Navigation

  • index
  • modules |
  • next |
  • previous |
  • RLScore 0.8.1 documentation »

TutorialsΒΆ

  • Regression and classification
    • Tutorial 1: Basic regression
    • Tutorial 2: K-fold cross-validation, non i.i.d. data
    • Tutorial 3: Binary classification and Area under ROC curve
    • Tutorial 4: Reduced set approximation
    • Tutorial 5: Multi-target learning
    • References
  • Learning to rank
    • Tutorial 1: Ordinal regression
    • Tutorial 2: Query-structured data
    • Tutorial 3: Learning from pairwise preferences
    • Precomputed kernels, reduced set approximation
    • References
  • Feature selection
    • Basics of feature selection
    • Feature selection with MNIST
    • References
  • Pairwise (dyadic) data, transfer- and zero-shot learning
    • Tutorial 1: KronRLS
    • Tutorial 2: TwoStepRLS, cross-validation with bipartite network
    • Tutorial 2: TwoStepRLS, cross-validation with homogenous network
    • Tutorial 3: CGKronRLS, incomplete data
    • References
  • Kernels
    • Tutorial 1: Basic usage
    • Tutorial 2 Precomputed kernels
    • Tutorial 3 Kronecker learners
  • Prediction
    • Tutorial 1: Linear predictor
    • Tutorial 2: Non-linear predictor
    • Tutorial 3: Reduced set approximation
    • Tutorial 4: Pairwise predictors
    • Saving the predictor
  • Performance measures
    • Tutorial 1: Basic usage
    • Tutorial 2: Multi-class accuracy
  • Sparse large data sets and linear models
    • Data set
    • Experiments

Previous topic

Installation

Next topic

Regression and classification

This Page

  • Show Source

Quick search

Navigation

  • index
  • modules |
  • next |
  • previous |
  • RLScore 0.8.1 documentation »
© Copyright 2018, Tapio Pahikkala, Antti Airola. Created using Sphinx 1.7.6.