
Towards a Definition of a Computer
Game

Jouni Smed
University of Turku, Department of Information Technology,
Lemminkäisenkatu 14 A, FIN-20520 Turku, Finland

Harri Hakonen
University of Turku, Department of Information Technology,
Lemminkäisenkatu 14 A, FIN-20520 Turku, Finland

Turku Centre for Computer Science
TUCS Technical Report No 553
September 2003

ISBN 952-12-1217-9
ISSN 1239-1891



Abstract

This paper approaches computer games from three perspectives: First, by
defining the properties common to all games. Second, by fitting computer
games into Model–View–Controller architectural pattern and discerning com-
mon software components. Third, by listing features that players expect from
an enjoyable computer game.

Keywords: computer games, model–view–controller, games, entertainment
industry, ludology

TUCS Laboratory
Algorithmics laboratory

In memory of Timo Kaukoranta.



1 Introduction

Games have always been a popular pastime, but with the advent of computer
games they have become even more pervasive. Despite all this progress, we
may still stop and ask what makes a game. Because computer games are a
subset of games, everything we can say about games in general applies also
to them. Nevertheless, computer games are also computer programs, and,
therefore, lessons learnt in software construction can be applied to them. A
third perspective to computer games is subjective and it concerns finding out
what features the players expect from a computer game

To answer these questions—and perhaps to raise some more—we begin in
Section 2 by analysing the structure of games in general. In Section 3, we turn
our focus on computer games and try to recognize their common software
components. In Section 4, we present a list of sought-after features that a
computer game should have; although we align ourselves with the players’
position, we try to form our statements so that they can be considered when
designing the implementation. The concluding remarks appear in Section 5.

2 Defining a game

J. Huizinga in his classical work Homo Ludens (1938) gives the following
definition for play [Hui55, p. 132]:

[Play] is an activity which proceeds within certain limits of time and
space, in a visible order, according to rules freely accepted, and outside
the sphere of necessity or material utility. The play-mood is one of
rapture and enthusiasm, and is sacred or festive in accordance with the
occasion. A feeling of exaltation and tension accompanies the action,
mirth and relaxation follow.

A dictionary defines ‘game’ as ‘a universal form of recreation generally in-
cluding any activity engaged in for diversion or amusement and often estab-
lishing a situation that involves a contest or rivalry’ [Enc03]. A game seems
to involve three components:

• players who are willing to participate the game (e.g., for enjoyment,
diversion or amusement),

• rules which define the limits of the game, and

• goals which give arise to conflicts and rivalry among the players.

1



representation

indeterminism
concretization

agreem
ent m

ot
iv

at
io

n

definition

CHALLENGE

co
rr

es
po

nd
en

ce obstruction

PLAY CONFLICT

goalrules

player

opponent

Figure 1: Components, relationships, and aspects of a game.

Although most of the definitions encountered in the literature recognize at
least these three aspects, we can make more subtle distinctions between them.
Figure 1 illustrate the components and relationships present in a game. The
relationships form three aspects:

Challenge Rules define the game and, consequently, the goal of the game.
When players decide to participate in the game, they agree to follow
the rules. The goal motivates the players and drives the game forwards.

Conflict The opponent (which can include unpredictable humans and un-
predictable random processes) obstructs the players from achieving the
goal. Because the players do not have a comprehensive knowledge on
the opponent, they cannot determine precisely the opponent’s effect on
the game.

Play The rules are abstract but they correspond to real-world objects. This
representation concretizes the game to the players.

Consider, for example, the game of Poker. The players agree to follow the
rules, which state what cards there are in a deck, how many cards one can
change, and how the hands are ranked. The rules also define the goal, having
as good hand as possible, which is the player’s motivation. The other players
are opponents, because they try to achieve a better hand to win. Also, the
randomness of the deck opposes the player, who cannot determine what cards
will be dealt next. The game takes a concrete form in a deck of cards, which
represent the abstractions used in the rules.

To clarify, let us contrast the difference between games and other pastimes
[Cra84, §1]:

2



• A puzzle includes only the play and challenge aspects. Because it lacks
interactive elements, it presents no conflict. Once a puzzle has been
solved, its interest usually vanishes. Although puzzles are not games,
games can include puzzles as subtasks.

• A story is a linearly ordered sequence of events set by a storyteller,
whereas a game allows the players to have a choice of the sequence of
events. A play of a game can be told afterwards as a story, but a game
cannot be constructed from a story alone.

• A toy can be identified with the representation component. It is only
a part—but an essential one—of a game.

A game play includes also subjective elements such as an immersion to the
game world, a sense of purpose, and a sense of achievement from mastering
the game. One could argue that the sense of purpose is essential for the
immersion. What immerses us into a game (as well as into a book or a film)
is the sense that there is a purpose or motive behind the surface. In a similar
fashion, the sense of achievement is essential for the sense of purpose (i.e.,
the purpose of a game is to achieve goals, points, money, recognition etc.).
From a human point of view, we get satisfaction in the process of nearing a
challenging goal and finally achieving it.

Although this line of thought is fascinating, we shall not pursue into a
philosophical discussion on games in general but turn our focus to a subset
of games, namely computer games. Computer games have a forty-year his-
tory, since Spacewar is widely regarded as the first proper computer game
[Gra81]. During that time, on the outside, everything (especially technolog-
ical aspects) seems to have changed, but a closer inspection reveals that the
basic concepts have remained the same.

3 Anatomy of computer games

Let us define a computer game as a game that is carried out with the help of
a computer program. This definition leaves us some leeway, since it does not
implicate that the whole game takes place in the computer. For example, a
game of Chess can be played on the screen or on a real-world board, regardless
whether the opponent is a computer program. Incidentally, we can discern
three roles for a computer program in a game:

1. co-ordinating the game process,

2. illustrating the situation, and

3



ACTION

state instance core structures

control logic proto−view

configuration driver
player
synthetic synthetic

view
rendering

instance data
input
device

script options
device
output

human player

controller view

model

PERCEPTION

Figure 2: Model, View and Controller in a computer game.

3. participating as a player.

This role division resembles closely the Model–View–Controller (MVC) ar-
chitectural pattern for computer programs. MVC was originally developed
within the Smalltalk community [KP88] and later on it has been adopted
as a basis for object-oriented programming in general [GHJV95]. The basic
idea is that the representation of the underlying application domain (Model)
should be separated from the way it is presented to the user (View) and from
the way the user interacts with it (Controller). Figure 2 illustrates the MVC
components and the data flow in a computer game.

The Model part includes software components which are responsible for
the co-ordination role (e.g., evaluating the rules and upholding the game
state). The rules and basic entity information (e.g., physical laws) form the
core structures. It remains unchanged while the state instance is created and
configured for each game process. The core structures need not to cover all
the rules, because they can be instantiated. For example, the core structures
can define the basic mechanism and properties of playing cards (e.g., suits and
values) and the instance data can provide the additional structures required
for a game of Poker.

4



The View part handles the illustration role. A proto-view provides an
interface into the Model. It is used for creating a synthetic view for a syn-
thetic player or for rendering a view to an output device. The synthetic view
can be preprocessed to suit the needs of the synthetic player (e.g., board co-
ordinates rather than an image of the pieces on a board). Although rendering
is often identified with visualization, it may as well include audification and
other forms of sensory feedback. The rendering can have some user-definable
options (e.g., graphics resolution or sound quality).

The Controller part includes the components for the participation role.
Control logic affects the Model and keeps up the integrity (e.g., by exclud-
ing illegal moves suggested by a player). Human player’s input is received
through an input device filtered by a driver software. The configuration
component provides instance data, which is used in generating the initial
state for the game. The human player participates the data flow by per-
ceiving information from the output devices and generating actions to the
input devices. Although the illustration in Figure 2 includes only one player,
naturally there can be multiple players participating the data flow, each with
their own output and input devices. Moreover, the computer game can be
distributed among several nodes rather than residing inside a single node.
Conceptually, this is not a problem since the components in the MVC can
as well be thought to be distributed (i.e., the data flows run through net-
work rather inside a single computer). In practice, however, the distributed
computer games provide their own challenges [SKH02].

A synthetic player is a computer-generated actor in the game. It can
be an opponent, a non-player character which participates limitedly (like a
supporting actor), or a deus ex machina which can control natural forces or
godly powers and thus intervene the game events. The more open the game
world is, the more complex the synthetic players are. This trade-off between
the Model and the Controller is obvious: If we remove restricting code from
the core structures, we have to reinstate it in the synthetic players. For
example, if the players can hurt themselves by walking into fire, the synthetic
player must know how to avoid it. Conversely, if we rule out fire as permitted
area, path finding for a synthetic player becomes simpler.

As we can see in Figure 2, the data flow of the human player and the
synthetic player resemble each other. This allows us to project humanlike
features to the synthetic player. We can argue that, in a sense, there should
be no difference between the players whether they are humans or computer
programs; if they are to operate on the same level, both should ideally have
the same powers of observation and the same capabilities. Still, synthetic
players usually cheat, and this has been the norm for a long time. Generally,
the reason is obvious: a computer program is no match for human ingenuity,

5



and, hence, it gets the benefit of the home turf. This is understandable—and
we may even forgive it when it seems fair—but, ideally, the synthetic players
should be in a similar situation as their human counterparts.

4 Sought-after features

In this section, we aim to provide a list of features that make a computer
game interesting for a player. However, as we observed earlier, defining what
makes a game enjoyable is subjective, and, therefore, we can argue only
ostensively by giving examples from existing games. Our list is far from
complete and open to debate.

Let us turn the discussion around and ask what makes a bad computer
game. It can be summed in one word: limitation. Of course to some ex-
tent limitation is necessary—we are, after all, dealing with limited resources.
Moreover, the rules are all about limitation, although their main function
is to impose a goal. The art of making games is to balance the means and
limitations so that this equilibrium engrosses the human. How limitations
manifest themselves in the program code? The answer is the lack of param-
eters: The more things are hard-coded, the less there are possibilities to add
and support new features. Rather than closing down possibilities, a good
game should be open and modifiable for both the developer and the player
as we shall see.

Parameterization indicates that reusable software components should be
employed more often. Apart from graphics engines, game development needs
also other game engine types such as network engines, simulation engines,
and artificial intelligence engines. Because they are not yet widely available,
their functionality is usually embedded in the game by bundling up separate
low level function libraries. Application level parameterization enables reuse
that eases the game development and diminishes the risks involved. In other
words, it increases cost-efficiency on the long run. This applies also to the
producing of innovative game mods and sequels by parameter variations.

4.1 Game world

A game is not a story: While a story progresses linearly, a game must provide
an illusion of free will [Cra84, Cos02]. Obviously, the player must have a
range of actions to choose from at each stage. More formally, let us consider
the game as a directed graph where the game states are vertices and the
possible actions edges (Figure 3). This means that the greater the outdegree
(or fan-out) of a vertex is, the more freedom the player has. In this graph,

6



(d)

si

a1 sj si

sja1

sk

a2

a1

a2a3a4

si

sn

sj

si

sk

sl
a4

a1

a3

a2

sm

sj

(a) (b)

(c)

Figure 3: In a game graph, game states are represented as vertices and
actions as directed edges. (a) A linear progression (e.g., a story) allows no
diversion. (b) Outdegree is the number of edges leaving a vertex (in this case
vertex si has an outdegree of 2). (c) Indegree is the number of edges entering
the vertex (in this case vertex sn has an indegree of 3). (d) Although the
number of possible actions (i.e., the outdegree of vertex si) is the same as in
the previous case, each action has now a unique response.

the uniqueness of a response can be measured as the indegree (or fan-in) of
a vertex. For example, assume that the game plot is divided into chapters
like in Max Payne or Diablo II. Typically, at this transition point the plot
lines of the previous chapter are concluded, and many new plot alternatives
are introduced. This means that in the graph the beginning state of the
chapter has a large indegree and outdegree. The game properties can now
be analysed with graph concepts (e.g., repetitiveness corresponds to cycles
in the graph). An infamous example of a game graph with a small overall
indegree is Dragon’s Lair, where, at each stage, the players can choose from
several alternative actions of which all but one will lead them to a certain
death.

The game world should provide the player with as much freedom as pos-
sible, and the responses to the player’s actions should be appropriate. An
obvious way to implement an open game world is simulation. Computer
games are often likened to simulations or virtual environments, but the clas-
sification is not clear-cut (see Figure 4): We may allow that, for example,
Chess simulates warfare in a highly abstract manner but it is not so obvious
whether Draughts is a simulation. Nevertheless, most games—and especially
computer games—are simulations because a resemblance to the real-world
objects or everyday world (even with a slight touch of fantasy) assists im-
mersion. Indeed, entertainment industry has embraced military simulations

7



puzzles

environments
computer
games

real−time
strategies

shooters
first person

simulations

flight simulators
sports games

manager games

board games

virtual

Figure 4: While virtual environments simulate (possibly real-world) environ-
ments, there are computer games that do not necessarily belong to simula-
tions.

because of the realism they provide [CMZ01].
The main difference between simulations and games is that games are

goal-oriented. A flight simulator, for example, is not a game in itself but
dog-fighting with a flight simulator is. In computer games, a usual approach
is to include a story into the game and, as a consequence, limit the simula-
tion. This game-as-a-story approach usually contains a linear—or at most a
slightly diverse—plot, where the player has some freedom only between fixed
entry points (i.e., the game graph converges to a predetermined state from
time to time). Still, many games do not include a story-line nor impose a
sequence of events. Granted, some of them can be tedious (e.g., Frontier:
Elite II in which the universe is vast and devoid of action whereas in the orig-
inal Elite the goal remains clearer)—but so are many games which include a
story.

4.2 Synthetic players

For game developers, the border between the game world and the entities
inhabiting it is often muddy. Earlier we separated them and called the
computer-controlled entities synthetic players. Related research has been
done on military simulations and within the artificial intelligence (AI) com-
munity [SBHS98, LvL01]. Four key features that a synthetic player must
provide are [SKH03]:

• real-time response,

8



• distribution,

• autonomy, and

• communication.

In the traditional turn-based games, the computer opponent can think (al-
most) as long as it requires. Nowadays, games are mostly real-time programs,
which puts a hard computational strain on the synthetic player. It can no
longer delve into finding an optimal strategy but it should react immediately.
Response is the key-word—even to such extent that game developers tend
think that it is better to have armies of mindless bots than to grant them
even a shred of intelligence. It seems as if we cannot achieve both real-time
response and intelligent behaviour.

Distribution has become more important now that games using network-
ing are more common. This can be a solution to the dilemma of real-time
response and intelligence. Instead of running the synthetic players on one
machine, they can be distributed so that the cumulative computational power
of the networked nodes gets utilized. For example, Homeworld uses this tech-
nique and distributes the computer-controlled opponents among the partici-
pating computers.

Distribution begs the question how autonomous the synthetic players
should be. As long as we can rely on the network there is no problem,
but if nodes can drop out and join at any time, distributed synthetic players
must display autonomy. This is not necessarily a drawback, because it can
lead to a smaller and better design. Also, we must not forget that complex
behaviour can emerge from seemingly simple autonomous agents [KES01].

Finally, if the synthetic players are to cross the gap of autonomy, they
must start to communicate explicitly with each other. They have to in-
form others on their decisions, indicate their plans, and negotiate with each
other—just like we humans do in the real world.

Ideally, a game comprising just synthetic players could be as interesting
to watch as a movie or television show [CMC02]. In other words, if the game
world is fascinating enough to observe, it is likely that it is also enjoyable
to participate—which is one interesting factor in the god games like The
Sims, where the synthetic players seem to act (more or less) with a purpose.
Sometimes a game even gathers around a community that starts to tell stories
of the things that synthetic players have done and to interpret them in human
terms. A good example is NetHack, which, after nearly twenty years, remains
a cornucopia of tales.

This brings us to the idea of a game within a game. Already back in the
1980s Core War demonstrated that programming synthetic players to com-

9



pete with each other can be an interesting game itself [Dew84]. After that
some games have tried to use this approach, but, by the large, AI program-
ming games have been only by-products of ‘proper’ games. For example, Age
of Empires II: The Age of Kings includes a possibility to create scripts for
computer players. This has given a rise to a new kind of gaming, where pro-
grammers compete who creates the best AI script. The whole game is then
carried out by a computer while the humans remain as observers. Although
the programmers cannot affect the outcome during the game, they are more
than just enthusiastic watchers: They are the coaches and the parents, and
the synthetic players are the protégés and the children.

4.3 Multiplaying

What keeps us interested is—surprise. Humans are extremely creative at this,
and it should be encouraged by computer games. Nowadays, networking has
allowed the games to include an ever increasing number of human players.
The possibility of having multiple players enriches the game experience—and
complicates the design process [ZNR00]—because much of the story arises
from the interaction between the players (synthetic or human). Indeed, shar-
ing an experience with fellow players can make game play more pleasurable.

In a narrow, story-like plot line, multiplayer games become virtually im-
possible. One could argue that a single plot line has enough space for one
controlling player at a time. However, even if the plot line itself seems quite
narrow, the co-operative action around it can provide amusement. For ex-
ample, the plot line of Serious Sam: The Second Encounter is a typical
first-person shooter: Go through the levels and kill all monsters. Rarely
enough, the same plot line can be played in both single-player and multi-
player mode. The combination of action, interaction, and humour compen-
sates the narrowness that the plot line may have. Moreover, it demonstrates
that collaboration can be as much fun as competing for oneself. In this sense,
much can be gained from work done on collaborative virtual environments
[BGRP01].

4.4 Customization

A good game has an intuitive interface that is easy to learn. Because players
have their own preferences, they should be allowed to customize the user in-
terface to their own liking. Moreover, the interface should adapt dynamically
to the needs of a player. For example, in critical situations the player ought
to be able to have more detailed control.

10



Personalization is one way to increase immersion of the game. This means
the ability to modify game so that the players really feels that they themselves
are in the game world. For example, NHL 2001 allows the players to create
their own ice hockey team with logos and customized players.

Likewise, living in a game world should feel natural. Tutorials are a
convenient method for illustrating the interface and the game world to the
player. Hence, it can reduce the learning curve significantly. To keep the
game challenging as the player progresses, it should support different diffi-
culty levels. When a player masters the game at some difficulty level, the
next level must introduce new challenges.

4.5 Extensions

An enduring computer game is a platform for surprising innovations. Per-
haps the genre closest to extendibility are the first-person shooters, where
modifications (or ‘mods’) are a usual way to extend the original game. Quite
aptly, the core of these games is called a game engine. For example, game
engines of Quake and Half-Life are widely used in other commercial games.
In real-time strategy games, typical mods include new maps and scenarios.

Another approach is the extension packs, which can be considered as mods
provided by the original game developer. They usually include new levels,
playing characters, and objects (e.g. Diablo II: Lord of Destruction, Age of
Empires II: The Conquerors Expansion), and perhaps some improvement of
the interface. Receiving player feedback through the Internet is extensively
utilized when designing these extension packs.

It is important to recognize a priori what software development mech-
anism are published to the players and with what interfaces. The game
developers typically implement special software for creating content for the
game. These editing tools are a valuable surplus to the final product. If the
game community can create new variations of the original game, longevity
of the game increases. Furthermore, the inclusion of the developing tools
is an inexpensive way—since they are already implemented—to enrich the
contents of a game product.

4.6 Replaying

Once is not enough. We take pictures and videotape our lives. The same
applies also to games. Traditionally, many games provide the option to take
screen captures, but recently—especially in sports games—replays have be-
come an important feature. Replaying can be extended to cover the whole

11



game (e.g., Age of Empires II: The Age of Kings includes this option—
although it was originally developed for debugging purposes). These record-
ings allow us to relive and memorize the highlights of the game, and we can
share them with our friends and the whole game community.

5 Conclusion

We recognized components, relationships, and aspects common to all games.
By fitting computer games into Model–View–Controller architectural pattern
we discerned common software components. Finally, we listed features that
a computer game should include to provide an enjoyable gaming experience,
and concluded that a way to achieve them is to allow parameterization.

References

[BGRP01] Steve Benford, Chris Greenhalgh, Tom Rodden, and James Pycock.
Collaborative virtual environments. Communications of the ACM,
44(7):79–85, 2001.

[CMC02] Fred Charles, Steven J. Mead, and Marc Cavazza. Generating
dynamic storylines through characters’ interactions. International
Journal of Intelligent Games & Simulation, 1(1):5–11, 2002.

[CMZ01] Michael Capps, Perry McDowell, and Michael Zyda. A future for
entertainment-defense research collaboration. IEEE Computer
Graphics and Applications, 21(1):37–43, 2001.

[Cos02] Greg Costikyan. I have no words & I must design: Toward a critical
vocabulary for games. In Frans Mäyrä, editor, Computer Games and
Digital Cultures Conference Proceedings, pages 9–33, Tampere,
Finland, June 2002.

[Cra84] Chris Crawford. The Art of Computer Game Design.
Osborne/McGraw-Hill, Berkeley, CA, 1984. Available at
〈http://www.vancouver.wsu.edu/fac/peabody/game-
book/Coverpage.html〉.

[Dew84] A. K. Dewdney. Computer recreations: In the game called Core War
hostile programs engage in a battle of bits. Scientific American,
250(5):14–22, May 1984.

[Enc03] Encyclopædia Britannica. Game. Encyclopædia Britannica Online,
accessed Apr. 23, 2003. 〈http://search.eb.com/eb/article?eu=36648〉.

12



[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995.

[Gra81] J. M. Graetz. The origin of Spacewar. Creative Computing, pages
56–67, August 1981. Available at
〈http://www.wheels.org/spacewar/creative/SpacewarOrigin.html〉.

[Hui55] Johan Huizinga. Homo Ludens: A Study of the Play-Element in
Culture. The Beacon Press, Boston, MA, 1955.

[KES01] James Kennedy, Russell C. Eberhart, and Yuhui Shi. Swarm
Intelligence. Morgan Kaufmann, San Francisco, CA, 2001.

[KP88] Glenn E. Krasner and Stephen T. Pope. A cookbook for using the
model-view-controller user interface paradigm in Smalltalk-80.
Journal of Object-Oriented Programming, 1(3):26–49, 1988.

[LvL01] John E. Laird and Michael van Lent. Human-level AI’s killer
application: Interactive computer games. AI Magazine, 22(2):15–25,
2001.

[SBHS98] Martin R. Stytz, Sheila B. Banks, Larry J. Hutson, and Eugene
Santos, Jr. An architecture to support large numbers of
computer-generated actors for distributed virtual environments.
Presence, 7(6):588–616, 1998.

[SKH02] Jouni Smed, Timo Kaukoranta, and Harri Hakonen. Aspects of
networking in multiplayer computer games. The Electronic Library,
20(2):87–97, 2002.

[SKH03] Jouni Smed, Timo Kaukoranta, and Harri Hakonen. AIsHockey—a
platform for studying synthetic players. In Loo Wai Sing, Wan Hak
Man, and Wong Wai, editors, Proceedings of the 2nd International
Conference on Application and Development of Computer Games,
pages 183–8, Hong Kong SAR, China, January 2003.

[ZNR00] José Pablo Zagal, Miguel Nussbaum, and Ricardo Rosas. A model to
support the design of multiplayer games. Presence, 9(5):448–62, 2000.

Ludography

Blizzard North, Diablo II. Blizzard Entertainment, 2000.

Blizzard North, Diablo II: Lord of Destruction. Blizzard Entertain-
ment, 2001.

13



David Braben and Ian Bell, Elite. Firebird, 1984.

Croteam, Serious Sam: The Second Encounter. Gathering of Devel-
opers, 2002.

DevTeam, NetHack 3.4.1. 〈http://www.nethack.org/〉, 2003.

A. K. Dewdney, Core War. 1984.

EA Sports, NHL 2001. Electronic Arts, 2000.

Ensemble Studios, Age of Empires: The Age of Kings. Microsoft
Games, 1999.

Ensemble Studios, Age of Empires II: The Conquerors Expansion. Mi-
crosoft Games, 2000.

Frontier Developments, Frontier: Elite II. Gametek, 1993.

J. Martin Graetz, Stephen R. Russell, and Wayne Witanen, Spacewar!.
1962.

id Software, Quake. id Software, 1996.

Maxis, The Sims. Electronic Arts, 2000.

Relic Entertainment, Homeworld. Sierra Studios, 1999.

Remedy Entertainment, Max Payne. Gathering of Developers, 2001.

Sullivan Bluth, Dragon’s Lair. ReadySoft, 1989.

Valve Software, Half-Life. Sierra Studios, 1998.

14





Turku Centre for Computer Science
Lemminkäisenkatu 14
FIN-20520 Turku
Finland

http://www.tucs.fi

University of Turku
• Department of Information Technology
• Department of Mathematics

Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Science


