
1

Command Pattern

GoF: object behavioral
Operational pattern

Lives at the boundary of two paradigms, functional decomposition
and object orientation

Background
• In Advanced C++:Programming Styles And Idioms (Addison-Wesley,

1992), Jim Coplien introduces the term functor which is an object
whose sole purpose is to encapsulate a function.
– the term function object is often also used in this meanign.
– The point is to decouple the choice of function to be called from the site

where that function is called.
– The term functor is mentioned but not used in Design Patterns. However,

the theme of the function object is repeated in a number of patterns in that
book.

• A Command is a function object in its purest sense: a method that’s an
object.

• By wrapping a method in an object, you can pass it to other methods
or objects as a parameter, to tell them to perform this particular
operation in the process of fulfilling your request.

• You could say that a Command is a messenger (because its intent
and use is very straightforward) that carries behavior, rather than data.

2

Basic Aspects
• Intent

– Encapsulate requests as objects, letting you to:
• parameterize clients with different requests
• queue or log requests
• support undoable operations

• Problem
– Need to issue requests to objects without knowing anything about the

operation being requested or the receiver of the request.
• Applicability

– Parameterize objects
– Specify, queue, and execute requests at different times

• replacement for callbacks
– Support undo
– Support for logging changes
– Model transactions

• structure systems around high-level operations built on primitive ones
• common interface ⇒ invoke all transaction same way

Structure

3

Participants
• Command

– declares the interface for executing the operation
• ConcreteCommand

– binds a request with a concrete action

• Invoker
– asks the command to carry out the request

• Receiver
– knows how to perform the operations associated with carrying

out a request.

• Client
– creates a ConcreteCommand and sets its receiver

Collaborations

• Example
– Invoker is a menu
– Client is an text editor program
– Receiver is a document
– Action is save

4

Consequences
• Command decouples the object that invokes the operation from the one

that knows how to perform it.
– To achieve this separation, the designer creates an abstract base class that

maps a receiver (an object) with an action (a pointer to a member function). The
base class contains an execute() method that simply calls the action on the
receiver.

– All clients of Command objects treat each object as a "black box" by simply
invoking the object's virtual execute() method whenever the client requires the
object's "service".

• Commands are first-class objects
– can be manipulated and extended

• Composite Commands
– Sequences of Command objects can be assembled into composite (or macro)

commands
– see also Composite pattern

• Easy to add new commands
– Invoker does not change
– it is Open-Closed

Intelligence of Command
objects

• "Dumb"
– delegate everything to Receiver
– used just to decouple Sender from Receiver

• "Genius"
– does everything itself without delegating at all
– Related to proxy-pattern in intent
– let ConcreteCommand be independent of further classes

• "Smart"
– find receiver dynamically

5

Example: Menu Callbacks

Example – decoupling GUI
elements from the program

• Suppose we build a simple program that has the functionality of selecting menu items
File Open and File Exit, and a button Red that can be pressed.

• The program consist of the File Menu object with the mnuOpen and mnuExit
MenuItems, and a button called btnRed.

• Clicking any of these causes an ActionEvent which generates a call to the
actionPerformed method:

public void actionPerformed(ActionEvent e) {
Object obj = e.getSource();
if (obj == mnuOpen) fileOpen(); //open file
if (obj == mnuExit) exitClicked(); // exit program
if (obj == btnRed) redClicked(); //turn red

}

// one of the methdos that get called from actionPerformed (as an
example)

private void fileOpen() {
FileDialog fDlg = new FileDialog(this, “Open a file”,

FileDialog.LOAD);
fDlg.show();

}

6

...decoupling GUI...
• The previous approach works fine as long as the GUI is simple, as the number

of GUI elements increases the actionPerformed method gets complicated.
• Using command objects helps to solve this problem

// the simple interface that command objects must implement.
public interface Command
{

public void Execute();
}
/* we make the GUI elements (menu items, buttons) containers

for a command object that exists separately. This way we
avoid the dependency that would result from binding
command objects directly into elements that cause the
action (invoker). */

// GUI elements will implement this interface
public interface CommandHolder {

public void setCommand(Command comd); // put command
public Command getCommand(); //fetch command to execute

}

...decoupling GUI...
• then we create the cmdMenu class to implement CommandHolder

public class cmdMenu extends JMenuItem implements
CommandHolder {
protected Command menuCommand; // internal copies
protected JFrame frame;

//-----------------------
public cmdMenu(String name, JFrame frm) {

super(name);
frame = frm;

}
//-----------------------

public void setCommand(Command comd) {
menuCommand = comd;

}
//-----------------------

public Command getCommand() {
return menuCommand;

}
}

7

...decoupling GUI...
• and similarly we create the cmdButton class

public class cmdButton extends JButton implements
CommandHolder {

private Command btnCommand;
private JFrame frame;

public cmdButton(String name, JFrame fr) {
super(name);
frame = fr;

}
public void setCommand(Command comd) {

btnCommand = comd;
}
public Command getCommand() {

return btnCommand;
}

}

...decoupling GUI...
• Now the command objects are separated from user interface

classes. As an example, the FileCommand class is defined as:

public class fileCommand implements Command {
JFrame frame;

public fileCommand(JFrame fr) {
frame = fr;

}
//------------------------------

public void Execute() {
FileDialog fDlg = new FileDialog(frame, "Open

file");
fDlg.show();

}
}

8

...decoupling GUI...
• The GUI elements are now created and then passed a suitable

command object

// creating cmdMenu class
mnuOpen = new cmdMenu(“Open…”, this);
mnuOpen.setCommand(new fileCommand(this));
mnuFile.add(mnuOpen);
mnuExit = new cmdMenu(“Exit”, this);
mnuExit.setCommand(new exitCommand());
mnuExit.add(mnuExit);

// creating cmdButton class
btnRed = new cmdButton(“red”, this);
btnRed.setCommand (new RedCommand(this, jp));
jp.add(btnRed);

...decoupling GUI...

• and finally the actionPerformed method
shows that things are decoupled and the
code is simple
– actionPerformed fetches the actual Command

object from the GUI object that caused the
action, and then executes that command.

public void actionPerformed(ActionEvent e) {
CommandHolder obj = (CommandHolder) e.getSource();
obj.getCommand().Execute();

}

