KernelPairwisePredictor¶
-
class
rlscore.predictor.pairwise_predictor.
KernelPairwisePredictor
(A, inds_K1training=None, inds_K2training=None, weights=None)¶ Bases:
object
Pairwise kernel predictor
Parameters: - A : {array-like}, shape = [n_train_pairs]
dual coefficients
- inds_K1training : list of indices, shape = [n_train_pairs], optional
maps dual coefficients to instances of of type 1, not needed if learning from complete data (i.e. n_train_pairs = n_samples1*n_samples2)
- inds_K2training : list of indices, shape = [n_train_pairs], optional
maps dual coefficients to instances of of type 2, not needed if learning from complete data (i.e. n_train_pairs = n_samples1*n_samples2)
- weights : {list, tuple, array-like}, shape = [n_kernels], optional
weights used by multiple pairwise kernel predictors
Attributes: - A : {array-like}, shape = [n_train_pairs]
dual coefficients
- inds_K1training : list of indices, shape = [n_train_pairs] or None
maps dual coefficients to instances of of type 1, not needed if learning from complete data (i.e. n_train_pairs = n_samples1*n_samples2)
- inds_K2training : list of indices, shape = [n_train_pairs] or None
maps dual coefficients to instances of of type 2, not needed if learning from complete data (i.e. n_train_pairs = n_samples1*n_samples2)
- weights : {list, tuple, array-like}, shape = [n_kernels], optional
weights used by multiple pairwise kernel predictors
-
predict
(K1pred=None, K2pred=None, inds_K1pred=None, inds_K2pred=None, pko=None)¶ Computes predictions for test examples.
Parameters: - K1pred : {array-like, list of equally shaped array-likes}, shape = [n_samples1, n_train_pairs]
the first part of the test data matrix
- K2pred : {array-like, list of equally shaped array-likes}, shape = [n_samples2, n_train_pairs]
the second part of the test data matrix
- inds_K1pred : list of indices, shape = [n_test_pairs], optional
maps rows of K1pred to vector of predictions P. If not supplied, predictions are computed for all possible test pair combinations.
- inds_K2pred : list of indices, shape = [n_test_pairs], optional
maps rows of K2pred to vector of predictions P. If not supplied, predictions are computed for all possible test pair combinations.
Returns: - P : array, shape = [n_test_pairs] or [n_samples1*n_samples2]
predictions, either ordered according to the supplied row indices, or if no such are supplied by default prediction for (K1[i], K2[j]) maps to P[i + j*n_samples1].