GaussianKernel¶
-
class
rlscore.kernel.gaussian_kernel.
GaussianKernel
(X, gamma=1.0)¶ Bases:
object
Gaussian (RBF) kernel.
k(xi,xj) = e^(-gamma*<xi-xj,xi-xj>)
Parameters: - X : {array-like, sparse matrix}, shape = [n_bvectors, n_features]
Basis vectors
- gamma : float, optional (default 1.0)
Kernel width
Attributes: - train_X : {array-like, sparse matrix}, shape = [n_bvectors, n_features]
Basis vectors
- gamma : float
Kernel width
-
getKM
(X)¶ Returns the kernel matrix between the basis vectors and X.
Parameters: - X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Returns: - K : array, shape = [n_samples, n_bvectors]
kernel matrix