
MMDB-4 J. Teuhola 2012 77

4. Multidimensional data structures

Two main categories of data:

Point data: Database objects are k-tuples in a k-dimensional space.
Geometrically, tuple elements correspond to coordinates in space.
The domains of elements can be arbitrary.
Applications: multi-attribute retrieval from relational databases
(access methods based on several attributes), document databases,
feature vectors of multimedia objects. [Topic of Chapters 3, 6]

Spatial data: Database objects have some kind of shape and size,
such as lines, rectangles, and polygons on the 2D Euclidean plane,
or lines, rectangular boxes, and polyhedrons in 3D space.
Points are a special case of spatial data types.
Applications: CAD drawings, VLSI design, geography, image
processing. [Topic of Chapter 5]

MMDB-4 J. Teuhola 2012 78

Multidimensional data structures: preliminaries

Terminology:
PAM = Point Access Method
SAM = Spatial Access Method

General requirements for multidimensional data structures:
Good storage utilization should be guaranteed (70% is sufficient)
Simple tasks should require only a small number of disk accesses
Different dimensions should be treated in a symmetric way
Clustering of objects should conform with geometric proximity, to
support efficient processing of range queries.
The structure should enable dynamic reorganization, when the data
set grows and shrinks (such as B-tree, linear hashing, etc.).
Algorithms for search and update should be simple.
The structure should support different kinds of queries.

MMDB-4 J. Teuhola 2012 79

Illustration of basic query types in 2 dimensions

X = data
point

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
B
C
D
E
F
G
H
I
J
K
L
M
N

X

X
X

X

X

X

X
X

X

X

X
X

dim2

dim1

Partial match: (4,*) Exact match: (8,J)

Range
search:
(10..13,
D..G)

MMDB-4 J. Teuhola 2012 80

Typical properties of multidimensional indexes
in external memory

Tree structure, with disk pages as nodes
Internal nodes (directory) contain branching info + child pointers
Leaf nodes contain actual data points (vectors)
Points should be clustered so that spatially adjacent points are
positioned in the same leaf nodes.
Page overflow is handled by a split, plus maintenance of the
parent; the overflow may propagate upwards.
Page underflow is handled by merging siblings, plus maintaining
the parent data; the underflow may propagate upwards.
GiST = Generalized Search Tree (Hellerstein, Naughton, Pfeffer;
1995): Generic tree supporting of the above principles
GiST implementation in Informix Server (Kornacker 1999) and
currently also in PostgreSQL.

MMDB-4 J. Teuhola 2012 81

Arranging a multidimensional point space

Fixed number (k) of dimensions, each with its own domain of
values.
Variable-dimensional objects (such as documents with keywords)
may be mapped to a fixed-length representation (e.g. signature,
bitmap, etc.)
Typical approach for arranging points:
Repeated partitioning of the point set into a hierarchy:

space-driven:
Partition the current space into
two/four/… equal-sized halves,
and split the point set accordingly,

data-driven:
Partition the point set into two or
more subsets in a balanced way.

MMDB-4 J. Teuhola 2012 82

Example of space-driven partitioning: Quadtree

• ••
•

• •

•

•

•

••
NW

NE SW SE

Root

.

Data points in leaf nodes

Demo on Quadtree (plus some other structures):
http://www.cs.umd.edu/~brabec/quadtree/

MMDB-4 J. Teuhola 2012 83

Multidimensional query types

Exact-match queries: All coordinates (attributes) are fixed in the
query. Logarithmic complexity should be achieved.
Partial-match queries: Only t out of total k coordinates are specified
in the query. The rest may have arbitrary values.
Lower bound for worst-case complexity: Ω(n1-t/k).
Range queries: For each dimension, a range of values is specified.
Exact match: range = [c, c], partial-match: (-∞, ∞) for some
coordinate.
Best-match queries: Find the nearest neighbor of point/area,
specified by the query conditions (exact or range).
Finding k nearest neighbors: Generalization of the above.
Ranking query: k nearest neighbors in the order of proximity.

MMDB-4 J. Teuhola 2012 84

Literature on multidimensional data structures

Gaede, V., Günther, O.:
”Multidimensional Access Methods”,
ACM Computing Surveys, Vol. 30, No. 2, 1998, pp. 170-231.

Böhm, C., Berchtold, S., Kriegel, H.-P., Michel, U.:
”Multidimensional Index Structures in Relational Databases”,
Journal of Intelligent Information Systems, Vol. 15, 2000,
pp. 51-70.

Böhm, C., Berchtold, S., Keim, D.A.:
”Searching in High-Dimensional Spaces – Index Structures for
Improving the Performance of Multimedia Databases”,
ACM Computing Surveys, Vol. 33, No. 3, 2001, pp. 322-373.

MMDB-4 J. Teuhola 2012 85

Mapping of a multidimensional space to one dimension

General idea:
Define an (artificial) order for all possible points in space.
This is called a space-filling curve.
Based on the order numbers, a normal 1-dimensional B+-tree can be
used for indexing the actual points occurring in the data set.

Assumption:
The domain scale (resolution) should be discrete, e.g. integers.
The domain should be finite, e.g. points in a hyper-rectangle.
However, different dimensions may be from different domains.

Goal:
The defined order should maintain the original proximity of
neighbouring points in space, in order to minimize the number of
(disk) accesses in retrieval.

MMDB-4 J. Teuhola 2012 86

Optimal mapping to one dimension:
Hilbert curve

0
1

2
3
4
5
6
7

0 1 2 3 4 5 6 7

Order numbers of
points somewhat
complicated to
calculate

MMDB-4 J. Teuhola 2012 87

Mapping to one dimension: Z-order

Tentative idea: make a concatenation of coordinate values, and
build a 1-dimensional B+-tree index on the combined values.
Problem: Supports well the ‘leftmost’ dimensions but not others.

More symmetric solution: Shuffle (= interleave) the binary
representations of coordinates. Denote
- number of dimensions = k
- range of coordinate values = 0..2d-1.
- arbitrary point P = <P0, ..., Pk-1>, or in binary form:
<<P00, P01,..., P0,d-1>, < P10, P11,..., P1,d-1>,..., Pk-1,0, Pk,1,..., Pk-1,d-1 >>

- shuffled binary representation:
< P00, P10, ..., Pk-1,0, P01, P11, ..., Pk-1,1, ..., P0,d-1, P1,d-1, ..., Pk-1,d-1>

Z-order: If P and Q are points in k-dimensional space, then
P ≤Z Q if and only if shuffle(P) ≤ shuffle(Q)

Data structure: Normal 1-dimensional B+-tree, storing shuffled
representations of points.

MMDB-4 J. Teuhola 2012 88

Example of z-order on a 2D plane (k=2, d=3)

0
1

2
3
4
5
6
7

0 1 2 3 4 5 6 7

MMDB-4 J. Teuhola 2012 89

Z-order features

Background:
Z-order defines a space-filling curve, where most jumps are local.

Generalizations:
Different merging orders can be defined for domains that are not
equal-sized.
Bit mapping tables are then needed for shuffle and unshuffle.

Operations on the z-order structure:
Exact match, insert, delete and modify are simple (one-
dimensional) B+-tree operations (using the shuffled key).
More demanding: Range search

MMDB-4 J. Teuhola 2012 90

Range search from z-order

Generate k-dimensional search regions (SR), by repeated
partitioning of the whole space.
The set of satisfying points is the query region (QR).
The idea is to cover QR with one or more SRs.
Both QR and SR are k-dimensional (hyper-)rectangles.
During partitioning, a new SR may lie in three positions with
respect to QR:

(1) SR is outside QR; SR contains no points that would satisfy
the query. SR can be discarded.

(2) SR is inside QR; all points in SR satisfy the query.
The related tuples are retrieved, unshuffled, and
returned to the caller.

(3) SR and QR overlap; SR is split into two smaller SRs, which
are handled recursively.

MMDB-4 J. Teuhola 2012 91

Notes on range search from z-ordered points

Testing the positions of SR and QR with respect to each other
does not require access to the data.
For efficiency, we should aim at subregions, which constitute a
contiguous subsequence of the z-order.

Rule:
On the i’th level of recursion, split SR evenly into two SRs along
dimension (i mod k).

Notation for a region:
lower:upper ranges for k dimensions: <l0:u0, ..., lk-1:uk-1>.
Splitting the SR on the i’th attribute means that we get two SRs:

SRleft = left(SR, i) = <l0:u0, ..., li : (li+ui-1)/2, ..., lk-1:uk-1>
SRright = right(SR, i) = <l0:u0, ..., (li+ui+1)/2 : ui, ..., lk-1:uk-1>

MMDB-4 J. Teuhola 2012 92

Range search algorithm for z-order

RangeSearch(QR, SR, level)
-- Initially SR is the whole k-dimensional domain space, and level = 0.

if SR ∩ QR is empty then do nothing
else if SR ⊆ QR then

SRlo := <l0, ..., lk-1> of SR -- bottom-left corner
SRhi := <u0, ..., uk-1> of SR -- top-right corner
read tuple t where key ≥ shuffle(SRlo)
while t ≤ shuffle(SRhi) do

report unshuffle(t)
read the next t -- in z-order

else RangeSearch(QR, left(SR, attr[level mod k]), level+1)
RangeSearch(QR, right(SR, attr[level mod k]), level+1)

end

MMDB-4 J. Teuhola 2012 93

Example range search from z-order

k = 2, d = 3, QR = <1:3, 0:4>
Points: {(0,3), (1, 4), (2,1), (2,3), (2,6), (4,7), (6,2), (6,5), (7,5)}

Note:
The thick lines
enclose the
successful SRs;
the actual bounds
for the SR-intervals
are integer-valued.

0
1

2
3
4
5
6
7

0 1 2 3 4 5 6 7

MMDB-4 J. Teuhola 2012 94

Development of SRs in the range search <1:3, 0:4>
<0:7, 0:7>

<0:3, 0:7> <4:7, 0:7>
(outside)

<0:3, 0:3> <0:3, 4:7>

<0:1, 0:3> <2:3, 0:3>
(inside)

<0:1, 4:7> <2:3, 4:7>

<0:1, 0:1> <0:1, 2:3> <0:1, 4:5> <0:1, 6:7>
(outside)

<2:3, 4:5> <2:3, 6:7>
(outside)<0:0, 0:1>

(outside)
<1:1, 0:1>

(inside)

<0:0, 2:3>
(outside)

<1:1, 2:3>
(inside)

<2:2, 4:5> <3:3, 4:5>
<0:0, 4:5>
(outside)

<1:1, 4:5> <2:2, 4:4>
(inside)

<2:2, 5:5>
(outside)

<3:3, 4:4>
(inside)

<3:3, 5:5>
(outside)

<1:1, 4:4>
(inside)

<1:1, 4:5>
(outside)

MMDB-4 J. Teuhola 2012 95

Observations from z-order range search

The points within each SR are consecutive in z-order, and
therefore accessible sequentially, starting e.g. from the bottom-left
corner of the block.
On the border of QR, a number of small SRs are created.
Most of them do not cause a page fault, because they are close in
z-order. However, internal processing may be considerable.
The recursion stack can be compressed to 2 × tuple length in bits
based on the fact that higher-level SRs may be deduced from
a given SR).
Possible modification: Inspect a superset of QR, by stopping at a
level that is suitable for effective disk processing.

Generalizations:
Universal B-tree (UB-tree): Variable-depth representation
Pyramid tree: Optimized for range queries from high-dim. data
The idea can be extended also to spatial objects.

MMDB-4 J. Teuhola 2012 96

kd-tree

k-dimensional tree, but structurally binary
Balanced partitioning of the point set (not the space)
Recursive splitting according to a single dimension at a time
Splitting dimension is varied in a cyclic manner
Originally a main-memory structure
Not dynamic maintenance of balance (only in building)

Building a kd-tree from a given point set:
1. Find the median of the first dimension.
2. Split the point set into two subsets by using the median as a

discriminator value.
3. Store the discriminator in the root
4. Build subtrees recursively, but using different dimensions in

cyclic order when determining the discriminator.
Complexity: O(k N log N) for N points.

MMDB-4 J. Teuhola 2012 97

Versions of kd-tree (compare with B-tree vs. B+-tree)
Homogeneous:
Discriminator points are stored in internal nodes
Non-homogeneous:
Discriminator values are stored in internal nodes, but all points
(including the discriminator points) are stored in the leaves.

Example: Non-homogeneous kd-tree.

x≤2 x>2

y≤3 y>3 y≤2 y>2

x≤1 x>1 x≤1 x>1 x≤3 x>3 x≤4 x>4

(1,2) (2,3) (1,5) (2,4) (3,1) (4,2) (4,4) (5,3)
1 2 3 4 5

1
2

3
4
5 •

•
•
•

•
•

•
•

x

y

MMDB-4 J. Teuhola 2012 98

Searching from a (non-homogeneous) kd-tree

(a) Exact-match query:
Follow a path down from the root: On the i’th level compare the
(i mod k)’th coordinate c with the discriminator d of the node.
If c ≤ d then go to the left subtree, otherwise to the right.
Continue to the leaf. If all coordinates match, return the point.

Balanced kd-trees: search cost O(log N)
Randomly built kd-trees: expected search cost O(log N)

(b) Partial-match query:
If the i’th dimension is not specified in the query, we must
search both subtrees on levels j where (j mod k) = i.
Otherwise, branch as in (a).

If t (<k) out of k dimensions are fixed, then the cost is
approximately O(t N1-t/k).

MMDB-4 J. Teuhola 2012 99

Searching from a (non-homogeneous) kd-tree (cont.)

(c) Range query:
On the i’th level, if the query range of coordinate (i mod k) is
totally below the discriminator d, then go to the left subtree;
if it is totally above d, then go to the right.
Otherwise both subtrees must be searched.

Worst-case complexity: O(N1-1/k + F), where F is the result size.
Average-case complexity: O(log N + F).

MMDB-4 J. Teuhola 2012 100

Updating the kd-tree

Insert and delete:

Generalize the normal binary search tree operations
correspondingly.
But: The balance is not maintained dynamically.
The shape of the tree depends on the insertion order
Reorganization may be needed from time to time.
Balanced kd-trees exist, but complicated

Demo on kd-tree (plus some other structures):
http://www.cs.umd.edu/~brabec/quadtree/

MMDB-4 J. Teuhola 2012 101

Adapting the kd-tree to external memory: sketch

Group neighboring leaves into data pages.
Group neighboring internal nodes into index pages.
Dynamic management of pages should be solved.

MMDB-4 J. Teuhola 2012 102

Adapting the kd-tree to external memory: kd-B-tree

kd-B-tree was one of the first (1981) multidimensional structures
tailored to external memory; more sophisticated tree structures
were developed later.

Structure: Multiway tree, consisting of two kinds of nodes:

(1)Region pages:
- Internal nodes that comprise the actual index (directory)
- A region is a rectangular block in k-dimensional space
- A region page represents the partition of the block
into subregions.

- Splitting into subregions is done similar to the k-d-tree.

(2) Point pages:
- Leaf nodes that contain actual points
(k coordinate values per point)

MMDB-4 J. Teuhola 2012 103

Schematic example
of a kd-B-tree:

MMDB-4 J. Teuhola 2012 104

Searching from a kd-B-tree

Exact-match queries:
Start from the root page.
Within the page-related local kd-tree, branch repeatedly
to the correct region.
Follow the child pointer related to the obtained region
Repeat branching in the subtree contained in the child page
When reaching a leaf, check the point matches

Partial-match and range queries:
As above, but branch to all sub-regions intersecting
the query region.

MMDB-4 J. Teuhola 2012 105

Inserting a new point in a kd-B-tree

Insert the point into the correct leaf page, if it fits
If a leaf overflows, it is split according to the ‘next’ dimension,
using the median value as the discriminator.
The split information is propagated to the parent page.
If the parent overflows, it is split into two. A new split plane is
chosen to separate the sub-regions of the new pages.
A sub-region may appear in three positions:

Left to the cut plane: Move the sub-region to the ‘left’ page.
Right to the cut plane: Move the sub-region to the ‘right’ page.
The plane cuts the sub-region:
Split the sub-region into left and right halves, and propagate the
split to the corresponding child node.

Overflow may propagate up and down;
not quite ‘incremental’ update.

MMDB-4 J. Teuhola 2012 106

Deletion of a point from a kd-B-tree

First search, then delete
Underflow: Page utilization drops below a threshold.
Problem: A region can be merged only with its buddy, and the
buddy region may have been partitioned into subregions and
spread over multiple pages.
Solution: This part of the tree must be rebuilt.
Thus, deletion is not quite ‘incremental’, either.
Storage utilization of kd-B-tree: Observed value about 60% ±
10% (decent).

MMDB-4 J. Teuhola 2012 107

Other multidimensional indexes for point data

LSD-tree
Adaptation of kd-tree; part of the index kept in the main memory

R-tree (Rectangle tree)
Based on a hierarchy of bounding boxes.
Developed for spatial objects, used often for low-dim. points, too.

TV-tree (Telescope Vector tree)
Nodes have a small varying set of active dimensions, which are
used in distance calculations.

M-tree
Index for points in a metric space: A distance function satisfies:
(1) symmetry, (2) positivity, and (3) triangle inequality
Developed especially for MMDBs: distance of objects based on
multimedia features (shape, texture, color, patterns, sound, …)

MMDB-4 J. Teuhola 2012 108

‘Curse of dimensionality’

General problem of high-dimensional spaces
Non-intuitive effects:, e.g. the volume grows exponentially with the
#dimensions
Index regions tend to be highly overlapping
Neighboring objects tend to share a large part of the coordinate
values.
Assuming uniformity of point distribution will lead to very
ineffective indexing.
Think of a 100-dimensional kd-tree: A balanced tree supporting
one splitpoint per dimension has 100 levels and 2100 leaves!
In the index, one should choose the coordinates, which are
the best discriminators between subsets.

