CGRLS - linear conjugate gradient RLS¶
-
class
rlscore.learner.cg_rls.
CGRLS
(X, Y, regparam=1.0, bias=1.0, callbackfun=None, **kwargs)¶ Bases:
rlscore.predictor.predictor.PredictorInterface
Conjugate gradient RLS.
Trains linear RLS using the conjugate gradient training algorithm. Suitable for large high-dimensional but sparse data.
Parameters: - X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Data matrix
- regparam : float (regparam > 0)
regularization parameter
- Y : {array-like}, shape = [n_samples] or [n_samples, 1]
Training set labels
- bias : float, optional
value of constant feature added to each data point (default 0)
References
For an overview of regularized least-squares, and the conjugate gradient based optimization scheme see [1].
[1] Ryan Rifkin Everything old is new again : a fresh look at historical approaches in machine learning PhD Thesis, Massachusetts Institute of Technology, 2002
-
predict
(X)¶ Predicts outputs for new inputs
Parameters: - X : {array-like, sparse matrix}, shape = [n_samples, n_features]
input data matrix
Returns: - P : array, shape = [n_samples, n_tasks]
predictions