Special Course on

Networked Virtual Environments

Jouni Smed
Turku Centre for Computer Science (TUCS)
Department of Information Technology,
University of Turku
2004

Course Syllabus

◆ credits: 2 cu
◆ prerequisites: ‘knowledge on the basic concepts of computer networks’
◆ teaching methods: lectures (24 h)
 ◆ Thursdays 8–10 and Fridays 8–10, Auditorium
 ◆ from January 22 to February 27
◆ assessment: examination
◆ course web page:
 http://staff.cs.utu.fi/staff/
 jouni.smed/scnve/
Examinations 1 (2)

- examination dates
 1. March 15, 2004
 2. April 5, 2004
 3. May 10, 2004
- check the exact times and places at http://www.it.utu.fi/opetus/tentit/
- if you are not a student of University of Turku, you must register to receive the credits
 - further instructions are available at http://www.tucs.fi/Education/Information/regcredits.php

Examinations 2 (2)

- questions
 - based on the lectures and additional literature (3 articles)
 - four questions à 8 points
 - to pass the examination, at least 16 points (50%) are required
 - questions are in English, but you can answer in English or in Finnish
- remember to enrol in time!
Course Book

- Chapters 1–7 (pp. 1–249)

Additional Literature

Outline of the Course

1. Introduction
2. Background
 - history
 - past projects and applications
3. Networking
 - data transfer and protocols
 - communication architectures
4. Managing dynamic shared state
 - consistency-throughput trade-off
 - centralized information repositories
 - frequent state regeneration
 - dead reckoning
5. System design
 - threads
 - polygon culling and level-of-detail
6. Resource management
 - packet compression and aggregation
 - area-of-interest filtering
 - exploiting perceptual limitations
7. Other issues
 - security
 - case examples

§1 Introduction

- Networked Virtual Environment (NVE) ‘is a software system in which multiple users interact with each other in real-time, even though those users may be located around the world.’
 —Singhal & Zyda, 1999

- Keywords:
 - global
 - real-time
 - multiple
 - user
 - interaction
Application Areas for NVEs

- Military and industrial team training
- Collaborative design and engineering
- Multiplayer games
- Mobile entertainment
- Virtual shopping malls
- Online tradeshows and conferences
- Remote customer support
- Distance learning

Synonyms, Keywords and Abbreviations

- Collaborative Virtual Environment (CVE)
- Computer-Supported Co-operative Work (CSCW)
- Media-spaces, shared spaces
- Distributed Interactive Simulation (DIS)
- Distributed Virtual Environment (DVE)
- Virtual Reality (VR), Virtual Environment (VE), Virtual Worlds
- Augmented Reality (AR)
- ...
Classification of Shared-Space Technologies 1 (2)

- **Physical reality**
 - resides in the local, physical world
 - here and now

- **Telepresence**
 - a real world location remote from the participant’s physical location
 - a remote-controlled robot

Classification of Shared-Space Technologies 2 (2)

- **Augmented reality**
 - synthetic objects are overlaid on the local environment
 - a head-up display (HUD)

- **Virtual reality**
 - the participants are immersed in a remote, synthetic world
 - a networked virtual environment (NVE)

Benford et al., 1998
Features of NVEs 1 (2)

- A shared sense of space
 - illusion of being located in the same place
 - same characteristics for all participants
 - time of day, weather, acoustics, haptics...

- A shared sense of presence
 - a participant has a virtual persona, an *avatar*
 - graphical presentation, body structure model, motion model, physical model, etc.
 - entering and leaving is visible for other participants
 - all participants do not have to be human-controlled

Features of NVEs 2 (2)

- A shared sense of time
 - see other participants’ actions when they occur
 - enables real-time interaction

- A way to communicate
 - by gesture, by typed text, by voice...

- A way to share
 - interact realistically not only with each other but also with the virtual environment itself
Basic Components of (N)VE System 1 (2)

- Graphic engines and displays
 - the cornerstone of the NVE user interface
 - head-mounted displays (HMD)
 - Cave Automatic Virtual Environment (CAVE)

- Control and communication devices
 - keyboard, mouse
 - joystick
 - dataglove
 - HMD
 - motion detectors in full-body immersive environments
 - microphone

Basic Components of (N)VE System 2 (2)

- Processing systems
 - NVEs demand a considerable amount of processing capacity
 - computes the effects of the user’s actions
 - determines when to notify other users
 - receives information from other users
 - controls autonomous objects
 - computes a visualization of the virtual environment

- Data network
 - exchange information
 - notify about environment changes
 - synchronize the shared state
 - communication among users
Challenges in Design and Development 1 (3)

- Difficult to implement correctly and effectively
- Include multiple traditional software types
- NVEs are
 - distributed systems
 - contend with managing network resources, data loss, network failure, concurrency
 - graphical applications
 - maintain real-time display frame rate
 - allocate the CPU among several tasks
 - interactive applications
 - process real-time input
 - users should see the virtual environment as if it exists locally

Challenges in Design and Development 2 (3)

- NVEs must work with other applications
 - typically integrate with database systems
 - need to support user authentication and may interact with commerce and other transaction systems
 - to support reproducible systems, must be able to log events in real-time to a persistent storage
 - the complete state of the NVE may not be known at any single host
- Optimizing one element of the NVE is hazardous
- Consider as a unified system
- NVE development is a difficult balancing act of trade-offs
Challenges in Design and Development 3 (3)

Balancing of

i. Network bandwidth

ii. Heterogeneity

iii. Distributed interaction

iv. Real-time system design and resource management

v. Failure management

vi. Scalability

vii. Deployment and configuration

i. Network Bandwidth

- Amount of desired information varies
- Amount of users varies
- How to allocate a limited network capacity?
ii. Heterogeneity

- Users do not have equipment with the same quality
- Whether to expose or hide the differences between participants
 - connection speed, processing capacity,…
- Hide by reducing the system to the lowest common denominator
 - a single ‘bad’ participant causes problems for everybody else
- Take a full advance of the available resources
 - user receive different levels of information
 - fair play?
- Graphical display, computational, and audio capabilities

iii. Distributed Interaction

- One of the defining qualities of an NVE system
- NVE system must provide each user with the illusion that
 - the entire environment is located on the local machine
 - the actions of the users have a direct and immediate impact on the environment
- Difficult because of the messaging required
- Each host attempts to
 - present a consistent real-time view
 - cope with out-of-date information
- Problems when multiple users or components interact
 - collision detection, agreement, and resolution among participants

- Real-time interaction defines the process and thread architecture
 - many tasks have hard real-time constraints
- Support quick detection and processing of user action
 - graphical image generation at fixed rate
 - network packets arrive asynchronously, process them soon
 - perform physics modelling and collision detection

- Everything in a single thread, use round-robin
- Segment into multiple threads, balance them
 - shared data structures on each host
 - shared locks

v. Failure Management

- One or more of the connected hosts can crash at any time
- Network connections can fail

Categories of failure handling:
1. System stop
 - entire NVE terminates due to a missing resource
2. System closure
 - no impact on the existing users but new ones are unable to login
3. System hindrance
 - a required service becomes unavaile; degrades the experience
4. System continuance
 - a non-critical service becomes unavailable; no noticeable effect
vi. Scalability

- Can be measured with the number of entities that may simultaneously participate in the system
 - may include human- and computer-controlled vehicles, a terrain, and even logical objects
- Also, the number of hosts, and physical distance between the hosts
- Depends on a variety of factors
 - network capacity, processor capabilities, rendering speeds,…
- The complexity of an NVE increases exponentially with the number of entities because of the number possible interactions between them
- Expensive to achieve because it requires enhancements to virtually all aspects of the NVE system

vii. Deployment and Configuration

- Deploying the software to participants
 - if the software is large, it is inappropriate for downloading
 - a small core library with dynamically downloaded components
- Implications to the software design, implementation language, and supported platforms
- In the case of web browsers or light-weight platforms, ensure that the environment
 - can be easily downloaded
 - conforms the security bounds
 - executes and displays correctly across different platforms
- Participants need an access to the configuration information
 - network addresses, encryption keys, access codes, images, computational modes,…
§2 Background

- Department of Defense (DoD)
 - SIMNET
 - Distributed Interactive Simulation (DIS)
 - High-Level Architecture (HLA)
- Academic NVEs
 - NPSNET
 - PARADISE
 - DIVE
 - BrickNet
 - other academic projects
- Networked games and demos
 - SGI Flight and Dogfight
 - Doom
 - other multiplayer games

History and Evolution

<table>
<thead>
<tr>
<th>Year</th>
<th>Military</th>
<th>Academic</th>
<th>Entertainment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>SIMNET</td>
<td>DIS</td>
<td>MUD</td>
</tr>
<tr>
<td>1990</td>
<td>DIS</td>
<td>HLA</td>
<td>Amaze, Air Warrior</td>
</tr>
<tr>
<td>2000</td>
<td>HLA</td>
<td>DVE</td>
<td>CVE, RB2, DIVE, Spline, MASSIVE, Coven</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ultima Online, Battle.net</td>
</tr>
</tbody>
</table>
Network Software Architecture (NSA)

- NSA includes the inseparable issues of
 - what network protocol is used for the system and
 - what software architecture supports that protocol,

 within the confines of the available bandwidth and processor capacity.

- Important to solve both problems at once!

U.S. Department of Defense (DoD)

- The largest developer of NVEs for use as simulation systems
 - one of the first to develop NVEs with its SIMNET system
 - the first to do work on large-scale NVEs

- SIMNET (simulator networking)
 - begun 1983, delivered 1990
 - a distributed military virtual environment developed for DARPA (Defense Advanced Research Projects Agency)
 - develop a ‘low-cost’ NVE for training small units (tanks, helicopters,...) to fight as a team