SixePliRciples of Pack@@e Design

1. Reuse—Release Equivalence
Principle
. Common-Reuse Principle
. Common-Closure Principle
. Acyclic-Dependencies Principle
. Stable-Dependencies Principle /> Coupling

. Stable-Abstractions Principle

Cohesion

RERNEont'd)

® Primary political issues

Osoftware must be partitioned so that
humans find it convenient

® Reusable package must contain
reusable classes

Oeither all the classes in a package are
reusable or none of them are

® Reusable by the same audience

CRPHEont'd)

® |f one class in a package uses another package,
there is a dependency between the packages

O whenever the used package is released, the using
package must be revalidated and re-released

O when you depend on a package, you depend on every
class in that package!

® Classes that are tightly bound with class
relationships should be in the same package
O these classes typically have tight coupling
O example: container class and its iterators

® The classes in the same package should be
inseparable — impossible to reuse one without
another

RERHINE Reuse—Rele@serEquivalenee
Prineiple

THE GRANULE OF REUSE IS
THE GRANULE OF RELEASE.

® Anything we reuse must also be released and tracked
® Package author should guarantee

O maintanance

O notifications on future changes

O option for a user to refuse any new versions

O support for old versions for a time .

CRERHIRe Common-Relse Principle

THE CLASSES IN A PACKAGE ARE
REUSED TOGETHER. -

IF YOU'REUSE ONE OF ‘THE
CLASSES IN A PACKAGE, YOU
REUSE THEM ALL.

CCRAIhe Common-@lesure Principle

'THE CLASSES IN A PACKAGE SHOULD
BE CLOSED TOGETHER AGAINST THE
SAME KIND OF CHANGES.

A CHANGE THAT AFFECTS A CLOSED
PACKAGE AFFECTS ALL THE,
CLASSES IN THAT PACKAGE AND NO
OTHER PACKAGES.

CERcont'd)

® SRP restated for packages
O a package should not have multiple reason to change
® Maintainability often more important than
reusability
O changes should occur all in one package
O minimizes workload related releasing, revalidating and
redistributing
® Closely related to OCP

O strategic closure: close against types of changes that
are probable

O CCP guides to group together classes that are open to
the same type of change

TheslViorning-After SyRerome’

® Developers are modifying the same source files
trying to make it work with the latest changes
somebody else did — no stable version

® Solution #1: the weekly build

O developers work alone most of the week and integrate
on Friday

O works on medium-sized projects

O for bigger projects, the iteration gets longer (monthly
build?) — rapid feedback is lost

® Solution #2:

O partition the development environment into releasable
packages
O ensure ADP

Paek@@e Structure asiaibirecied
Acyelie Graph

ADPHIhe Acyclic-Depeneencies
Principle

ALLOW NO CYCLES IN THE
PACKAGE DEPENDENCY GRAPH.

® Without cycles it is easy to compile, test and release ‘bottom-up’
when building the whole software

® The packages in a cycle will become de facto a single package
O compile-times increase

O testing becomes difficult since a complete build is needed to test a
single package

O developers can step over one another since they must be using
exactly the same release of each other’s packages

Rele@se-Control

® Partition the development environment into releasable
packages
O package = unit of work
developer modifies the package privately
O developer releases the working package

O everyone else uses the released package while the developer
can continue modifying it privately for the next release

® No developer is at the mercy of the others
O everyone works independently on their own packages

everyone can decide independently when to adapt the
packages to new releases of the packages they use

no ‘big bang’ integration but small increments

® To avoid the ‘morning-after syndrome’ the dependency tree
must not have any cycles

Bre@aking the Cyclemwiiin DIP

Bre@king/the Cycle wiliiia New
Package

M ge
Window

SDRHIRe Stable-Depen@encies
Principle

DEPEND IN THE DIRECTION
- OF STABILITY.

® Designs cannot be completely static
O some volatility is required so that the design can be maintained
D CCP: some packages are sensitive to certain types of changes

® A volatile package should not be depended on by a package that
is difficult to change

O a package designed to be easy to change can (accidentally)
become hard to change by someone else hanging a dependency
on it!

Stailiy Metrics

® Affarent couplings C, ® |nstability |
O the number of classes Ol=C.,/(C,+C,)
outside this package Ol = 0: maximally
that depend on classes stable package

within this package O = 1: maximally

® Efferent couplings C, instable package
O the number of classes ® Dependencies
inside this package O C++- #include
that depend on classes ~ - -~ -
outside this package O Java: import, qualified
names

Bre@aking the Cyclersa Corollany,

® The package structure cannot be
designed top—down but it evolves as
the system grows and changes

® Package depency diagrams are not
about the function of the application
but they are a map to the buildability
of the application

Stapieiand InstableRackages

‘Stable’ = not easy to change

O how much effort is needed to change a package: size,
complexity, clarity, incoming dependencies

If other packages depend on a package, it is hard
to change (i.e. stable)

SDP

® The I metric of a package should be larger
than the | metrics of the packages that
depends on

Fixip@pine Stability Vielaiien (Using DI

Flexible

MeE@slinng ASITACIiiESs

® The number of classes in the package N,

® The number of abstract classes in the
package N,

Oabstract class = at least one pure interface and
cannot be instantiated

® Abstractness A
OA =N, /N,
OA = 0: no abstract classes
OA = 1: only abstract classes

Pack@@e Cohesion andCoupling

® REP, CRP, and CCP: cohesion within a package
O ‘bottom—up’ view of partitioning
©) C'Iasses in a packages must have a good reason to be
there
O classes belong together according to some criteria
® political factors
® dependencies between the packages
® package responsibilities
® ADP, SDP, and SAP: coupling between packages
O dependencies accross package boundaries
O relationships between packages
® technical
® political
® volatile

SARHIRE Stable-Absti@eiions Principle

A PACKAGE SHOULD BE AS
ABSTRACT'AS IT IS STABLE.

A stable package should be abstract so that stability does not
prevent it from being extended

An instable package should be concrete since the instability allows
the concrete code to be changed easily

SDP + SAP = DIP for packages
O dependencies run in the direction of abstractions
Since packages have varying degrees of abstractness, we need a
metric to measure the abstractness of a package
7
A

TherAsiractness—Insiability Graph

FACIORY

® DIP: prefer dependencies on abstract
classes
Oavoid dependencies on concrete (and volatile!)
classes
Oany line of code that uses the new keyword
violates DIP:
Circle ¢ = new Circle(origin, 1);
Othe more likely a concrete class is to change,
the more likely depending on it will lead to
trouble
® How to create instances of concrete
objects while depending| only on abstract
interfaces — FACTORY

Example: Creating Sh@pes Violates
DIP

Application

«interface»
Shape
N\

Examiple: Removingdine
Dependency Cycle

public interface ShapeFactory {
public Shape make(C <? extends Shape> t);

public class ShapeFactorylmplementation
implements ShapeFactory {
public Shape make(Class<? extends Shap t) {
if (¢t = .class) return new cleQ;
else if (Square.class) return nev uare(Q;
throw new Error();

actory st = new ShapeFactorylmplementation();
S e sl = sf.make(Circle.class);
Shape s2 = sf.make(Square.class);

FAGI®RY — The FlipSide

® Factory is a powerful abstraction
Ostrictly thinking DIP entails that you
should use factories for every volatile
class
® Do not start out using factories
Ocan cause unnecessary complexity

Oadd them when the need becomes great
enough

Ex@maple: Shapes Using FACTORY:

+makeCi

«interface»
+makeSqu 0) Shape
i A

«creates»

Bengliis of FACTIORY:

® Implementations can be substituted easily

® Allows testing by spoofing the actual
implementation

| ShapeFactory
Implementation 1

Re@@ing for the NexiWeek

® Section 5: The Weather Station Case
Study
OChapter 23: COMPOSITE
OChapter 24: OBSERVER — Backing into a Pattern

OChapter 25:ABSTRACT SERVER, ADAPTER, and
BRIDGE

OChapter 26: PROXY and STAIRWAY TO HEAVEN:
Managing Third Party APIs

OChapter 27: Case Study: Weather Station

