LinearKernel¶
-
class
rlscore.kernel.linear_kernel.
LinearKernel
(X, bias=1.0)¶ Bases:
object
Linear kernel.
k(xi,xj) = <xi , xj> + bias
Parameters: - X : {array-like, sparse matrix}, shape = [n_bvectors, n_features]
Basis vectors
- bias : float, optional (default 1.0)
Constant added to each kernel evaluation
Attributes: - train_X : {array-like, sparse matrix}, shape = [n_bvectors, n_features]
Basis vectors
- bias : float
Constant added to each kernel evaluation
-
getKM
(X)¶ Returns the kernel matrix between the basis vectors and X.
Parameters: - X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Returns: - K : array, shape = [n_samples, n_bvectors]
kernel matrix