Desi@n Patterns: Seifz

©® COMPOSITE

® OBSERVER

® ABSTRACT SERVER

©® ADAPTER

® BRIDGE

® PROXY

® STAIRWAY TO HEAVEN

COVROSITE and COMMAND

Composite
Command

® Sensor and Command: one-to-one association
® COMPOSITE provides a way to have one-to-many
behaviour without one-to-many association

O list management and iteration appears only once in
the composite class

® Cf. jJava.awt.geom.GeneralPath

SyReonous EvenigEiandling

Observers

change
notifications

requests, .
S .
modifications e

Subject

COMPOSITE

Shape «delegates»
+add(Shape)
+draw()

OBSERVER

® Service call can be seen as a global event to
which the related modules can react
O creator and handler(s) of the event do not have to know
one another — no direct dependency
® Define an object keeps the data model (Subject)
® Delegate all “‘view’ functionality to decoupled and
distinct Observer objects
O register to Subject at creation
® When Subject changes, it notifies all registered
Observers
© Observer can query Subject for the data that it is
responsible for monitoring
® The number and type of Observers can be
configured dynamically at run time

OBSERVER: Pull Mod2!

~+register(Observer)
+unregister(Observer),
#notify()

.
Concrete
«registers» Observer

S ect
+getState() +update()
+setState()




OBSERVER: Push Mo@e! Feaiures

® Use Observer when

O an abstraction has two aspects, one dependent on the
other
Subject = BT O a change to one object requires changing others, and
you do not know how many objects need to be changed

+register(Observer) +update(Message) glswsalajwe%toigogé%Lklatetﬁkélseetgbr)ggfsy other objects without
+unregister(Observer), A P )

+notify(Message) ® Observer is a widely used pattern: once you
understand it, you see uses for it everywhere

O you can register observers with all kinds of objects
rather than writing those objects to explicitly call you

ject «registers»| Observer Java.awt.event.ActionlListener
O java.util.Observer and java.util .Observable
+getState()

ABSTIRACT SERVER — AWVIofivating Example: A Bad WoysieiExiend
Example SWitCh

® Design software for
a simple table
lamp

Oswitch: on/off o Lo
Olight: on/off Swite el
® The simple design +turnon()

. turnoff
violates oo
ODIP i I

o
OOCP +turnon()
+turnOff()

Example: Extending Swiieh with 4
AL SERVER WReI®wns the Intelieee?

® Interfaces belong to the client, not to the

: derivative
O Switch cannot be deployed without Switchable
OSwitchable can deployed without Light
® Inheritance hierarchies usually should not
be packaged together
Opackage clients with the interfaces they control
® Cf.

ava.io.Closeable, java.i1o.Flushable

Ojavax.swing.table.TablelModel
on()

+turnOff() +turnOff()




ADAPRTER

® Potential SRP violation in ABSTRACT

SERVER:
OLight and Switchable may not change
for the same reasons
Owhat if Light cannot be inherited?
® Solution: add a class that can be
adapted to the interface
Odrawback: extra classes, instantations

Ex@mple: Class-FomrAdapter

«interface»
Switchable

+turnOn()
+turnOff()

+turnon()
+turnOff() +turnOff()

Example: Bridging Tweiierarchies

) «delegates»
Animal

® Encapsulate the behaviour (i.e.
movement) into a class

® The animal class contains an object that
has the appropriate behaviour

Example: Objeci-Eomp Adopier

«interface»
Switchable

«delegates»
| g

Ad

+turnOn() +turnOn()
+turnOff() +turnOff()

BRIDEE - A VotivaiiggiExample

® Modelling animal characteristics
each type of animal can have different number of legs (integer)

each type of animal can have different type of movement: fly, walk or

crawl
O an animal must be able to return the number of legs when asked

O an animal must be able to calculate how long it would take to move a
distance given the type of terrain
® Variation in number of legs: a member variable with get/set
methods

® Variation in movement type:
O a member variable to indicate the type and to select different code for

movement
® tight coupling, messy code
animal types are derived from a base class
® need to manage subtypes of animals
® no animals with more than one type of movement
® subtyping based on one property; what about classifying them as

mammals, reptiles and birds?

Comamonality: andiVa@rakbility.

® Commonality analysis
O what are the common elements among the elements

O define a family to which the elements belong and a
context where things vary
O find the structure that is unlikely to change over time
® Variability analysis
O how things vary within the context of commonality
(variability only makes sense within a given
commonality)
O find the structure that is likely to change
® Shortly: When the type hierarchy has more than
one degree of freedom
O separate the hierarchies
O tie them together with a bridge




PROXY,

® Allows to cross a barrier without
either of the participants knowing
about it
Odatabase
Onetwork

® Theory: PROXY can be inserted in
between two collaborating objects
without them knowing about it

® Reality: not so trivial...

Ex@maple: Order Proxy

«interface»
Order

® Interface that declares all the methods
that clients need to invoke

® Class that implements those methods
without knowledge of the database

® Proxy that knows about the database

Ex@maple: Order Prexyicontd)

public class OrderProxy implements Order {

public int total() {
0 rimp imp = new OrderImp(getCustomerlid());
ItemData[] itemDataArray =

DB.getltemsForOrder(orderid);
for (ltemData item : itemDataArray)
imp.addltem(new ProductProxy(item.sku),
item.qty);

return imp.total();

i

/* rest of the inmplementation omitted */

Ex@mple: Welb Shopping Cari

2 -date
-status
(0).77

; me
-guantit;
-price

-sku

-billingInfo

Ex@maple: Order Prexyicont'd)

istomerid();
tem(Product p, int guantity);
nt total();

Inp implements Order {
Item> itsltems;
nt total() {
03
- itsltens)
item.getProduct().getPrice() * item.getQuantity();

return total;

/* rest of the i entation omitted */

>

STAIRWAY TO HEAVEN

® Achieves dependency inversion (like
PROXY)

® Employs a variation on the class
form of ADAPTER

® Only useful in languages supporting
multiple inheritence

® Completely seperates knowledge of
the database away from the business

rules of the application ()




STAIRWAY 1O HEAVENHcont'd) Re@dding forihe NexisWeek

® Section 6: The ETS Case Study
Object OChapter 28: VISITOR

e OChapter 29: STATE
A

OChapter 30: The ETS Framework

_ Persistent
AN

AN

Persistent
<l
AesEmislly Assembly




