicates that machine
16 (one of the SMD machines) is the bottleneck machine and more work load
could be moved to machine 17 to balance this situation.

Four batches are late in this situation (Fig. 15). The worst situation is
for batch 6 for which the violation of the due date is 24 hours. On the other
hand, many of the jobs are bound to be finished much before their due dates.
(Note that plje was not the best solution for minimizing tardiness.)

Table 2 shows some sample results of a schedule for the production plan in
Table 1. We have studied some of the possible combinations of the scheduling
algorithms. A variation in the results is observed also in the average storage

25

Figure 13: IPS main window. The system informs the production planner
that batches SH1708, SH1275 2, SH1275 4, SH1722 1, SH1722 3, SH1275 1
will be late, more details can be viewed by clicking the corresponding graph-
ical components.

Figure 14: Internal storage graph for the solution plje. Dark piles stand for
the maximal storage level and light piles for the average storage level. The
indeces on the x-axis stand for the machines and y-axis gives the storage
level given by the number of PCBs.

26

Figure 15: Lateness for the solution plje. The bars below the zero level
represent jobs completed before the due dates whereas the jobs above it will
be late. Indexing of the x-axis is for the PCB batches. The units of the
y-axis is in minutes.

Figure 16: Machine usage for the solution plje. White area represents the
ratio of effective processing, dark for the idle time and grey the set-up time.

27

used
method

squared
tardiness

average
storage

waiting time different families

akjf 156390 33040 34411 41
akje 156390 33040 34411 41
asjf 95625 36880 31136 37
asje 285317 32520 33541 37
avjf 248286 33420 33379 30
avje 254439 34920 31766 30
aljf 323081 29680 39157 41
alje 323081 29680 39157 41
agjf 114494 32600 29534 33
agje 138348 33720 26597 33
pljf 169655 38620 33035 42
plje 169655 38620 33364 42
pgjf 185578 42340 36952 39
pgje 197323 43800 30266 39
rkjf 87007 34920 30182 40
rkje 156261 36180 25951 41
rsjf 228784 37060 54460 36
rsje 220415 37320 35198 38
rvjf 134792 36160 29267 47
rvje 299283 29520 42272 39
rljf 144003 40460 26075 42
rlje 185554 35340 22435 40
rgjf 313361 33940 49364 39
rgje 227079 38880 27537 37

Table 2: Results for different algorithms for the sample problem of Table 1

level which ranges from 29,520 (rvje) to 43,800 (pgje). The sum of the
waiting times ranges from 25,951 (pkje) to 54,460 (rsjf). The variation in
the number of different families formed by the algorithm is relatively small
(from 30 to 47). The squared tardiness of the schedules varies from 87,007
(rkjf) to 323,081 (aljf and alje). In addition to rkjf, the asjf technique finds
a solution with a low tardiness value (95,625).

We used a second set of test runs to study the differences between the
methods in respect to various features of the solution. The four test problem
are described briefly in Table 3 (n.b., the table gives only production volumes
and due dates and omits component types and production volumes). Three
problems are based on actual production plans (with 24, 34 and 38 batches),
and the fourth problem has been generated randomly from the production
data to resemble a typical production plan. See figure 17 for a histogram of
the methods.

Table 4 shows the ranking for the solution algorithms for the problem t04
when the problem is solved by 30 different variants of the algorithm (avjf,

28

Method t04 t08 t11 tsa t04 t08 t11 tsa t04 t08 t11 tsa t04 t08 t11 tsa t04 t08 t11 tsa
agjf 30 30 27 10 12 20 26 6 17 20 28 6 25 22 25 16 30 30 27 10 97
aljf 29 28 26 12 8 21 19 8 16 9 14 8 16 18 4 18 29 28 26 12 95
rgjf 26 23 18 25 21 22 27 16 9 22 8 19 1 3 16 27 26 23 18 25 92
avjf 24 29 20 16 25 10 21 9 8 11 10 4 19 24 23 1 24 29 20 16 89
avje 23 24 19 22 24 7 20 23 12 23 9 15 18 23 22 2 23 24 19 22 88
agje 28 27 24 9 6 11 24 5 20 19 30 5 24 21 24 15 28 27 24 9 88
alje 27 25 25 11 4 15 18 7 21 21 13 7 15 17 3 17 27 25 25 11 88
asjf 19 26 13 28 16 24 8 25 10 24 27 2 7 20 9 4 19 26 13 28 86
rkje 17 19 14 30 7 6 17 3 23 29 17 18 6 10 10 5 17 19 14 30 80
rsjf 21 20 28 8 5 18 29 4 13 7 11 25 9 19 2 14 21 20 28 8 77
asje 16 22 9 29 1 19 2 26 18 30 25 26 17 16 17 9 16 22 9 29 76
akjf 15 21 23 14 19 12 7 15 27 13 20 9 12 8 19 19 15 21 23 14 73
rljf 8 7 30 27 18 8 25 24 24 28 7 3 4 4 13 28 8 7 30 27 72
rlje 18 15 16 18 10 14 13 18 15 25 22 22 3 2 12 23 18 15 16 18 67
rvjf 20 13 8 26 15 13 5 20 7 12 26 29 8 5 1 3 20 13 8 26 67
akje 13 18 21 15 20 5 4 22 28 14 21 24 10 7 18 21 13 18 21 15 67
rkjf 22 17 22 2 28 16 12 21 11 10 18 1 5 9 8 7 22 17 22 2 63
rvje 25 16 15 6 17 23 11 1 22 27 19 30 20 6 11 8 25 16 15 6 62
rgje 9 14 17 17 14 25 14 17 30 26 12 21 2 1 20 22 9 14 17 17 57
rsje 7 8 29 1 2 9 22 2 29 8 29 16 11 11 5 6 7 8 29 1 45
pljf 14 10 12 7 13 2 10 13 14 15 24 12 14 12 7 13 14 10 12 7 43
pkjf 6 6 3 24 30 29 16 30 2 6 5 14 30 28 30 30 6 6 3 24 39
pgjf 11 12 10 5 9 3 6 12 25 17 15 28 22 14 15 12 11 12 10 5 38
pkje 5 5 2 23 29 30 15 29 3 5 4 13 29 27 29 29 5 5 2 23 35
plje 12 9 11 3 3 1 9 10 19 16 23 20 13 13 6 10 12 9 11 3 35
pgje 10 11 7 4 11 4 3 11 26 18 16 27 23 15 14 11 10 11 7 4 32
pvjf 2 2 5 21 22 26 30 28 5 3 1 11 26 29 28 26 2 2 5 21 30
psje 4 4 1 19 26 28 1 19 1 2 2 23 28 26 21 24 4 4 1 19 28
pvje 1 1 4 20 23 27 28 27 6 4 3 10 27 30 27 25 1 1 4 20 26
psjf 3 3 6 13 27 17 23 14 4 1 6 17 21 25 26 20 3 3 6 13 25

TotalSquared tardiness Internal storage Idle times Families

a) Weights of (squared tardiness, internal storage level, internal waiting
times, number of families) are (1, 0, 0, 0); i.e., the last column equals to the
rank for squared tardiness. Rank 30 stands for the best method, 1 for the
worst.

Method t04 t08 t11 tsa t04 t08 t11 tsa t04 t08 t11 tsa t04 t08 t11 tsa t04 t08 t11 tsa
rgjf 26 23 18 25 21 22 27 16 9 22 8 19 1 3 16 27 47 45 45 41 178
avje 23 24 19 22 24 7 20 23 12 23 9 15 18 23 22 2 47 31 39 45 162
agjf 30 30 27 10 12 20 26 6 17 20 28 6 25 22 25 16 42 50 53 16 161
asjf 19 26 13 28 16 24 8 25 10 24 27 2 7 20 9 4 35 50 21 53 159
avjf 24 29 20 16 25 10 21 9 8 11 10 4 19 24 23 1 49 39 41 25 154
aljf 29 28 26 12 8 21 19 8 16 9 14 8 16 18 4 18 37 49 45 20 151
rljf 8 7 30 27 18 8 25 24 24 28 7 3 4 4 13 28 26 15 55 51 147
pkjf 6 6 3 24 30 29 16 30 2 6 5 14 30 28 30 30 36 35 19 54 144
rkjf 22 17 22 2 28 16 12 21 11 10 18 1 5 9 8 7 50 33 34 23 140
pkje 5 5 2 23 29 30 15 29 3 5 4 13 29 27 29 29 34 35 17 52 138
pvjf 2 2 5 21 22 26 30 28 5 3 1 11 26 29 28 26 24 28 35 49 136
agje 28 27 24 9 6 11 24 5 20 19 30 5 24 21 24 15 34 38 48 14 134
rsjf 21 20 28 8 5 18 29 4 13 7 11 25 9 19 2 14 26 38 57 12 133
alje 27 25 25 11 4 15 18 7 21 21 13 7 15 17 3 17 31 40 43 18 132
pvje 1 1 4 20 23 27 28 27 6 4 3 10 27 30 27 25 24 28 32 47 131
rgje 9 14 17 17 14 25 14 17 30 26 12 21 2 1 20 22 23 39 31 34 127
akjf 15 21 23 14 19 12 7 15 27 13 20 9 12 8 19 19 34 33 30 29 126
asje 16 22 9 29 1 19 2 26 18 30 25 26 17 16 17 9 17 41 11 55 124
rlje 18 15 16 18 10 14 13 18 15 25 22 22 3 2 12 23 28 29 29 36 122
rvjf 20 13 8 26 15 13 5 20 7 12 26 29 8 5 1 3 35 26 13 46 120
akje 13 18 21 15 20 5 4 22 28 14 21 24 10 7 18 21 33 23 25 37 118
rvje 25 16 15 6 17 23 11 1 22 27 19 30 20 6 11 8 42 39 26 7 114
rkje 17 19 14 30 7 6 17 3 23 29 17 18 6 10 10 5 24 25 31 33 113
psjf 3 3 6 13 27 17 23 14 4 1 6 17 21 25 26 20 30 20 29 27 106
psje 4 4 1 19 26 28 1 19 1 2 2 23 28 26 21 24 30 32 2 38 102
pljf 14 10 12 7 13 2 10 13 14 15 24 12 14 12 7 13 27 12 22 20 81
rsje 7 8 29 1 2 9 22 2 29 8 29 16 11 11 5 6 9 17 51 3 80
pgjf 11 12 10 5 9 3 6 12 25 17 15 28 22 14 15 12 20 15 16 17 68
pgje 10 11 7 4 11 4 3 11 26 18 16 27 23 15 14 11 21 15 10 15 61
plje 12 9 11 3 3 1 9 10 19 16 23 20 13 13 6 10 15 10 20 13 58

TotalSquared tardiness Internal storage Idle times Families

b) Weights are (1, 1, 0, 0)

Table 3: Ranking of the solution algorithms for the test problems t04, t08,
t11 and tsa (random)

29

0

20

40

60

80

100

120

140

160

180

200

rg
jf

av
je

ag
jf

as
jf

av
jf alj

f
rljf pk

jf
rkj

f
pk

je
pv

jf
ag

je rsj
f

alj
e

pv
je

rg
je ak

jf
as

je rlje rvj
f

ak
je

rvj
e

rkj
e

ps
jf

ps
je plj

f
rsj

e
pg

jf
pg

je plj
e

Figure 17: Histogram of method rankings

rkjf, . . .). We rank each method in such a way that 30 is assigned to the
best solution algorithm, 29 to the second best and so forth. Each feature is
ranked individually, and the sum of ranks (in the last column) characterizes
the optimality of the algorithm. The ranks can associated with different
weights in order differentiate the importance of the features. If we consider
only squared tardinesses (Table 4a) then the agjf variant appears to be the
best for problem t04. Moreover, this solution has works relatively well also
for the other features (internal storage, internal waiting times and subfamilies
are ranked 12, 17 and 25, respectively). The results when squared tardinesses
and internal storage are weighted equally are show in Table 4b.

Instead of concentrating only on one scheduling problem, we can easily
make a summary of the rankings for a set of test problems. Table 3 includes
the results for the four test problems and the last columns gives the weighted
sum of all the ranks in the row. The overall best squared tardiness is now
for agjf (see Table 3a). If we give equal weights to the squared tardiness and
the internal storage level the best method is rgjf (see Table 3b). In this case
the weakest score is for plje that has a rank below 15 in 16 columns out of
20.

30

Method
Squared
tardiness

Internal
Storage Idle times Families Total

agjf 30 12 17 25 30
aljf 29 8 16 16 29
agje 28 6 20 24 28
alje 27 4 21 15 27
rgjf 26 21 9 1 26
rvje 25 17 22 20 25
avjf 24 25 8 19 24
avje 23 24 12 18 23
rkjf 22 28 11 5 22
rsjf 21 5 13 9 21
rvjf 20 15 7 8 20
asjf 19 16 10 7 19
rlje 18 10 15 3 18
rkje 17 7 23 6 17
asje 16 1 18 17 16
akjf 15 19 27 12 15
pljf 14 13 14 14 14
akje 13 20 28 10 13
plje 12 3 19 13 12
pgjf 11 9 25 22 11
pgje 10 11 26 23 10
rgje 9 14 30 2 9
rljf 8 18 24 4 8
rsje 7 2 29 11 7
pkjf 6 30 2 30 6
pkje 5 29 3 29 5
psje 4 26 1 28 4
psjf 3 27 4 21 3
pvjf 2 22 5 26 2
pvje 1 23 6 27 1

Method
Squared
tardiness

Internal
Storage Idle times Families Total

rkjf 22 28 11 5 50
avjf 24 25 8 19 49
rgjf 26 21 9 1 47
avje 23 24 12 18 47
agjf 30 12 17 25 42
rvje 25 17 22 20 42
aljf 29 8 16 16 37
pkjf 6 30 2 30 36
rvjf 20 15 7 8 35
asjf 19 16 10 7 35
pkje 5 29 3 29 34
agje 28 6 20 24 34
akjf 15 19 27 12 34
akje 13 20 28 10 33
alje 27 4 21 15 31
psje 4 26 1 28 30
psjf 3 27 4 21 30
rlje 18 10 15 3 28
pljf 14 13 14 14 27
rsjf 21 5 13 9 26
rljf 8 18 24 4 26
pvjf 2 22 5 26 24
pvje 1 23 6 27 24
rkje 17 7 23 6 24
rgje 9 14 30 2 23
pgje 10 11 26 23 21
pgjf 11 9 25 22 20
asje 16 1 18 17 17
plje 12 3 19 13 15
rsje 7 2 29 11 9

a) Weights (1, 0, 0, 0) b) Weights (1, 1, 0, 0)

Table 4: Ranking of the solution algorithms for the problem t04

5 Concluding Remarks

Most papers on flow shop scheduling have expressed the problem solving as
an oversimplified procedure where the solution algorithm manages the whole
scheduling situation without any interaction by the production engineer. Our
approach is more realistic and interactive. Because the objectives of the
scheduling are conflicting, we have included in our algorithm the possibility
to stress different aspects freely. The scheduler includes a number of different
methods which aim at somewhat different goals. In addition, the importance
of human integration is emphasized by the introduction of IPS which gives
the production designer a full control of the manufacturing process.

One difficulty in the development and use of the algorithms is the selection
of the weighting parameters. The designer is encouraged to experiment with
different settings of the parameters but we have assigned a default value to
each of them. In most cases the selection of these values is rather easy, see
Appendix A. If due dates are considered important, then a setting which
favors this objective can be selected, or one can avoid long setting times
by stressing the family concept. The next step in the development of our
algorithm will be the inclusion of rules of fuzzy logic and self-adaptation to
the optimizer.

31

Acknowledgment

The authors wish to thank production engineers Mr. Teuvo Pulliainen and
Mr. Risto Lehtinen from Nokia Display Products of Nokia Corporation for
consultation and co-operation on the project.

References

[1] Ammons, J. C., Carlyle, M., Cranmer, L., DePuy, G., Ellis,

K., McGinnis, L. F., Tovey, C. A., and Xu, H. Component
allocation to balance workload in printed circuit card assembly systems.
IIE Transactions 29, 4 (1997), 265–75.

[2] Askin, R. G., Dror, M., and Vakharia, A. J. Printed circuit
board family grouping and component allocation for a multimachine,
open-shop assembly cell. Naval Research Logistics 41 (1994), 587–608.

[3] Brucker, P. Scheduling Algorithms. Springer-Verlag, 1995.

[4] Crama, Y., Flippo, O. E., van de Klundert, J., and Spieksma,

F. C. R. The assembly of printed circuit boards: A case with multiple
machines and multiple board types. European Journal of Operational
Research 98, 3 (1997), 457–72.

[5] Garey, M. R., and Johnson, D. S. Computers and Intractability:
A Guide to the Theory of NP-completeness. Freeman, 1979.

[6] Häyrinen, T. Subsequent workphases and parallel machines —
scheduling algorithms for efficient control of PC-board assembly system.
Master’s thesis, University of Turku, 1996. (In Finnish: Peräkkäiset
työvaiheet ja rinnakkaiset koneet — töidenjärjestelyalgoritmeja piir-
ilevyjen koneladonnan tehostamiseksi).

[7] Johnsson, M., Peltonen, S., Leipälä, T., and Nevalainen, O.

Work load balancing of a generalized flexible flow line in printed circuit
board production. In Proc Fifth IASTED Int Conf, Robotics and Man-
ufacturing (Cancun, Mexico, May 1997), R. V. Mayorga, Ed., IASTED,
IASTED/ACTA PRESS, pp. 382–9.

[8] Johtela, T., Smed, J., Johnsson, M., Lehtinen, R., and

Nevalainen, O. Supporting production planning by production pro-
cess simulation. Computer Integrated Manufacturing Systems 10, 3
(1997), 193–203.

32

[9] Kim, Y.-D., Lim, H.-G., and Park, M.-W. Search heuristics for a
flowshop scheduling problem in a printed circuit board assembly process.
European Journal of Operational Research 91 (1996), 124–43.

[10] Kumar, K. R., Kusiak, A., and Vanelli, A. Grouping of parts
and components in flexible manufacturing systems. European Journal
of Operational Research 24 (1986), 387–97.

[11] Kusiak, A. Application of operational research models and techniques
in flexible manufacturing systems. European Journal of Operational Re-
search 24 (1986), 336–45.

[12] Shevell, S. F., Buzacott, J. A., and Magazine, M. J. Simula-
tion and analysis of a circuit board manufacturing facility. In Procedings
of the 1986 Winter Simulation Conference (1986), J. Wilson, J. Henrik-
sen, and S. Roberts, Eds., pp. 686–93.

[13] Smed, J., Johnsson, M., Puranen, M., Leipälä, T., and

Nevalainen, O. Job grouping in surface mounted component print-
ing. Tech. Rep. 196, Turku Centre for Computer Science, Aug. 1998.
(Submitted to publication).

[14] Stecke, K. E. A hierarchical approach to solving machine group-
ing and loading problems of flexible manufacturing systems. European
Journal of Operational Research 24 (1986), 369–78.

[15] Wittrock, R. J. An adaptable scheduling algorithm for flexible flow
lines. Operations Research 36, 3 (1988), 445–53.

33

A Summary of Notations

n phase
N number of phases
m machine
j job, batch, product
J number of jobs
Mn number of machines of phase n
wnj the amount of work to be performed in

phase n to product j
tnmjk the set-up time from job j to job k on ma-

chine m of phase n
fnj the family of job j in phase n
dj the due date of job j
Fni the set of jobs belonging to family i of

phase n
Hnml 1 if the machine m of phase n and the ma-

chine l of the phase n+ 1 are connected by
a fixed conveyor belt; 0 otherwise

Bn the set of families of phase n
Bnml the set of families of machine m of phase n
Wnm the work load of machine m of phase n
c0 fair share coefficient of formula (1)
aj the size of job (batch) j
K the size of a magazine
Gnm the set of jobs allocated to machine m of

phase n
cw coefficient for family in formula (2)
costlk allocation cost (2) of two machines l and k
fair sharen fair share parameter (1) of phase n
share excess share excess parameter
lossj the loss value of job j
Mlimit parameter for the number of jobs
number of machine pairs constant for the number of machine pairs
cfamily constant for family in formula (3)
cjob constant for job in formula (3)
cwork constant for work in formula (3)
finishing timel(n) the finishing time of job l in phase n
starting timel(n) the starting time of job l in phase n
starting number criterion (4) for sequencing the families

34

Π(n, m) the schedule of the machine m of phase n
mwtnm machine waiting time of machine m of

phase n
rm criterion (3) for selecting machines

Default values for parameters

c0 fair share coefficient of formula (1) 20
K the size of magazine 20
cw coefficient for family in formula (2) 3
share excess share excess parameter 50
Mlimit parameter for the number of jobs 15
number of machine pairs constant for the number of machine

pairs
50

cfamily constant for family in formula (3) 1
cjob constant for job in formula (3) 1
cwork constant for work in formula (3) 1

35

Turku Centre for Computer Science
Lemminkäisenkatu 14
FIN-20520 Turku
Finland

http://www.tucs.fi

University of Turku
• Department of Mathematical Sciences

Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Science

