suomeksi / in Finnish
main page > chess > XXXIX Chess Olympiad (Khanty-Mansiysk 2010) performance ratings > women, on board prizes

XXXIX Chess Olympiad (Khanty-Mansiysk 2010) performance ratings: women, on board prizes

men: sorted by country / performance / difference / on board prizes
women: sorted by country / performance / difference / on board prizes

How should one decide the board prize winners? The traditional method is to reward those who have reached the best percentage score out of those who have played at least a certain predefined number of games. This is a very simple and intuitive criterion but unfortunately it has a couple of drawbacks. First of all, the highest percentage scores are commonly reached by players who are considerably stronger than the rest of their team, or who play a lower board they should. Of course, this may even be seen as desirable in order to increase the motivation of players whose teams are not strong enough to fight for the team prizes. Still, this may not be the best way to achieve such a goal, since the method seems to suggest that if one truly wants to fight for the board prize, (s)he should play a lower board than the strength suggests and make sure the teammates perform as poorly as possible. Furthermore, a player with a high percentage score and a sufficient number of games is bound to be reluctant to play any further games since that would severely risk getting the prize. This seems all but encouraging.

Recently the percentage score based prizes have often been replaced by rewarding the players with the best performance ratings. This certainly fixes the first problem since the strength of the opponents is now considered. However, since the performances are commonly calculated by the method advocated by FIDE, the second problem may have gotten even worse. When the performance ratings are calculated using the average rating of opponents, wins over poor opponents regularly lower the performance. Thus, players interested in performance based prizes are encouraged to avoid facing weak opponents. Also, the handling of perfect scores is purely arbitrary and the performances calculated for those are really not based on anything. Furthermore, since it is relatively easy to score a high performance on just a couple of games, a fixed minimum number of games is still needed. Finally, exactly the same argument than before holds: a player with a high performance may not wish to endanger it by further games.

Now, there seems to be a reasonably straightforward way to fix these problems. Instead of the average based performance formula, one would calculate the performances the proper way, finding such a rating that the expected score equals the actual score. However, first one would reduce all the scores by a single point. This equals to adding a fake starting round where everyone loses against a very weak player. Thus, everyone needs to start working their performance up from the lowest possible. It will likely take a few games before even the best have reached performances that correspond to their rating. Thus, playing actually helps and each and every win is valuable. Of course, the selection of a single point reduction is arbitrary as well but it's the only arbitrary selection here and it seems natural enough, although it may not always be the best possible. For example, reducing two points instead of one would increase the significance of the number of games thus bringing the risk that someone might be tempted to sit on the performance reached even further down. The flipside would be the reduced importance of the actual performance strength.

But enough chit-chat, let's see who would be the top ten players at each board with the suggested one point reduction. The modified performances can be found in the column m.perf. If you didn't bother to read any of the above, read this: no prizes will be given based on these lists. Unfortunately.

1AZE1wgMamedjarova Zeinab27223491126551312561
2RUS11gKosintseva Tatiana2425737102635932555
3CHN1gHou Yifan1625788112589952509
4GEO1gDzagnidze Nana23253471025851002499
5SLO1mMuzychuk Anna2025357102552932472
6IND1mHarika Dronavalli192515102540922456
7POL1gSocko Monika3224867112519772448
8USA1mKrush Irina2624907112519802444
9GER1mPaehtz Elisabeth252467925391182443
ARM1mDanielian Elina322466112521872443

1CHN2wgJu Wenjun1925161126801862570
RUS12mKosintseva Nadezhda2525651026791822570
3VIE2wmPham Le Thao Nguyen2223041025301872416
4USA2mZatonskih Anna322480102460862382
5ITA2mZimina Olga2823341024641122375
6GEO2mJavakhishvili Lela262451592449882363
7RUS22wgGirya Olga1924146102433842354
8ISR2wgIgla Bella / Gesser Bella252271924491212349
9HUN2mMadl Ildiko402397112418762346
10ARM2mMkrtchian Lilit2824847112407792335

1CUB3wgMarrero Lopez Yaniet2723247825562402
2GEO3mMelia Salome23243971024881012400
3LAT3wgBerzina Ilze26228391124801342385
4POL3wgMajdan-Gajewska Joanna22233381024821402379
5CHN3gZhao Xue25246971024631022374
6RUS13gKosteniuk Alexandra262524102454902372
7GRE3wgMakropoulou Marina49223081024591372360
8SRB3wgStojanovic Andjelija222337112419932337
9HUN3mVajda Szidonia3123427112397812322
10IND3mKaravade Eesha2223657112395862315

1UKR4mGaponenko Inna342469827242525
2RUS24mBodnaruk Anastasia1823997826182466
3RUS14mGalliamova Alisa382482725532132414
4CUB4wgPina Vega Sulennis2923227924711492357
5GEO4mKhukhashvili Sopiko2524225724511602325
6POL4mDworakowska Joanna3123151024081192311
7ISR4wmVasiliev Olga2322937923991412295
8NED4wmSchut Lisa16228881023801412278
9USA4wgBaginskaite Kamile / Baginskaite Camilla4323286823831492270
10ROU4wmL'Ami Alina2523397102325982241

1RUS15wgGunina Valentina212465727212517
2UKR5mMuzychuk Mariya182464924671212366
3BUL5wgVelcheva Maria3322725724141662283
4CHN5mWang Yu2723944524672280
5RUS25wgKashlinskaya Alina162358923541022259
6HUN5wgGara Ticia252348623521492215
7GEO5mKhotenashvili Bela2224645823191212208
8GER5wmFuchs Judith202237922991362188
9ROU5wmBulmaga Irina162267423702442183
10IRI5wfHakimifard Ghazal1621735822761172169

Juha Kivijärvi