CGRankRLS - linear conjugate gradient RankRLS¶
-
class
rlscore.learner.cg_rankrls.
CGRankRLS
(X, Y, regparam=1.0, qids=None, callbackfun=None, **kwargs)¶ Bases:
rlscore.predictor.predictor.PredictorInterface
Conjugate gradient RankRLS.
Trains linear RankRLS using the conjugate gradient training algorithm. Suitable for large high-dimensional but sparse data.
Parameters: - X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Data matrix
- regparam : float (regparam > 0)
regularization parameter
- Y : {array-like}, shape = [n_samples] or [n_samples, 1], optional
Training set labels (alternative to: ‘train_preferences’)
- qids : list of n_queries index lists, optional
Training set qids, (can be supplied with ‘Y’)
References
RankRLS algorithm is described in [1], using the conjugate gradient optimization together with early stopping was considered in detail in [2].
[1] Tapio Pahikkala, Evgeni Tsivtsivadze, Antti Airola, Jouni Jarvinen, and Jorma Boberg. An efficient algorithm for learning to rank from preference graphs. Machine Learning, 75(1):129-165, 2009.
[2] Antti Airola, Tapio Pahikkala, and Tapio Salakoski. Large Scale Training Methods for Linear RankRLS ECML/PKDD-10 Workshop on Preference Learning, 2010.
-
predict
(X)¶ Predicts outputs for new inputs
Parameters: - X : {array-like, sparse matrix}, shape = [n_samples, n_features]
input data matrix
Returns: - P : array, shape = [n_samples, n_tasks]
predictions