PolynomialKernel¶
-
class
rlscore.kernel.polynomial_kernel.
PolynomialKernel
(X, degree=2, gamma=1.0, coef0=0)¶ Bases:
object
Polynomial kernel.
k(xi,xj) = (gamma * <xi, xj> + coef0)**degree
Parameters: - X : {array-like, sparse matrix}, shape = [n_bvectors, n_features]
Basis vectors
- gamma : float, optional (default 1.0)
Kernel parameter
- coef0 : float, optional (default 0.)
Kernel parameter
- degree : int, optional (default 2)
Kernel parameter
Attributes: - X : {array-like, sparse matrix}, shape = [n_bvectors, n_features]
Basis vectors
- gamma : float
Kernel parameter
- coef0 : float
Kernel parameter
- degree : int
Kernel parameter
-
getKM
(X)¶ Returns the kernel matrix between the basis vectors and X.
Parameters: - X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Returns: - K : array, shape = [n_samples, n_bvectors]
kernel matrix